Children's Mercy Kansas City SHARE @ Children's Mercy

Presentations

2-2019

Age Appropriate Assisted Airway Clearance Techniques for Children

Christopher M. Oermann Children's Mercy Hospital

Let us know how access to this publication benefits you

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/presentations

Part of the Pediatrics Commons, and the Pulmonology Commons

Recommended Citation

Oermann, Christopher M., "Age Appropriate Assisted Airway Clearance Techniques for Children" (2019). *Presentations*. 57. https://scholarlyexchange.childrensmercy.org/presentations/57

This Presentation is brought to you for free and open access by SHARE @ Children's Mercy. It has been accepted for inclusion in Presentations by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact hlsteel@cmh.edu.

Age Appropriate Assisted Airway Clearance Techniques for Children

Christopher M Oermann, MD

Division Director, Pulmonary and Sleep Medicine, Children's Mercy Kansas City

Professor of Pediatrics, University of Missouri Kansas City School of Medicine

Disclosures

- I have no relevant financial relationships with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services discussed in this CME activity
- I do not intend to discuss an unapproved/investigative use of a commercial product/device in my presentation

Changes in Practice

- Eliminate the use of assisted airway clearance for disease processes for which it is not indicated
- Use physiologically and age appropriate methods of assisted airway clearance when indicated

Goals and Objectives

- Describe normal airway clearance and the disease processes for which assisted airway clearance therapy is indicated
- Explain the physiologic rationale for and data supporting use of various assisted airway clearance techniques used among children
- Develop an age and diagnosis appropriate airway clearance plan for a child with impaired airway clearance

Normal Airway Clearance

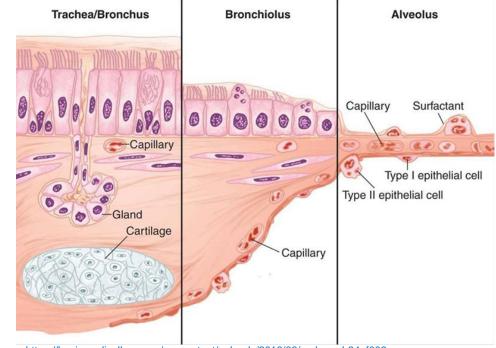
- Airway anatomy and physiology
- Respiratory Epithelium
- Innate airway clearance mechanisms
 - Cough
 - Mucociliary Escalator
 - Cephalad Airflow Bias

	Name of branches	Number of tubes in branch	Cilia	Muscle	Glands
	Trachea	1	Yes	Yes	Diffuse
Conducting zone	Bronchi	2	Vee	Maa	Scattered
		4	Yes	Yes	Sparse
Condu	Bronchioles	0 16			
		32	Yes	Yes	No
	Terminal bronchioles	↓ 6 x 10 ⁴			
Respiratory zone	Respiratory bronchioles	5 x 10 ⁵	Some	Some	No
	Alveolar ducts		Minimal	Minimal	No
	Alveolar sacs	8 x 10 ⁶	None	No	No

Conducting Zone

- Cough
- Cephalad airflow bias
- Mucociliary escalator

Respiratory Zone


- Cephalad airflow bias
- Alveolar macrophages
- Chemical absorption

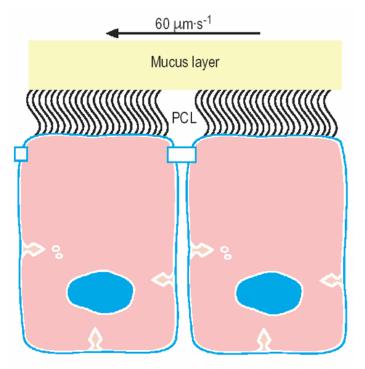
https://accessmedicine.mhmedical.com/data/books/ga no24/gano24_c034f001b.png

