Neuroblastoma in Adolescents and Children Older than 10 Years: Unusual Clinicopathologic and Biologic Features

Laura McCarthy
Children's Mercy Hospital, lcmccarthy@cmh.edu

Katherine Chastain
Children's Mercy Hospital

Terrie Flatt
Children's Mercy Hospital, tgflatt@cmh.edu

Eugenio Taboada
Children's Mercy Hospital, etaboada@cmh.edu

Robert E. Garola
Children's Mercy Hospital, regarola@cmh.edu

See next page for additional authors

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/posters

Recommended Citation

McCarthy, Laura; Chastain, Katherine; Flatt, Terrie; Taboada, Eugenio; Garola, Robert E.; Herriges, John; Cooley, Linda D.; and Ahmed, Atif, "Neuroblastoma in Adolescents and Children Older than 10 Years: Unusual Clinicopathologic and Biologic Features" (2019). *Posters*. 105.
https://scholarlyexchange.childrensmercy.org/posters/105
Authors
Laura McCarthy, Katherine Chastain, Terrie Flatt, Eugenio Taboada, Robert E. Garola, John Herriges, Linda D. Cooley, and Atif Ahmed
Neuroblastoma in Adolescents and Children Older than 10 Years: Unusual Clinicopathologic and Biologic Features

Laura McCarthy DO, Katherine Chastain MD, Terrie Flatt MD, Eugenio Taboada MD, Robert Garola MD, John Harriges PhD, Linda Cooley MD, Atif Ahmed MD
1. Division of Hematology/Oncology/Bone Marrow Transplant, Children’s Mercy Kansas City 2. Department of Pathology and Laboratory Medicine, Children’s Mercy Kansas City

Background
- Neuroblastoma (NB) occurrence in children > 10 years is rare; older patients have poorer outcomes
- Exome sequencing, which provides information regarding genetic mutation burden of NB is more often being utilized to plan targeted therapy

Objective
Describe 4 cases of NB diagnosed since 2008 in children > 10 years and present their clinical, histologic and biologic features, emphasizing unusual clinicopathologic characteristics and the role of DNA microarray analysis and Next Generation Sequencing in their management.

Summary of Cases
- All tumors presented with extensive visceral involvement, large size, and lymph node involvement or distant metastasis and high clinical stage.
- Other unusual features: presence of bilateral tumors (case 2) and pheochromocytoma-like morphology (case 1)
- Complex chromosomal gains and 19p deletions were common (table 2)
- Exome sequencing revealed ALK variants in two cases and previously unreported MAG2, RUNX1 and ML2 mutations (table 2)
- All patients received standard chemotherapy and two patients received ALK-targeted trial therapy. Most patients seemed to have chemotherapy-resistance and an ultimately fatal course.
- Three patients died of disease, ranging 18-23 months after diagnosis. One patient has active disease and is receiving trial therapy.

Table 1. Clinical and Histologic Findings of Cases

<table>
<thead>
<tr>
<th>Case</th>
<th>Age and gender</th>
<th>Clinical presentation</th>
<th>Tumor size (cm)</th>
<th>INSS stage</th>
<th>Tumor histology</th>
<th>MKI</th>
<th>ATRX staining</th>
<th>Treatment (Response)</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11 years; female</td>
<td>Left adrenal mass; BM metastasis</td>
<td>10.5</td>
<td>4</td>
<td>Poorly differentiated; pheochromocytoma-like morphology</td>
<td>Low</td>
<td>90-100%</td>
<td>•Phenoxythiazine therapy x 1 cycle •ALKN532 x 4 cycles (NR) •MYCN amplification</td>
<td>Died 21 months after dx</td>
</tr>
<tr>
<td>2</td>
<td>13 years; male</td>
<td>Bilateral adrenal masses; LN metastasis</td>
<td>6.7</td>
<td>3</td>
<td>Left adrenal; poorly differentiated Right adrenal: IGN</td>
<td>Low</td>
<td>40%</td>
<td>•Complete resection (replanted 4 months later with mets) •ALKN532 with ASC + radiation (PD) •Todmold, irinotecan, Dinuzumab (PD) •Compassionate Lorlatinib</td>
<td>Died 23 months after dx</td>
</tr>
<tr>
<td>3</td>
<td>16 years; female</td>
<td>Retropertitoneal mass</td>
<td>20</td>
<td>4</td>
<td>Poorly differentiated</td>
<td>Low</td>
<td>90-100%</td>
<td>•ALKN532 x 4 cycles (PR) •Resection + radiation (SD) •Alectinib x 6 months (PD) •Lorlatinib</td>
<td>Alive with disease</td>
</tr>
<tr>
<td>4</td>
<td>12 years; male</td>
<td>Presacral mass; BM metastasis</td>
<td>6.4</td>
<td>4</td>
<td>Poorly differentiated</td>
<td>Low</td>
<td>40-50% in primary tumor: Neg in BM mets</td>
<td>•ALKN532 + resection + ASC followed by radiation and resection of residual tumor •Relapsed prior to starting maintenance phase: received Temodar, irinotecan (PD) •Palliative Cytoscan and topotecan</td>
<td>Died 18 months after dx</td>
</tr>
</tbody>
</table>

