Neonatal Gut Microbiota Alterations and Local Inflammation Induced by Escherichia coli Infection are Modified by Lactobacillus rhamnosus Prophylaxis

Susana Chavez-Bueno
Hao Xuan
Shahid Umar
Concong Zhong
Wei Yu

See next page for additional authors

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/presentations

Part of the Infectious Disease Commons, and the Pediatrics Commons
Creators
Susana Chavez-Bueno, Hao Xuan, Shahid Umar, Concong Zhong, Wei Yu, and Venkatesh Sampath
Neonatal Gut Microbiota Alterations and Local Inflammation Induced by *Escherichia coli* Infection are Modified by *Lactobacillus rhamnosus* Prophylaxis

Hao Xuan, PhD; Shahid Umar PhD; Cuncong Zhong, PhD; Wei Yu, PhD; Venkatesh Sampath MD; Susana Chavez-Bueno, MD

Presenter Name: Susana Chavez-Bueno, MD
Institution: Children’s Mercy Hospital and Univ. of Missouri School of Medicine, Kansas City.
Email: schavezbueno@cmh.edu
Susana Chavez-Bueno, MD
Has documented no financial relationships to disclose or Conflicts of Interest (COIs) to resolve.
Susana Chavez-Bueno, MD has documented this presentation will not involve discussion of unapproved or off-label, experimental or investigational use.
Background

- *Escherichia coli* is the most common Gram-negative causing neonatal sepsis

- Among premature newborns, *E. coli* is the predominant cause of sepsis in the first week of life (Schrag, Farley et al. 2016)

- Rates of *E. coli* early-onset sepsis are as high as 7-10 cases per 1,000 live births in VLBW infants, and continue to increase (Mukhopadhyay and Puopolo, 2017) (Stoll and Puopolo, 2020)
Ingestion of *E. coli* by newborn animals causes bacteremia

E. coli invades intestinal epithelium and translocates into the bloodstream

Intestinal invasion by *E. coli* produces local inflammation, apoptosis, and increased intestinal permeability

There are no preventive measures against *E. coli* early-onset sepsis
Background

- Probiotics modify the intestinal microbiota and modulate the inflammatory response to pathogenic gut bacteria (Plaza-Diaz, Ruiz-Ojeda et al. 2018)

- Probiotic supplementation reduces the risk of late-onset sepsis in preterm infants (Rao et al., Pediatrics, 2016)

- Probiotics decreased gut translocation of *E. coli* in newborn rats (Zeng, He et al. 2017)

- Probiotics have a protective effect, however, the mechanisms involved in preventing intestinal translocation and neonatal bacteremia are not well-understood
Objective

To determine the effects of *Lactobacillus* on the intestinal microbiota and inflammation in neonatal rats orally infected with *E. coli*.
Methods

- *Lactobacillus rhamnosus GG* (**LGG**) (ATCC 53103) is a probiotic strain widely used in humans worldwide (Doron, Snydman et al. 2005)

- *E. coli* strain **SCB34** is a well-characterized, highly invasive neonatal clinical isolate that produces bacteremia by oral inoculation (Chavez-Bueno et al. 2014)

Experimental groups:

1) LGG → SCB34 infection
2) Phosphate buffered saline (PBS) → SCB34 infection
3) LGG → PBS
4) PBS → PBS

- Day 1: Pretreatment x2
- Day 2: Pretreatment X2 + Infection
- Day 7: Sample collection
Methods

- On day 7 p.i., distal colon with stool were collected for 16S ribosomal RNA sequencing using Illumina technology.
- AbundantOTU+ was used to generate de novo operational taxonomic units (OTUs).
- Observed, ACE, Shannon, and Simpson indices were used for alpha diversity.
- Bray-Curtis and Jaccard indices were used for beta diversity.
- Linear discriminant analysis effect size (LEfSe) was used to determine differences at the genus level.
- Expression of ICAM-1, GRO-1, Toll-like receptor 4 (TLR4), and Single-Immunoglobulin Interleukin-1 Related Receptor (SIGIRR) was measured in ileal homogenates by real-time PCR.
Results

Distinct taxonomic distribution of intestinal microbiota samples according to treatment group
Alpha Diversity is Greater in *E. coli*-infected Groups
Alpha Diversity is Greater in *E. coli*-infected Groups
Beta-Diversity Analyses

Bray-Curtis Index

Jaccard Index
LEfSe Analyses for *Lactobacillus* and *Escherichia* Genera
LEfSe Analyses for Anaerobic Bacteria

- **Clostridium_sensu_stricto_1**
 - Filtered Count
 - Log-transformed Count

- **Romboutsia**
 - Filtered Count
 - Log-transformed Count

- **Veillonella**
 - Filtered Count
 - Log-transformed Count

Legend:
- PBS-PBS
- Lac-PBS
- PBS-SCB34
- Lac-SCB34
LGG Pretreatment Significantly Decreases Intestinal Inflammation

ICAM1
- PBS-PBS: ns
- PBS-SCB34: p=0.0293
- Lacto-SCB34: p=0.0455

GRO-1
- PBS-PBS: p=0.0054
- PBS-SCB34: p=0.039

TLR4
- PBS-PBS: p=0.0054
- PBS-SCB34: p=0.0075

SIGIRR
- PBS-PBS: p=0.036

Children's Mercy
UMKC School of Medicine
PAS Pediatric Academic Societies
Conclusions

- *Lactobacillus* GG pretreatment significantly modified clinically relevant microbiota features of neonatal pups orally infected with *E. coli*
- LGG pretreatment attenuated *E. coli*-induced intestinal inflammation
- Future studies will further characterize the observed changes in the *Escherichia* intestinal microbiota populations at the species level, and on the mechanisms by which probiotics modify various anaerobic genera in the neonatal gut
Acknowledgements

Venkatesh Sampath, MD
Professor of Pediatrics/Neonatology
Director of Lung and Immunology Laboratory
Children's Mercy Hospital

Shahid Umar, PhD
Professor of Surgery
Vice Chair of Research
University of Kansas Medical Center

Cuncong Zhong, PhD
Assistant Professor, Computational Biology and Bioinformatics
University of Kansas School of Engineering

Wei Yu, PhD
Research Scientist
Children's Mercy Hospital

NEXUS OF ANIMAL AND HUMAN HEALTH RESEARCH GRANT
Neonatal Gut Microbiota Alterations and Local Inflammation Induced by *Escherichia coli* Infection are Modified by *Lactobacillus rhamnosus* Prophylaxis

Hao Xuan, PhD; Shahid Umar PhD; Cuncong Zhong, PhD; Wei Yu, PhD; Venkatesh Sampath MD; Susana Chavez-Bueno, MD

Presenter Name: Susana Chavez-Bueno, MD
Institution: Children’s Mercy Hospital and Univ. of Missouri School of Medicine, Kansas City.
Email: schavezbueno@cmh.edu