Respiratory Epithelium

- Large airways are rich in goblet cells and submucosal glands which produce mucus
- Medium airways have decreasing quantities of goblet cells and submucosal glands
- Small airways (bronchioles and distal) do not produce mucus

https://basicmedicalkey.com/wp-content/uploads/2016/06/m_bar_ch34_f002.png

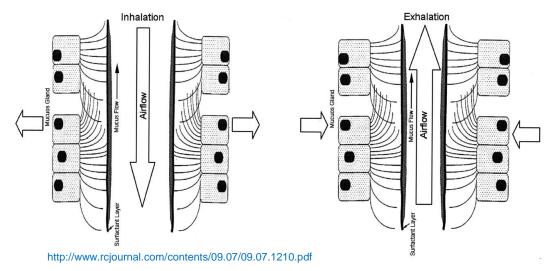
- Healthy children cough up to 11 times per day airway protection, normal airway clearance
- Reflex
 - Deep inspiration
 - Glottic closure
 - Muscle contraction
 - Glottic opening


Control Center (tractus solitaris & respiratory control center) Chemo- and Mechano-**Receptors** (rapidly adapting, slowly adapting, C-fibers): nasopharynx, larynx, lower airways, interstitium, diaphragm, and esophagus Effectors (nasopharyngeal, laryngeal, accessory, intercostal, diaphragm, abdominal)

> https://www.netterimages.com/the-respiratory-system-unlabeledpulmonary-medicine-frank-h-netter-914.html

Mucociliary Escalator

- Gel Layer (high viscosity and elasticity)
- Sol Layer (low viscosity and elasticity)
- Rapid movement in extension to propel material in gel phase
- Slow return in flexion to starting position, traveling through sol phase
- Most effective in small airways due to large cross-sectional area



http://erj.ersjournals.com/content/23/1/146

Cephalad Airflow Bias

- Decreased airway diameter during exhalation results in increased flow velocity
- Increased airflow velocity shears secretions and drives material in direction of flow
- Present in large and small airways but is the primary mechanism of transport in smaller conducting airways

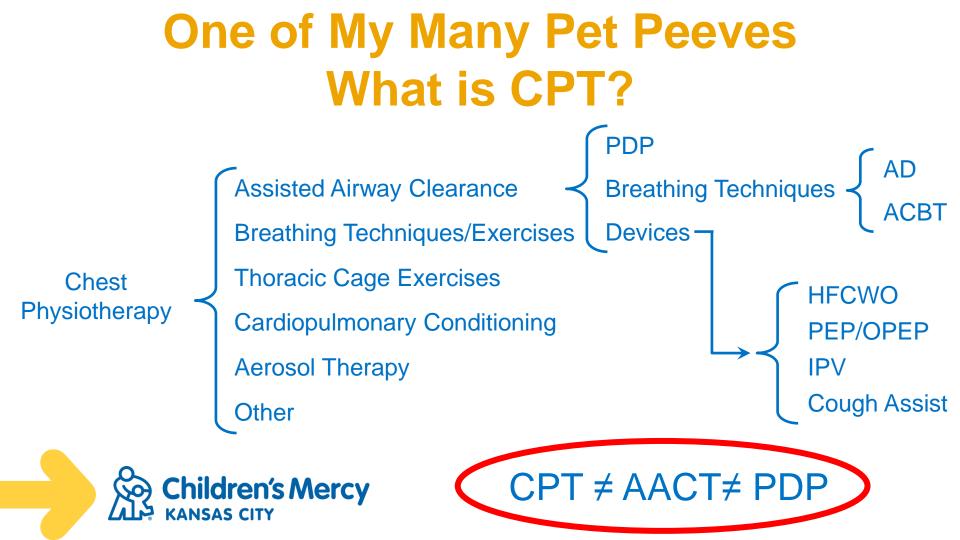
Physiologic Approach to AACT

- Disease processes for which AACT is indicated
 - Increased airway secretions
 - Inhalation/aspiration injuries
 - Impaired clearance of secretions
 - Impaired mucociliary clearance
 - Bronchiectasis; CF
 - PCD
 - Decreased cough efficacy
 - Neuromuscular weakness

