Who Codes in the NICU: An Analysis of Demographics and Factors that Place Neonates at Higher/Lower Risk of a Serious Code Event and Prognosis Post-Code

Danielle N. Gonzales
Children's Mercy Hospital, dgonzales@cmh.edu

Ashley K. Sherman
Children's Mercy Hospital, aksherman@cmh.edu

Jennifer Dremann
Children's Mercy Hospital, jldremann@cmh.edu

Staci Elliott
Children's Mercy Hospital, seelliott@cmh.edu

Amelia Gute
Children's Mercy Hospital, algute@cmh.edu

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/posters
Authors
Danielle N. Gonzales, Ashley K. Sherman, Jennifer Dremann, Staci Elliott, Amelia Gute, Amber Bellinghausen, Jessica Brunkhorst, and Danielle Reed

This book is available at SHARE @ Children's Mercy: https://scholarlyexchange.childrensmercy.org/posters/120
Who Codes in the NICU: An analysis of demographics and factors that place neonates at higher/lower risk of a serious code event and prognosis post-code

Danielle N. Gonzales, MD, Ashley Sherman, MA, Jennifer Dremann RN BSN, Staci Elliott NNP-BC, Amelia Gute BSN RNC-NIC, Amber Bellinghausen, Jessica Brunkhorst, MD, Danielle Reed, MD

Background
- Neonatal code events are relatively rare in the NICU
 - 10-21% of VLBW admissions1-2
 - 29-59 code events per year from 2010-2012 in our NICU; 3-7% of all patients admitted
- Most studies have stated poorer outcomes for extremely low birth weight (ELBW) infants with lower birth weight3-6, use of vasopressors4, decreasing gestational age7, renal failure8, sepsis9, and longer duration of CPR10,11. Little prognostic or outcomes literature exists for more diverse NICU populations serving both ELBW and near-term to term infants with complex medical care and congenital anomalies

Objective
Analyze resuscitation events in a level IV NICU from 2012-2017 to determine whether there are identifiable differences between those who have a rapid response (RR) event and those with a short or long code (SCB/LCB) and determine factors post-event that may impact survival to discharge.

Methods
- Retrospective review of all RR/CB events that took place at CMH from 2012-2017 (n= 507)
 - RR: Resuscitation event requiring ventilation only
 - Short Code (SCB): Resuscitation requiring chest compressions for <60 seconds
 - Long code (LCB): Resuscitation requiring chest compressions for >60 seconds
- Pre-event factors
 - Gestational age (GA), birth weight (BW)
 - Respiratory Severity Score (RSS) (FiO2 x MAP)
 - Culture, source and organism 48 hours prior
 - Medications given in the 12 hours prior
 - Urine output and renal function 24 hours prior
- Post-event factors
 - Age at time of event
 - Culture, source and organism 48 hours after
 - Urine output and renal function 24 hours after
 - Survival to discharge, cause of death
- Kruskal-Wallis, chi-square and Fisher’s exact tests were used for group comparisons

Results
- Factors not statistically significant between any group
 - GA or birth weight
 - BUN 24 hours before and after and Cr 24 hours before an event
- LCB significant factors compared to SCB and RR
 - Higher RSS compared to RR
 - Lower UOP 24 hours before compared to RR
 - Lower UOP 24 hours after compared to RR and SCB
- LCB had higher uses of:
 - Any pressors, dopamine, dobutamine, epinephrine
 - Bolus, IV electrolytes, diuretics
 - Hydrocortisone
- LCB events occurred earlier in the hospital stay and patients were less likely to survive 24hr after the code and less likely to survive to discharge

Discussion
- Requiring pressors and other medications are risk factors for LCB and subsequent death before discharge, independent of GA or BW
- Higher RSS and lower UOP before an event are predictors of a resuscitation event, particularly LCB
- Limitations:
 - Retrospective
 - No control group
 - Arbitrary distinction between LCB/SCB

Future Research
- Expand data set to include all data from 2017-present
- Analyze variables during the event (cause of event, duration of compressions, med given, etc.) and their effect on outcome
- Incorporate a control group to determine if there are certain risk factors that will put neonates at increased risk of a code event

CMH NICU Demographics

<table>
<thead>
<tr>
<th>GA at Admission</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 28 weeks</td>
<td>53%</td>
</tr>
<tr>
<td>28-36 weeks</td>
<td>28%</td>
</tr>
<tr>
<td>37-42 weeks</td>
<td>19%</td>
</tr>
<tr>
<td>> 42 weeks</td>
<td>< 0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reason for Admission</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anomalies or syndromes (including cardiac)</td>
<td>23%</td>
</tr>
<tr>
<td>Respiratory</td>
<td>15%</td>
</tr>
<tr>
<td>Surgical</td>
<td>17%</td>
</tr>
<tr>
<td>Prematurity</td>
<td>35%</td>
</tr>
<tr>
<td>Other</td>
<td>10%</td>
</tr>
</tbody>
</table>

References