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Abstract Results
SN L A S | 1 SRR 1 i Clinical Presentations of TMP ADRs Phase 1 Metabolism: Liver, Lung & Skin \ ([ Phase 2 Metabolism: Liver, Lung & Skin )
significant percentage of the population, are unpredictable, and D 2771298
frequently cause life-threatening events requiring intensive medical Sa Table 1. Liver, Iung, and skin form phase Il metabolites
care. The antlb'lotlc,tr|methopnm-sulfgmethoxazole (TMP-SM?() IS ' . ex vivo. N-oxide glucuronides below LD in Iung and skin
generally considered a safe and effective drug but has a relatively high
rate of IADRs. Through metabolism, drugs may be bioactivated, yielding = _ _ _ B 1x10°
reactive metabolites which covalently bind to proteins making them a =4 Sulfation Glucuronidation K N
target for immur.u_e-mediated respons.es, a_md in som_e cases, fu!minant > Liver | Lung | Skin | Liver | Lung | Skin i 8x10_; o
drug hypersensitivity. Although the liver is the dominant contributor to g 2 6x107
drug metabolism, other organ systems are known to be metabolically o 4DM-TMP heS T NI EOY DS ST IREs avilii
active . Interestingly, TMP-SMX IADRs are associated with serious lung g 19 3DM-TMP Yes Yes Yes Yes Yes Yes g 41077 - A g 3570860
injury ar?d/or. mi'Id to serious skir.1 rash. We seek to e\./aluate.TI.\/IP Co-OH-TMP No No No NoO NoO NoO 2x107_f 278.1324
metabolites in Ilver,'lung, and gkln qnd to assess the.lr.reactlwty. I JCEE No No No Ves No No f } . 4 T
Subcellular s9 fractions contain active drug metabolizing enzymes and 0—l= i : % . v N . 0 ; : Y i L PO N 316.0529 359.0840
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with the.addltlon of approprla'Fe c_o-factors,.both phase.l and II_ DC L DL OCT DEg OCD 3NO-TMP T 10:m 220 | 240 mmiiﬁ? 300 | 320 | 340 | 360 | 380 | 400
metabolites can be produced in vitro. We discovered differential phase | SEx> S>> S>3 S>3 Sik3 E
and Il TMP metabolism in liver, lung, and skin. Reaction products were J9V D VWD VoD VS 30V
analyzed by Waters Instruments triple quadrupole liquid . ) . /
chromatography/mass spectrometry (LC/MS). The reactivity of tissue- BE 4-DM-TMP A + MRM Slgnal in full reaction? C  1xwe
specific metabolites was assessed by incubating s9/TMP reaction e No MRM signal in negative controls? / 8x107
products with glutathione, n-acetyl cysteine, and n-acetyl lysine. B 3-DM-TMP , : 5 \/ mg;
Potentially trapped metabolites were analyzed using a high-resolution B 1-NO-TMP y ngh resolution exact mass accurate: 9 ox107 -
Waters quadrupole/time of flight (g-tof) MS. These data were fed into a e RT matches MRM in patient samples?/ §100000
peak-picking algorithm (XCMS) to identify unique features against . 3NO-TMP : : . 5 o Ll 3570879
several negative controls. We identified 2 potentially reactive sulfate * Slgnal reduced with enzymatlc treatment: / " 60000 il oy
conjugates of 4-desmethyl trimethoprim. The results indicate that Ca-OH-TMP ‘2‘8388 | v
p_rimar_y m_etal_aolites formed_in the Ii_ver can U_ln_dergo further_ Figure 1. Clinical manifestations of ADRs in liver, lung, and skin. Figure 2. Comparison of TMP phase | metabolite formation in 03 A . i oy o6 316,055 [ 0178
:?Au%izstuv%t]ugsneuprl]lépngga;nr:;Ckru]r;,nt_lgf_sl_;ess_;;tzl|n!ﬁaalldpraesceg§tf|§rr;SOIOTMP A. |:\/Ici||d srlldn reaction B. ISeverellslgin rﬁaction C. H&E ADR lung liver, lung, and skin human s9 fractions. Values calculated were : finus v o A T N B
: (ucH e WL cell death D. H&E ADR liver cell deat i . ic/i itv-deri _ A SN’ _ _ _ _ _
understand the etiology of this currently idiopathic medical condition. adjiisted’iornoncenzymaltic/impunty-aerived-meastirements. Figure 3. Determination of phase Il metabolites in liver, lung, and skin. A. Vetting process to confirm formation of phase Il metabolites B. s9