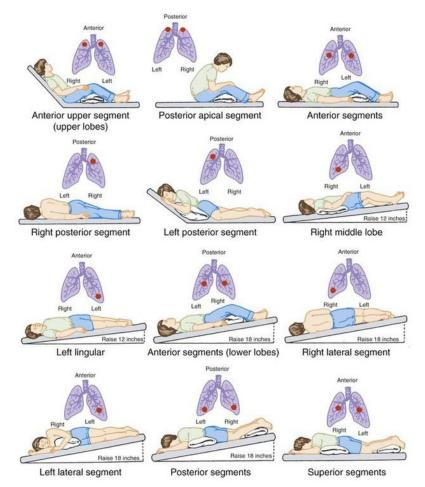
- Disease processes for which AACT is <u>not</u> indicated
 - Bronchiolitis
 - Numerous poor quality studies demonstrating conflicting results
 - Several Cochrane reviews citing no evidence of benefit
 - Pneumonia
 - No physiologic rationale for use
 - No studies indicating benefit
 - · Cochrane reviews citing no evidence of benefit

Asthma

- Multiple studies and reviews demonstrating no benefit
- Routine post-operative management
 - No literature to support routine use
 - Appropriate for patients with underlying disease
 - Appropriate for significant post-operative atelectasis
- Mechanically ventilated patients
 - Several studies failing to demonstrate benefit
 - Associated with \downarrow O2 saturations and \uparrow HR, ICP, BP
 - Potential use in patients with significant atelectasis


- Physiologically appropriate AACT
 - Conducting Zone
 - Improve cough efficacy
 - Enhance function of mucociliary escalator
 - Increase cephalad airflow bias
 - Respiratory Zone
 - Increase cephalad airflow bias
 - Nothing to stimulate alveolar macrophages
 - Nothing to alter chemical absorption

AIRWAY CLEARANCE THERAPIES Children's Mercy KANSAS CITY


Postural Drainage and Percussion

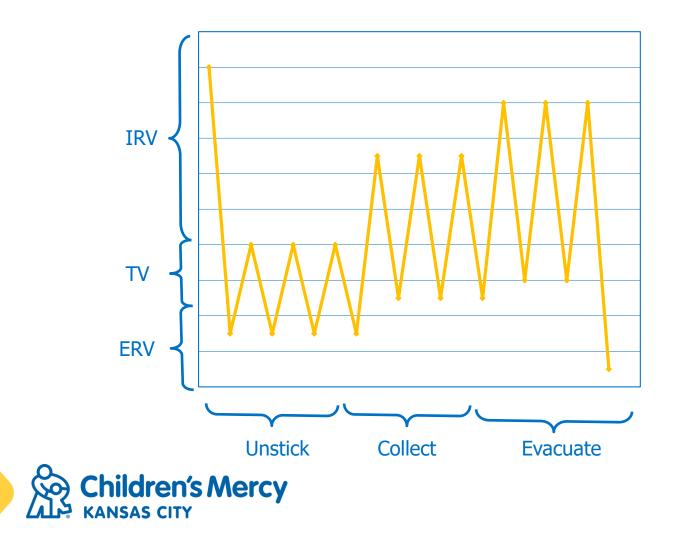
- Physiology
 - "Gold Standard" for airway clearance for many years
 - Postural drainage relies on gravity-enhanced secretion clearance
 - Percussion helps to vibrate airways, shearing secretions
 - Vibration largely abandoned

- Therapy
 - Use 6-12 positions
 - Percussion of 3-4 minutes per position
 - Controlled breathing and huffing/FET maneuvers between positions
 - Contraindicated in circumstances where there are concerns for ↑ ICP, HTN, hemoptysis, GERD, coagulopathy, etc.

https://clinicalgate.com/wp-content/uploads/2015/06/B9780323082037000403_f040-002-9780323082037.jpg

- Pro
 - All ages
 - No cost (time)
 - Portable
 - Familiarity and ease of use
- Con
 - Passive
 - Requires providers
 - GERD
 - Hypoxemia

