A Deleterious EPHB4 Mutation Suppresses PROX1 Expression and Disrupts Lymphatic Development in Neonatal Non-immune Hydrops

Gangaram Akangire
Children's Mercy Hospital

Heather Menden
Children's Mercy Hospital

Sheng Xia
Children's Mercy Hospital

Atif Ahmed
Children's Mercy Hospital

Venkatesh Sampath
Children's Mercy Hospital

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/posters

Part of the Pathology Commons, and the Pediatrics Commons

Recommended Citation

Akangire, Gangaram; Menden, Heather; Xia, Sheng; Ahmed, Atif; and Sampath, Venkatesh, "A Deleterious EPHB4 Mutation Suppresses PROX1 Expression and Disrupts Lymphatic Development in Neonatal Non-immune Hydrops" (2021). *Posters*. 187.
https://scholarlyexchange.childrensmercy.org/posters/187

This Poster is brought to you for free and open access by SHARE @ Children's Mercy. It has been accepted for inclusion in Posters by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact library@cmh.edu.
A Deleterious EPHB4 Mutation Suppresses PROX1 Expression and Disrupts Lymphatic Development in Neonatal Non-Immune Hydrops

Gangaram Akangire; Heather Menden; Sheng Xia; Atif Ahmed; Venkatesh Sampath

Children’s Mercy Kansas City

Background

- Hydrops Fetalis, a fatal condition, mostly non-immune in origin (85%)
- Etiology in unknown in 20% cases
- 15% associated with lymphatic malformation
- Ephrin type B receptor 4 (EPHB4) plays important role in lymphatic development
- Prospero Homeobox 1 (PROX1), a transcription factor, is responsible for terminal lymphatic fate specification

Objective

- To test the hypothesis that EPHB4 mutations can cause hydrops fetalis and to explore the role of PROX1

Design/Methods

- 35-week infant with non-immune hydrops infant required thoracentesis due to pleural effusions
- Infant died of septic shock on DOL 145
- Whole exome sequencing (WES)
- MRI lymphangiogram
- Immunohistochemistry (IHC) on autopsy specimens
- In-vitro functional studies—human embryonic kidney cells (HEK293) and immortalized human pulmonary microvascular endothelial cells (HPMEC-IM)

Results

- WES - EPHB4 c.2098G>A (p.Ala700Thr) variant
- MRI lymphangiogram—Complete absence of any visible central lymphatic ducts
- Autopsy revealed anasarca, absent thoracic duct, depletion of lymphoid tissue of the reticuloendothelial system, lungs with pulmonary lymphangiectasia
- IHC studies—loss of PROX1 staining in the endothelial cells of the large lymphatic channels in the lung and small intestinal villi with preservation of podoplanin expression in the same channels.

- In-vitro functional studies—EPHB4 (p.Ala700Thr) variant disrupts phosphorylation of EPHB4 in HEK293 and HPMEC-Im cells and results in decreased ERK (extracellular signal related kinase) phosphorylation (Thr980) and PROX-1 expression in HPMEC-Im

Conclusion

- Genetic mutation in the EPHB4 led to hydrops in our proband by disrupting PROX-1 mediated lymphatic development.