Utilizing a Situation Awareness Huddle Tool to Decrease Code Blue Events

Matthew B. Johnson
Children's Mercy Hospital, mbjohnson@cmh.edu

Lisa Carney
Children's Mercy Hospital, lacarney@cmh.edu

Cheryl Powers
Children's Mercy Hospital, capowers@cmh.edu

Bradley Bishop
Children's Mercy Hospital, bbishop@cmh.edu

Natalie Masters
Children's Mercy Hospital, nmmasters@cmh.edu

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/posters

Part of the Critical Care Commons, Health and Medical Administration Commons, Pediatric Nursing Commons, and the Pediatrics Commons

Recommended Citation
Johnson, Matthew B.; Carney, Lisa; Powers, Cheryl; Bishop, Bradley; Masters, Natalie; Paulsen, Becky; Raymond, Andrea; and Bauer, Paul N., "Utilizing a Situation Awareness Huddle Tool to Decrease Code Blue Events" (2018). Posters. 36.
https://scholarlyexchange.childrensmercy.org/posters/36
Utilizing a Situation Awareness Huddle Tool to Decrease Code Blue Events

Matthew B. Johnson, MD; Lisa Carney, MD; Cheryl Powers, RN, MSN, NE-BC; Brad Bishop, MD; Natalie Masters, RN, MSN, CPN; Becky Paulsen, PhD(c), RN, CPN; Andrea Raymond, BA-HCM, RRT-NPS, CPHQ; Paul Bauer, MD

Background

- Cardiac/respiratory arrests outside the ICU result in significant morbidity and mortality.
- Many of these events are likely preventable, and could represent missed clinical deterioration.
- Improved situation awareness and communication amongst bedside team results in better clinical outcomes.
- Three components to situation awareness: detection, comprehension, and projection.
- We adapted a situation awareness (SA) tool previously published from Cincinnati, which combines elements of a huddle and a checklist. We sought to trial the process on a single unit, prior to spreading hospital-wide.

Objective/Aim

To decrease code blues outside the ICU from 0.5 per 1,000pt-days to 0.1 per 1,000pt-days by December 31, 2017 on the pilot unit.

Methods

- Setting – general inpatient unit at a tertiary children’s hospital (28 beds, primarily 2 resident teams)
- Inclusion criteria – all medical-surgical patients admitted to the unit during the study period
- Multidisciplinary team/input – hospitalists, critical care, nurses (frontline, QI trained, directors), respiratory therapists, chief residents, family advisory board, sub-specialists
- Interventions – see Figure 1; continued modifications to the tool itself; repeated education, feedback, and data sharing; workshops with stakeholders; incorporation into unit and hospital-wide tiered huddles; monthly dashboard to share progress

Measures/Results

- Outcome measure – code blues outside the ICU
 - Decreased from 0.495 to 0.090 codes per 1,000pt-days
- Process measures (some key ones) –
 - % triggered by high PEWS/HFNC: 57.2% average
 - % completed on interventions, expected outcomes, and reassessment: 93%, 86% and 78% average respectively
- Balancing measure – low acuity ICU transfers (patients transferred to ICU with no significant interventions given) – result pending

Conclusions

- Improvement was seen earlier than expected with initial period without a code reaching 415 days.
- Subsequent codes may not have been preventable (other causes that may not have been impacted by SA process).
- General feedback thus far has been positive, surveys pending.
- Spread to all 8 medical/surgical units through phased improvement workshops to promote adoption of process; input from subspecialists and leaders from each unit to help buy-in.
- Next steps: incorporating into EMR; collaboration with High Flow Nasal Cannula/sepsis groups; simulation; supporting telemedicine.