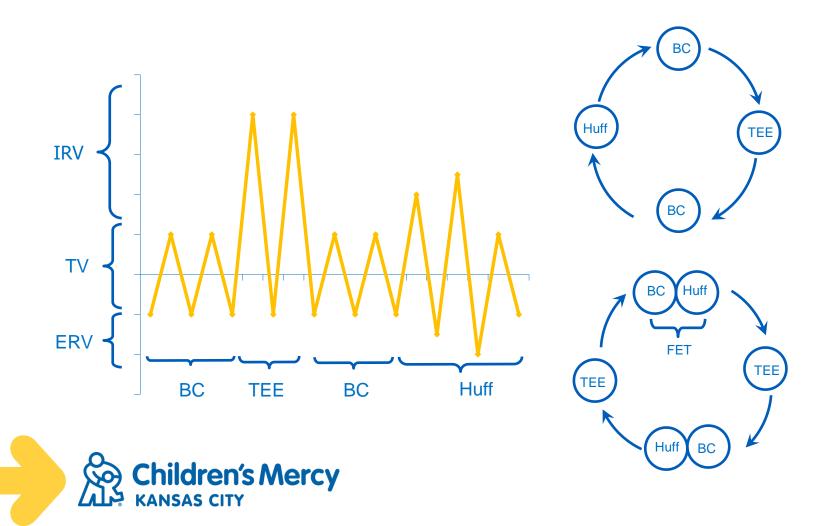
Data


- 1 sputum volume
- Teatment
- $-\downarrow$ spirometry without therapy
- Meta-analysis suggests that any therapy is better than no therapy
- Cochrane reviews: no compelling evidence that airway clearance is beneficial for long-term use; limited support for short-term use

Autogenic Drainage

- Physiology
 - Developed in late 1960's in Belgium
 - Tidal breathing at various lung volumes starting from low to high
 - "Milks" secretions from smaller to larger airways by producing high-velocity air flow in different generations of airways
 - Huff at end of cycle allows clearance from largest ways

- Pro
 - Active
 - Independence
 - No cost
 - Portable
- Con
 - Motivated, intelligent, older (> 12 years) patient
 - Difficult to learn



- Data
 - 1 sputum expectoration
 - $-\downarrow$ desaturation
 - As effective as PDP
 - Preferred to PDP by patients

Active Cycle of Breathing Technique

- Physiology
 - Developed in late 1960's in New Zealand
 - Combines breathing control exercises (BC), thoracic expansion exercises (TEE), and huffing
 - TEE lead to greater collateral ventilation and movement of secretions from peripheral to central airways
 - Huffing allows expectoration of accumulated secretions

- Pro
 - Active
 - Independence
 - No cost
 - Portable
- Con
 - Motivated, intelligent, older (> 12 years) patient

Children's Mercy KANSAS CITY

- Data
 - Equivalent to PDP
 - $-\downarrow$ desaturation
 - \uparrow independence

HFCWO

- Physiology
 - Decreases mucus viscosity
 - Increases cough-like shear forces
 - Increases airflow bias
 - Mechanical vibration of airways
 - Increased cilia beat frequency
- Systems
 - Air pulse generator, large bore tubing, inflatable vests
 - Variable pressures generated
 - Variable frequencies possible

• Therapy

- 20-30 minutes at least BID and more often during illness
- Vary frequency to move secretions from smaller to larger airways
- Intermittent deep breathing and huffs between frequencies

- Pro
 - Independence
 - Ages > 2 years
 - Easy to use
- Con
 - Passive
 - Cost
 - Lack of portability

- Data
 - Equivalent to PDP with respect to spirometry
 - ↑ sputum clearance
 - Improved sputum rheology
 - 1 patient satisfaction

PEP and OPEP

- Physiology
 - Prevents airway collapse by stenting at EPP
 - Allows ventilation of obstructed airspaces via collaterals
 - Airway wall vibration loosens secretions

• Devices

- Non-oscillating

- One-way valve and variable airflow resistor
- High (25-100 cm H2O) or low (5-20) pressure
- Oscillating
 - Various designs
 - Variable pressure
 - Variable frequency

- Pro
 - Active
 - Independence
 - Five years and older
 - Low cost
 - Portable
 - Easy to use
- Con
 - ????

