Prospective Evaluation of a Population Pharmacokinetic Model of Pantoprazole for Obese Children

Alenka Chapron
Children's Mercy Hospital, Kansas City, MO, achapron@cmh.edu

Susan M. Abdel-Rahman
Children's Mercy Hospital, srahman@cmh.edu

Valentina Shakhnovich
Children's Mercy Hospital, vshakhnovich@cmh.edu

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/posters

Recommended Citation
https://scholarlyexchange.childrensmercy.org/posters/106

This Poster is brought to you for free and open access by SHARE @ Children's Mercy. It has been accepted for inclusion in Posters by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact library@cmh.edu.
Prospective Evaluation of a Population Pharmacokinetic Model of Pantoprazole for Obese Children

Alenka Chapron, MPharm, PhD; Susan Abdel-Rahman, PharmD; Valentina Shakhnovich, MD

Children’s Mercy Kansas City, Kansas City, Mo.

Introduction
Proton pump inhibitors are commonly prescribed medications for children. Current dosing of proton pump inhibitors (PPIs) relies on weight-based strategies (e.g., mg/kg, weight-tiered). Such dose selection may not be appropriate for obese children, as it could result in over- or under-dosing with subsequent toxicities (i.e., infection, osteoporia) or treatment failure. Since obese children are 6-times more likely to suffer from gastroesophageal reflux disease, and PPIs have become some of the most commonly prescribed drugs to children, there is a critical need to characterize the drivers of variability in systemic exposure to PPIs, other than pharmacogenetic (i.e., CYP2C19 genotype), for obese children.

Objective
We previously developed a population pharmacokinetic (popPK) model of pantoprazole (PAN) for obese children. Our objective was to evaluate the predictive performance of this model in an independent cohort or normal weight, overweight and obese children.

Methods

Figure 1. Approach to Evaluation of a Population Pharmacokinetic (popPK) Model.

Step 1: popPK model development in a clinical pharmacokinetic study

Step 2: A separate clinical pharmacokinetic study is conducted

Step 3: Evaluation: Model predicted concentrations – are they in agreement with observed drug concentrations (from study in Step 2)?

Details on prospective evaluation of a popPK model (Step 3).
- Identify model structure: 2-compartment structural model with modified first-order absorption (k_a=7.3 hr^-1)
- Collect typical population parameters and covariate relationships. Covariates identified to affect PAN PK are weight and CYP2C19 genotype.
- Predict PAN PK. Predictions are based on dose, sampling times, and covariates from 57 children.
- Assess model performance by weight category: by ratio of predicted-to-observed area under the concentration time curve (AUC)

Results

Figure 2. Time-course of pantoprazole (PAN) plasma concentrations. Following oral administration of a single dose pantoprazole, a total of 546 plasma samples were collected at designated time points from 57 subjects.

Table 1. Drug formulation and patient demographics from a published popPK study and CMH cohort. In both studies, children were enrolled prospectively and received a single oral dose of pantoprazole based on their respective lean body weight. CYP2C19 phenotype was assigned according to the characterized genotypes of each subject: Intermediate metabolizer (IM): CYP2C19*1*2 or *2*17; Normal metabolizer (NM): CYP2C19*1*1 or *1*17.

<table>
<thead>
<tr>
<th>Drug formulation</th>
<th>Published popPK study</th>
<th>CMH cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients (M/F)</td>
<td>N=40 (18/22)</td>
<td>N=57 (24/33)</td>
</tr>
<tr>
<td>Age range (yr)</td>
<td>6-17</td>
<td>6-17</td>
</tr>
<tr>
<td>Weight category</td>
<td>Obese (n=40)</td>
<td>Normal (n=29), Overweight (n=16), Obese (n=12)</td>
</tr>
<tr>
<td>Weight range (kg)</td>
<td>32.4-131.6</td>
<td>18.5-124</td>
</tr>
<tr>
<td>BMI range</td>
<td>22.1-42.0</td>
<td>15.41.72</td>
</tr>
<tr>
<td>CYP2C19 phenotype</td>
<td>IM=18</td>
<td>IM=13</td>
</tr>
<tr>
<td></td>
<td>NM=21</td>
<td>NM=44</td>
</tr>
</tbody>
</table>

Conclusions
- Overprediction of observed PAN concentrations may be due to differences in PAN formulation (delayed vs. immediate release) between studies.
- Ongoing study of a delayed release PAN will assess formulation effect, which will allow further refinement of existing popPK model.
- Our ultimate goal is to identify appropriate dosing strategy for PAN and other PPIs to prevent over- or under-dosing.

References
Shakhnovich et al. A Population-Based Pharmacokinetic Model Approach to Pantoprazole Dosing for Obese Children and Adolescents. Pediatric Drugs 2018. PMID: 30097906