Images from: Pirmohamed M. et al. 2011;89(6);896-901. and 3DM-TMP glucuronide full reaction C. s9 3DM_TMP glucuronide negative control D. MS/MS fragmentation of 3DM sulfate in patient urine
\ ) \ Ghabril M, et alCurr Opin Gastroenterol 2010; 26(3):222-6. ) \ ) K E MS/MS fragmentation ex vivo 3DM-TMP sulfate j
Adduct Metabolism ) : ; ;
Methods Conclusions Future Directions
A 30000 B 30000
/ TMP phase I metabolite formation in liver, lung, and skin: Liver, lung, N\ : 25000 4 ) . Characterization of the specific lung and skin phase
and skin s9s (0.5, 2.0, and 2.0 ug/uL respectively) were incubated at © 20000 © 20000 D 277 1267 1& 1l _ Wi q _ F TMP
37°for up to 6 hours with 250uM TMP and 1mM NADPH regenerating 2 a 2 . o 7 . S ey I C SR I C RS S| the production o
system in 50 mM phosphate buffer pH 7.4. Reactions were quenched 7 i & 1000 e Phase 1 Metabolism: Liver s9 fractions metabolites
: _ & : : F S k ;
with élll.l cold e.lcetF(;mtrl'le, vortexed, centrlfugedlat 1d6K g;or 10 gnrutes @ 10000 i | —— p rod uce p hase | metabC)llteS as seen in _ |
analytical standards. No s9/NADPH were used as negative controls. 1 200 HLMs. NO Slg n IfICant phase | metabO“te TMP adducts
0 ? = ] 02 h ! . . .
TMP phase Il metabolite formation in liver, lung, and skin: s9s (0.5, 2.0, 5 _ 6 5 _ 6 produc“on N |ung or skin
and 2.0 ug/uL respectively) were incubated at 37°for 2 hours with 50uM Minutes e S, LN : Additi | t : : ts f h ]
TMP and 1mM UDPGA (glucuronidation) or PAPS (sulfation) in 50 mM ‘5\'\ """" 3 Ph ase 2 Metab0||sm: We have met;l;(())rlli?esrﬁ’]pcl?llr;l?nzxgggir{i]sgasl S?rzgl ;Soelecule
phosphat.e buffer pH 7.4. Rgactlons were quenched'wnh 4:1 cold C : . demonstrated that phase 2 metabO“teS | il d :
acetonitrile, vortexed, centrifuged at 16K g for 10 minutes to pellet ) _ % nucleopniies and proteins y
protein. Reaction supernatant was analyzed using MRM transitions = were prOdUCGd by all 3 tissue typeS with
based upon the addition/loss of the known masses of glucuronic acid E Precursor some d ifferenceS in hase “
and sulfate k I d
Reactive metabolite trapping assays were performed by incubation of o GSH fragment J' sep o721 metabolism prO ucts amo ng tiIssues
4DM-TMP sulfate analytical standard with 10uM GSH for 12 hours in = 4DM Sulfat S i = 4 )
50mM ammonium bicarbonate pH 7.4. No GSH and no 4DM-TMP sulfate IET { e wate The phase ” metabO“te; 4DM TMP
reactions were used as negative controls. Reactions were analyzed = [ sulfate was trapped by GSH This work was Supported by the National
using high resolution MS1 scans from 100 Da-1000Da. Data files from < 1799503 = . . ]
full scans were centroided and then processed by a pick-picking H,N e \BUTT ‘ demonstrati Ng a POSSI ble protein Institute of Health grant #R0O01GM129783 (P|
algorithm (XCMS, Scripps). Peaks were selected if they were 3X greater B = oo o3 W ISl WA WO W o e e opie e g . ’
in amplitude and t test scores were <0.05 as compared to negative Theoretical [M+H] 664.170136 Da reaCtIVIty GOIdman)- Thanks tO Chlld rens Mel’Cy for
controls. Peaks were then manually inspected for signal: noise and I I
peak shape over negative controls. Peaks that passed manual curation Figure 4. 4ADM-TMP sulfate GSH adduct formation. A. XCMS detected peak at 664.16. B. No 4DM-TMP sulfate negative control. C. Supportlng researCh at CMRI |
\_Were then subjected to MS/MS scans to assist in structure elucidation. / \Proposed 664.16 adduct structure D. MS/MS fragmentation of 664.16 XCMS hit j \_ "/ U y
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