Table 2. Genetic Findings in Tumor and BM Samples

<table>
<thead>
<tr>
<th>Microarray results - Tumor</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial chr gains</td>
<td>2p</td>
<td>1p, 2q</td>
<td>1p, 2q, 3q, 11q, 17q, 21q, 19q, Xp</td>
<td>2p, 2q, 3q, 3p, 6q, 7q, 17q, 22q, Xp</td>
</tr>
<tr>
<td>Partial chr Losses</td>
<td>19p, 22q</td>
<td>19p</td>
<td>-</td>
<td>3q, 7p, 9p, 15q, 19p</td>
</tr>
<tr>
<td>Whole chr gains</td>
<td>-</td>
<td>2, 4, 5, 6, 7, 10, 12, 13, 14, 15, 16, 18, 20</td>
<td>1, 4, 5, 8, 10, 12, 13, 18, 20</td>
<td></td>
</tr>
<tr>
<td>Whole chr losses</td>
<td>-</td>
<td>2, 4, 9, 10, 11p, 19p</td>
<td>14p</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fish Results</th>
<th>Tumor</th>
<th>Gain of MYCN and ALC</th>
<th>Gain of MYCN, AFT, and FOKO</th>
<th>Gain of MYCN, AFT3, chromosome 2 centromere and chromosome 18 centromere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone marrow</td>
<td>Loss of one copy of SMARCB1 and NF2</td>
<td>Gain of MYCN and ALC</td>
<td>MYCN amplification and non-amplified MYCN gains. Gain of chromosome 2 centromere</td>
<td></td>
</tr>
</tbody>
</table>

Exome Sequencing Variants
- MAG2/R564Q
- RUNX1/R201Q
- ALK-F1245V, MLL3-ESO, & TERT-promoter 242C>T
- ALK - F1174L

Discussion
- Resistance to cheemo and poor prognosis may be due to genetic mutations that are found with higher frequency in this age group.
- Our exome sequencing studies revealed ALK mutations as the most common genetic abnormality, which is associated with poor survival in high- and intermediate-risk disease, but also provides opportunity for targeted therapy with ALK inhibitors.
- Overall genomic profiles of our cases are very diverse. However, deletion of 19p was found in 3/4 cases (the other case had overlapping 19p cn-LOH, suggesting this tumor previously had a loss of one copy of 19p). This suggests that loss of 19p may be significant to the development of NB in older patients.
- MAG2, RUNX1, and ML2 variants have not been previously reported in neuroblastoma.

Conclusion
- NB in children > 10 years may exhibit unusual clinicopathologic features with large tumors, bilateral adrenal disease, pheochromocytoma-like features, complex DNA microarray results and rare genetic profiles.
- Older patients behave as having high risk disease despite absence of usual poor-prognostic factors.
- Although next generation sequencing and targeted therapy may offer hope, patients could still have a dismal outcome.

Abbreviations
- BM: bone marrow; LN: lymph node; IGN: intermixed ganglioneuroblastoma; MKI: mitotic-karyophilic index; NR: no response; Dx: diagnosis; ASC: autologous stem cell transplant; PD: progressive disease; PR: partial response; Chr: chromosome