Weighted Pathway Genetic Load Analysis of Hyperbilirubinemic Infants Indicates a Potential Genetic Component for Susceptibility to Bilirubin Neurotoxicity

Sean M. Riordan
Children's Mercy Hospital, smriordan@cmh.edu

Jean-Baptiste LePichon
Children's Mercy Hospital, jlepichon@cmh.edu

Steven Shapiro
Children's Mercy Hospital, sshapiro@cmh.edu

John Cowden
Children's Mercy Hospital, jdcowden@cmh.edu

Monica VillaGullen

See next page for additional authors

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/posters

Part of the [Congenital, Hereditary, and Neonatal Diseases and Abnormalities Commons](https://scholarlyexchange.childrensmercy.org/collections/23), [Genetics Commons](https://scholarlyexchange.childrensmercy.org/collections/22), [Neurology Commons](https://scholarlyexchange.childrensmercy.org/collections/21), and the [Pediatrics Commons](https://scholarlyexchange.childrensmercy.org/collections/20)

Recommended Citation

Riordan, Sean M.; LePichon, Jean-Baptiste; Shapiro, Steven; Cowden, John; VillaGullen, Monica; Thielemans, Laurence; Villanueva Garcia, Dina; and Aguirre-Hernandez, Jesus, "Weighted Pathway Genetic Load Analysis of Hyperbilirubinemic Infants Indicates a Potential Genetic Component for Susceptibility to Bilirubin Neurotoxicity" (2019). Posters. 82.
https://scholarlyexchange.childrensmercy.org/posters/82

This Book is brought to you for free and open access by SHARE @ Children's Mercy. It has been accepted for inclusion in Posters by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact bpfannenstiel@cmh.edu.
Authors
Sean M. Riordan, Jean-Baptiste LePichon, Steven Shapiro, John Cowden, Monica VillaGullen, Laurence Thielemans, Dina Villanueva Garcia, and Jesus Aguirre-Hernandez

This book is available at SHARE @ Children's Mercy: https://scholarlyexchange.childrensmercy.org/posters/82
Identification of critical pathway genetic load scores related to susceptibility to bilirubin neurotoxicity in neonates is enhanced by weighting genetic variants using CADD scoring.

Results and Conclusions
• Only 1 group comparison in the mPGL+ Tier 1 analysis proved to be statistically significant, High Bilirubin & Mild KSD vs. Low Bilirubin & Severe KSD.
• We hypothesized that increased mPGL scores would correlate with increased susceptibility to bilirubin neurotoxicity but these results show the opposite effect and indicate a need for increased study and thoughtful evaluation of the mPGL score and the gene lists used here.

Next Steps:
• Proceed to a prospective study in an effort to reduce compounding clinical variables and include free bilirubin measurements for data analysis.

Acknowledgements:
• Neil Miller and Emily Farrow at CMH for help with genetic analysis

References:
1. S. E. Stodol et al., Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci Transl Med 8, 265ra168 (2016).