Predictive Performance of Existing Population Pharmacokinetic Models of Tacrolimus in Pediatric Kidney Transplant Recipients

Alenka Chapron
Children's Mercy Hospital, Kansas City, MO, achapron@cmh.edu

Susan M. Abdel-Rahman
Children's Mercy Hospital, srahman@cmh.edu

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/posters

Recommended Citation
https://scholarlyexchange.childrensmercy.org/posters/107

This is brought to you for free and open access by SHARE @ Children's Mercy. It has been accepted for inclusion in Posters by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact library@cmh.edu.
Predictive Performance of Existing Population Pharmacokinetic Models of Tacrolimus in Pediatric Kidney Transplant Recipients

Alenka Chapron, MPharm, PhD; Susan Abdel-Rahman, PharmD

Children’s Mercy Kansas City, Kansas City, Mo.

Introduction

Tacrolimus (TAC) has been a mainstay of immunosuppressive therapy following pediatric renal transplantation. TAC has a narrow therapeutic index, thus, frequent therapeutic drug monitoring is employed to maximize efficacy and avoid toxicity. Dose adjustments based on TAC trough levels are challenging, since the drug displays complex pharmacokinetic behavior that is affected by a multitude of genetic, physiologic and environmental factors.

Objective

With the goal of developing a clinician-driven TAC pharmacokinetic dosing tool, our initial objectives were 1) to examine whether published TAC population pharmacokinetic (popPK) models could serve as a foundation for the dosing tool, and 2) evaluate their performance predicting TAC concentrations in an independent cohort of Children’s Mercy (CM) patients.

Methods

Figure 1. Analysis workflow.

Pharmacokinetics of TAC in CMH cohort

Evaluation of model predictive performance

• Retrospective analysis of previously measured TAC trough levels, patient-related and therapy-related data
• Prediction-based diagnostics
• Simulation-based diagnostics (ongoing)

Pharmacokinetic data analysis. From the collected publications, we extracted estimated model parameters (i.e., theta) and covariates that were identified to significantly affect TAC levels. Population clearances, volumes of distribution and absorption rate constants were then modelled for the CM cohort. For each observed post-transplantation TAC concentration (\(C_{\text{pred}}\)), population predicted concentration (\(C_{\text{pred}}\)) was estimated.

Estimation of bias via mean residual error (MRE):\n
\[
\text{MRE} (\%) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\text{Actual} - \text{Pred}}{\text{Actual}} \right) \times 100
\]

Estimation of precision via root mean squared error (RMSE):\n
\[
\text{RMSE} (\%) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{\text{Actual} - \text{Pred}}{\text{Actual}} \right)^2}
\]

Table 1. Published model covariates shown to significantly affect TAC exposure (and oral clearance, Cl/F) in pediatric renal transplant recipients. Six pediatric popPK models from 4 studies were identified. All models reported that TAC pharmacokinetics was best described by a 2-compartment structural model with first-order absorption preceded by a lag time, and elimination from the central compartment. The most commonly identified covariates were allometrically scaled body weight and CYP3A5 genotype. “X” denotes that covariate was included in the popPK model; Gamma GT, gamma-glutamyltransferase enzyme.

<table>
<thead>
<tr>
<th>Study</th>
<th>Model</th>
<th>Covariates included</th>
<th>Other</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrews 2018</td>
<td>M1</td>
<td>X</td>
<td>X</td>
<td>Donor status, eGFR, hematocit</td>
</tr>
<tr>
<td>M2</td>
<td></td>
<td>X</td>
<td>Donor status</td>
<td>Simulation model</td>
</tr>
<tr>
<td>Prytula 2016</td>
<td>M3</td>
<td>X</td>
<td>X</td>
<td>Gamma GT, hematocrit</td>
</tr>
<tr>
<td>Zhao 2009</td>
<td>M4</td>
<td>X</td>
<td>X</td>
<td>Hematocrit</td>
</tr>
<tr>
<td>Cabral 2015</td>
<td>M5</td>
<td>X</td>
<td>All TAC formulations</td>
<td>Prograf only</td>
</tr>
<tr>
<td>M6</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

Figure 3. Bias and precision of each popPK model. Four models underpredicted measured TAC levels (negative MRE), and two overpredicted measured TAC levels (positive MRE). A high degree of variability between population predicted and measured TAC levels was noted for all models. Boxplots represent ratios of each predicted-to-observed concentration pair, with blue horizontal line indicating a ratio of 1. M4 is considered having the best predictive performance.

![Figure 3](image3.png)

Figure 4. M4-predicted versus observed TAC concentrations. Data scatter is present on both sides of the blue line of identity, although it appears non-symmetrical. One outlier (\(C_{\text{obs}} = 62.8\) ng/mL, \(C_{\text{pred}} = 10.6\) ng/mL) was omitted for better visualization of the rest of the data.

![Figure 4](image4.png)

Conclusions

Four popPK models predicted TAC trough levels sufficiently well on average, however none of the evaluated models predicted TAC levels with high precision. This suggests that variability in measured TAC levels cannot entirely be explained by the covariates nested in established models. Development of a reliable and accurate dosing tool will require significant refinement of existing models or the creation of a de novo model.

References

• Lalan, Pediatr Nephrol 2014. PMID: 24875722
• Andrews, Clin Pharmacokinet 2016. PMID: 26681225
• Prytula, Clin Pharmacokinet 2016. PMID: 27138785
• Zhao, CPT 2009. PMID: 19865079
• Cabral, B J Clin Pharmacol 2015. PMID: 25846845