A Case of Metabolic Genetic Emergency

Elizabeth Loughman

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/researchdays

Part of the Higher Education and Teaching Commons, Medical Education Commons, Pediatrics Commons, and the Science and Mathematics Education Commons

This Poster Presentation is brought to you for free and open access by the Conferences and Events at SHARE @ Children's Mercy. It has been accepted for inclusion in Research Days by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact library@cmh.edu.
A Case of Metabolic Genetic Emergency

Elizabeth C. Loughman, MDa; Jennifer Gannon, MDb; Jotishna Sharma, MDc; Christopher R. Nitkin, MDc

aGraduate Medical Education, bDepartment of Pediatrics, Division of Genetics, Department of Pediatrics, cDivision of Neonatology.

The Case

- 4-day old infant presents to pediatrician for follow up
- Prenatal history unremarkable, born to a 34-year-old G3P2 via C section for non-reassuring fetal heart tones, briefly required CPAP at delivery, normal nursery course, breastfeeding on demand
- Found to exhibit lethargy, hypoglycemia, hypothermia, sunken fontanelle, 8\% below birthweight
- CBCd, BMP, LFTs unremarkable aside from glucose 45, slight elevation in ALT to 72
- Feeding observation: poor swallow-suck-breathe coordination, difficulty pacing
- Differential diagnosis includes: sepsis: bacterial vs viral, HSV; inborn error of metabolism; congenital heart disease; hypothyroidism; inadequate intake

\textbf{The pathway of mitochondrial fatty acid \textbeta -oxidation}

Conclusions

- Inborn errors of metabolism must be high on the differential in a neonate with hypoglycemia and/or signs and symptoms of sepsis in conjunction with poor feeding
- MCAD deficiency is a devastating disease screened for universally on day of life 1, and must be acted upon promptly when identified on newborn screen
- Confirmation of diagnosis includes acylcarnitine profile and genetic evaluation
- Treatment includes avoidance of fasting, emergency plan for illness

On the same day of presentation, newborn screen confirmed diagnosis of medium chain acyl CoA dehydrogenase deficiency (MCADD)

- Disorder of fatty acid beta oxidation, cannot convert medium chain fatty acyl CoA into short chain and ketones in times of fasting
- Affects 1 in 9,000-20,000 newborns, autosomal recessive mutation in ACADM gene
- Confirm by acylcarnitine profile showing elevation of C8 and urine organic acids
- Prognosis excellent when detected on newborn screen prior to symptoms
- Treatment: reducing fasting intervals (no longer than 2-3 hours until 4mo)
- Emergency plan: fluids with 10g of sugar per 100mL, or admission with D10 at 1.5x maintenance
- More info on inborn errors: ACTion sheets (ACMG)

References
