Recurrent neonatal herpes simplex virus infection associated with IRF7 and UNC93B1 variants

Venkatesh Sampath
Megan H. Tucker
Heather Menden
Sheng Xia
Wei Yu

See next page for additional authors
Authors
Venkatesh Sampath, Megan H. Tucker, Heather Menden, Sheng Xia, Wei Yu, and Nikita Raje
Recurrent neonatal herpes simplex virus infection in a patient with IRF7/UNC93B1 mutation

Megan Tucker; Heather Menden; Sheng Xia; Wei Yu; Nikita Raje; Venkatesh Sampath

Division of Neonatology, Department of Pediatrics, Children’s Mercy Hospital, Kansas City, MO

Clinical Introduction

● Neonatal herpes simplex virus (HSV) infection is a devastating disease with high mortality particularly when disseminated. The incidence of HSV in live births is 50 per 100k, with mortality on the rise at 1.68 per 100k cases.

● In adults and children, genetic variants in genes encoding proteins in the toll-like receptor 3 (TLR3) signaling cascade suggest a genetic susceptibility to herpes simplex encephalitis (HSE).

● TLR3 signaling is initiated by dsRNA, the signal goes through TRIF to the activation of transcription factors IRF3 and IRF7 to the nucleus to drive production of IFN cytokines.

UNC93B1 traffics newly synthesized TLR3 to the endosome.

UNC93B1 and IRF7 mutant models

We identified deleterious variants in our proband: interferon regulatory factor 7 (IRF7), downstream of endosomal TLR3, and UNC-93 homolog B1 (UNC93B1), which regulates endosomal TLR3 trafficking and stability.

UN93B1 mutant leads to Pro404Ser in the TLR binding domain, will it still traffic TLR3?

IRF7 mutant leads Arg100Pro in DNA binding domain, will IFNs still be mass produced?

Luciferase assay demonstrated that mutations in IRF7 and UNC93B1 dramatically reduced TLR3 pathway activity in control and with poly(I:C), transfected separately or together, compared to WT and empty vector.

Objectives and Methods

OBJECTIVES: 1) Reveal new deleterious mutations in neonates diagnosed with HSV by exome sequencing. 2) Perform functional studies with new mutants revealed by exome sequencing.

Methods:

• DNA from blood --> Exome Sequencing
• Mutations found during analysis --> Generate plasmid mutations
• Functional assays with mutations transfected into THP

Methods: THP, human monocyte cells, were transfected overnight and 3 days later were incubated with 1ug/mL poly I:C for 24hr with the cellular supernatants used for the assay. The luciferase assay measures the amounts of transcription factor IRF3 activation, IRF3 is only activated when TLR3 is active.

PCR results show that WT IRF7 and UNC93B1 enhanced expression of interferon (IFN) α and IFN β in baseline and in response to poly(I:C) while the mutants repressed it, whether transfected separately or together. Transfection was also achieved with levels of UNC and IRF7 shown.

 Beaumanoir et al. (2000) showed that UV from blood --> Exome Sequencing

● We identified two genetic variants, IRF7(Arg100Pro) and UNC93B1 (Pro404Ser), which dramatically affect TLR3 downstream gene expression and TLR3 pathway activity in baseline and in response to poly(I:C).

● Presence of both mutations, as identified in proband, abolishes basal and poly IC-stimulated IRF3 activation and gene expression.

● This study indicates neonatal HSV may be a phenotype for immunodeficiency arising from variants in viral-sensing immune genes, particularly the TLR3 pathway.