• Data

- Most trials suggest
 equivalence to other forms of
 airway clearance and
 possible superiority to PDP
- Variable results for sputum clearance
- High patient acceptance

Intrapulmonary Percussive Ventilation

- Physiology
 - Benefits of PEP
 - Benefits of airway vibration
- Device
 - Variable pressure and frequency
 - Used with mouthpiece or mask
 - Aerosol therapy may be done inline

 Therapy
 Generally 15-2(minute therapy

- Pro
 - Most useful for atelectasis and neuromuscular patients
- Con
 - Cost
 - Lack of portability
 - Not easy to use

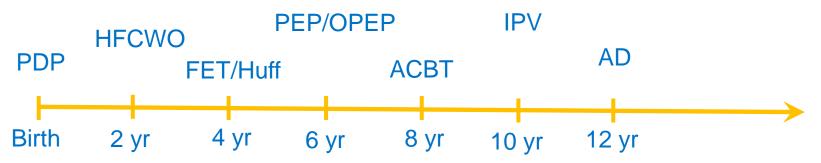
- Data
 - Several studies
 demonstrating equivalence to
 PDP
 - More sputum production than
 IS in neuromuscular patients
 - Benefits in COPD

Insufflation/Exsufflation

- Physiology
 - Positive inhalation and negative exhalation pressures
 - Improves chest wall expansion
 - Improves collateral ventilation
 - Suctions secretions from large airways
- Device
 - Variable pressures/flow
 - Variable inhalation/exhalation times
 - Pause time
 - Different interfaces
 - Inline aerosol therapy

vhen ours

• Pro


- Most beneficial for muscle weakness diseases
- Con
 - Cost
 - Patient cooperation essential
 - May not be well tolerated

- Data
 - Numerous studies in several neuro-muscular diseases
 - Decreased hospitalization rate, increased secretion clearance, decreased atelectasis

Choosing the Right AACT

Obstructive diseases

- Restrictive diseases
 - Insufflator/Exsufflator

- Consider
 - Cost
 - Convenience
 - Patient preference
 - Proven disease-specific efficacy
 - Subjective patient-specific efficacy

References

- 1. DeBoeck K, et al. Airway clearance techniques to treat acute respiratory disorders in previously healthy children: where is the evidence? Eur J Pediatr 2008; 167:607. Rubin BK. Secretion properties, clearance, and therapy in airway disease. Trans Respir Med 2014; 2:6-12.
- Strickland SL, Rubin BK, Drescher GS, Haas CF, O'Malley CA, Volsko TA, Branson RD, Hess DR. AARC clinical practice guideline: effectiveness of nonpharmacologic airway clearance therapies in hospitalized patients. Respir Care. 2013; 58:2187-93.
- 3. Lester MK, Flume PA. Airway-clearance therapy guidelines and implementation. Respir Care 2009; 54:733.
- 4. Boitano LJ. Management of airway clearance in neuromuscular disease. Respir Care 2006; 51:913.
- 5. Oberwaldner B. Physiotherapy for airway clearance in paediatrics. Eur Respir J 2000; 15:196.
- 6. Lauwers E, Ides K, Van Hoorenbeeck K, Verhulst S. The effect of intrapulmonary percussive ventilation in pediatric patients: A systematic review. Pediatr Pulmonol. 2018 Jul 18. doi: 10.1002/ppul.24135.
- 7. Morrison L, Milroy S. Oscillating devices for airway clearance in people with cystic fibrosis. Paediatr Respir Rev. 2018 Jan;25:30-32. doi: 10.1016/j.prrv.2017.07.001.
- 8. Rand S, Hill L, Prasad SA. Physiotherapy in cystic fibrosis: optimizing techniques to improve outcomes. Paediatr Respir Rev. 2013 Dec;14(4):263-9. doi: 10.1016/j.prrv.2012.08.006.
- 9. Walsh BK, Hood K, Merritt G. Pediatric airway maintenance and clearance in the acute care setting: how to stay out of trouble. Respir Care. 2011 Sep;56(9):1424-40; discussion 1440-4. doi: 10.4187/respcare.01323.
- 10. Bradley JM, Moran FM, Elborn JS. Evidence for physical therapies (airway clearance and physical training) in cystic fibrosis: an overview of five Cochrane systematic reviews. Respir Med. 2006 Feb;100(2):191-201.

