Neonatal DNA methylation as a predictor of cognitive, language, and motor performance at 24 months adjusted age, among children born very preterm

Stefan Graw
Marie Camerota
Brian S. Carter
Jennifer Helderman
Julie A. Hofheimer

See next page for additional authors

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/presentations

Part of the Pediatrics Commons
Creators
Stefan Graw, Marie Camerota, Brian S. Carter, Jennifer Helderman, Julie A. Hofheimer, Elizabeth C. McGowan, Charles R. Neal, Steven Pastynak, Lynne Smith, Michael O'Shea, Barry Lester, Carment Marsit, and Todd M. Everson
Neonatal DNA methylation as a predictor of cognitive, language, and motor performance at 24 months adjusted age, among children born very preterm

Stefan Graw, PhD
Postdoctoral Fellow
Emory University
Rollins School of Public Health
stefan.hannes.graw@emory.edu
Disclosure

Stefan Graw
Has documented no financial relationships to disclose or Conflicts of Interest (COIs) to resolve.

Authors
• Todd M. Everson
• Barry M. Lester
• Carmen J. Marsit
• Marie Camerota
• Brian S. Carter
• Jennifer Helderman

• Julie A. Hofheimer
• Elisabeth C. McGowan
• Charles R. Neal
• Steven L. Pastynak
• Lynne M. Smith
• T. Michael O’Shea

Funding Sources
R01 HD072267
R01 HD084515
T32 MH019927

Stefan Graw
Has documented no financial relationships to disclose or Conflicts of Interest (COIs) to resolve.

Unapproved or Off Label
• Disclosures for Stefan Graw

Presenter: Stefan Graw has documented this presentation will not involve discussion of unapproved or off-label, experimental or investigational use.
Epigenetics

Interface between our Environment and Health

DNA Methylation (DNAm)

- Addition of methyl group to cytosine
- Cytosine-phosphate-Guanine (CpG)
- Involved in gene expression regulation

https://en.wikipedia.org/wiki/DNA_methylation
DNA Methylation (DNAm)

- Addition of methyl group to cytosine
- Cytosine-phosphate-Guanine (CpG)
- Involved in gene expression regulation

https://en.wikipedia.org/wiki/DNA_methylation
DNA Methylation (DNAm)

- Addition of methyl group to cytosine
- Cytosine-phosphate-Guanine (CpG)
- Involved in gene expression regulation
Epigenome-Wide Association Study

- Genome-wide examination of relationship between epigenetic marks (DNA methylation) and some exposure or phenotype

Epigenetic clocks

- DNAm levels changes with age
- Epigenetic clocks estimate age via DNAm profiles
- Differences between estimated and chronological age are associated with age-related diseases
Goal

Is neonatal DNA methylation (DNAm) predictive of cognitive, language, and/or motor performance at 24 months of age in children that were born very preterm?
Bayley Scales of Infant and Toddler Development-III

- Cognitive
- Language
- Motor
- Composite scores: M = 100, SD = 15, range = 40-160
- Mild impairment: composite scores < 85
• Neonatal Neurobehavioral Outcomes in Very Preterm Infants (NOVI)
• 433 preterm neonates
• DNAm measured from buccal swabs at NICU discharge
• Illumina MethylationEPIC BeadArray
Elastic Net Regression

- Penalized linear regression model
- Regularization and variable selection
- Combines penalties of ridge regression and lasso

\[
\hat{\beta} = \arg \min_{\beta} ||y - X\beta||^2 + \lambda_2 ||\beta||^2 + \lambda_1 ||\beta||_1
\]

- Identify sets of CpGs predictive of composite scores

Leave-one-out cross validation

https://medium.com/100daysofmlcode/day-59-of-100daysofml-542274f360c8
Cognitive Composite Scores

BSID–III Cognitive Composite Scores

RMSE: 14.24
Cor: 0.33 (p = 2.7e–12)
Cognitive Composite Scores

BSID–III Cognitive Composite Scores

- RMSE: 14.24
- Cor: 0.33 (p = 2.7e–12)

Mild Cognitive Impairment (< 85 measured score)

- AUC = 0.68

Graphs showing predicted vs. measured scores and ROC curve for mild cognitive impairment.
Language Composite Scores

BSID–III Language Composite Scores

RMSE: 14.21
Cor: 0.47 (p = 1.5e–25)

Mild Language Impairment (< 85 measured score)

AUC = 0.71
Motor Composite Scores

BSID-III Motor Composite Scores

RMSE: 14.05
Cor: 0.32 (p = 8.3e−12)

Mild Motor Impairment (< 85 measured score)

AUC = 0.66
Epigenetic RS and neonatal Factors

Neonatal Factors (NF):
- NICU Network Neurobehavioral Scale (NNNS) profiles
- Gestational age
- Morbidity Score (Bassler)
- Infant’s sex
- Birth weight

AUC across different model

<table>
<thead>
<tr>
<th></th>
<th>Epi-RS</th>
<th>NF</th>
<th>Epi-RS + NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive</td>
<td>0.68</td>
<td>0.72</td>
<td>0.75</td>
</tr>
<tr>
<td>Language</td>
<td>0.71</td>
<td>0.68</td>
<td>0.73</td>
</tr>
<tr>
<td>Motor</td>
<td>0.66</td>
<td>0.76</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Summary & Future plans

- Limited ability to predict Bayley composite scores
- Early prediction of impairment at 2 years
- DNAm proximal to birth is informative of potential impairments
- Guidance for what infants should be monitored more closely
- Polyepigenetic risk scores as research tool

- Explore DNAm differences at birth
- Include post-natal information
- Expand work beyond 2-year Bayley scores (up to 7 years)
Neonatal DNA methylation as a predictor of cognitive, language, and motor performance at 24 months adjusted age, among children born very preterm

Presenter Name: Stefan Graw
Institution: Emory University
Email: stefan.hannes.graw@emory.edu