Efficacy and Safety of Bardoxolone Methyl in Pediatric Patients with Alport Syndrome in CARDINAL Phase 3 Trial

Bradley A. Warady
Sharon Andreol
Vimal Chadha
Melanie Chin
Rasheed Gbadegesin

See next page for additional authors
Authors
Bradley A. Warady, Sharon Andreol, Vimal Chadha, Melanie Chin, Rasheed Gbadegesin, Keisha Gibson, Debbie Gipson, Angie Goldsberry, Kenneth Lieberman, Colin Meyer, Kevin Meyers, Nozu Kandai, Megan O'Grady, Michelle Rheault, and Clifford Kashtan
Efficacy and Safety of Bardoxolone Methyl in Pediatric Patients with Alport Syndrome in CARDINAL Phase 3 Trial

Warady, Bradley, MD; Andreoli, Sharon, MD; Chadha, Vimal, MD; Chin, Melanie P, PhD; Gbadegesin, Rasheed, MD; Gibson, Keisha L, MD; Gipson, Debbie S, MD; Goldsberry, Angie, MS; Lieberman, Kenneth V, MD; Meyer, Colin J, MD; Meyers, Kevin E, MD; Nozu, Kandai, MD; O’Grady, Megan, PhD; Rheault, Michelle, MD; Kashtan, Clifford, MD

ALPORT SYNDROME

Alport syndrome is a rare, inherited progressive form of chronic kidney disease (CKD) - Affects approximately 30,000 to 60,000 persons in the US41,42 - Type IV collagen mutations cause glomerular basement membrane defects that lead to inflammation, fibrosis, progressive kidney function loss - Annual rate of estimated glomerular filtration rate (eGFR) decline: 4 to 5 mL/min/1.73 m² per year despite management with renin-angiotensin-aldosterone system inhibitors (RAAS)42 - Median age at end-stage kidney disease (ESKD) for X-linked males is 25 years43 - Accounts for 3% of children with kidney failure - No approved therapies specifically for CKD due to Alport syndrome

BARDOXOLONE METHYL

- Bardoxolone methyl (Bard) is an investigational drug activating NRF2 and suppressing NF-κB - Bard increases GFR by reducing inflammatory signaling and restoring glomerular function as demonstrated in animal models44,45

CARDINAL STUDY DESIGN

CARDINAL Phase 3 (NCT03019185): international, multicenter, double-blind, placebo-controlled, randomized trial46 - Patients 12 to 70 years of age with genetic or histologic confirmation of Alport syndrome - Baseline eGFR between 30-90 mL/min/1.73 m² - Baseline urinary albumin to creatinine ratio (UACR): 3500 mg/g - Primary endpoints: change in eGFR at Week 48 and Week 100 - Key secondary endpoints: change from baseline in UACR at Week 52 and Week 104 following a 4-week drug withdrawal period

BASELINE CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Placebo (n=12)</th>
<th>Bardoxolone Methyl (n=11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), Mean (SD)</td>
<td>15.2 (16.1)</td>
<td>15.4 (12.2)</td>
</tr>
<tr>
<td>Age of Alport Syndrome Diagnosis Age (years), Mean (SD)</td>
<td>10.6 (5.9)</td>
<td>10.5 (4.3)</td>
</tr>
<tr>
<td>Female (%)</td>
<td>3 (25.0%)</td>
<td>1 (9.1%)</td>
</tr>
<tr>
<td>Race: White (n%)</td>
<td>5 (41.7%)</td>
<td>4 (36.4%)</td>
</tr>
<tr>
<td>Mean (SD) eGFR (mL/min/1.73 m²), n (%)</td>
<td>68.2 (16.2)</td>
<td>71.9 (15.0)</td>
</tr>
<tr>
<td>eGFR >=60 mL/min/1.73 m², n (%)</td>
<td>2 (17.6%)</td>
<td>2 (18.2%)</td>
</tr>
<tr>
<td>Geometric Mean (SE) UACR (mg/g)</td>
<td>106.3 (90.0)</td>
<td>109.4 (86.7)</td>
</tr>
<tr>
<td>UACR ≤300 mg/g, n (%)</td>
<td>6 (50.0%)</td>
<td>6 (54.6%)</td>
</tr>
<tr>
<td>UACR >300 mg/g, n (%)</td>
<td>6 (50.0%)</td>
<td>5 (55.6%)</td>
</tr>
<tr>
<td>Genetic Confirmation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-linked (n%)</td>
<td>8 (66.7%)</td>
<td>6 (54.5%)</td>
</tr>
<tr>
<td>Autosomal (n%)</td>
<td>3 (25.0%)</td>
<td>3 (27.3%)</td>
</tr>
<tr>
<td>Histologic Confirmation</td>
<td>3 (25.0%)</td>
<td>3 (27.3%)</td>
</tr>
<tr>
<td>Receiving ACEi or ARB (n%)</td>
<td>8 (66.7%)</td>
<td>9 (81.8%)</td>
</tr>
<tr>
<td>Height (cm), Mean (SD)</td>
<td>166.3 (15.0)</td>
<td>171.7 (6.0)</td>
</tr>
<tr>
<td>Weight (kg), Mean (SD)</td>
<td>57.5 (15.8)</td>
<td>65.1 (10.1)</td>
</tr>
<tr>
<td>Historical rate of eGFR decline (mL/min/1.73 m²), Mean (SE)</td>
<td>-10.7 (1.2)</td>
<td></td>
</tr>
</tbody>
</table>

ESTIMATED GLOMERULAR FILTRATION RATE

- **Mean ± SEM eGFR Change (mL/min/1.73 m²)**
 - **Week 100**: Placebo 13.8 ± 5.7 (p=0.017), Bardoxolone Methyl 14.6 ± 5.0 (p=0.0035)
 - **Week 104**: Placebo 14.0 ± 5.7 (p=0.015), Bardoxolone Methyl 14.2 ± 5.0 (p=0.0035)

URINARY ALBUMIN TO CREATININE RATIO

- **Fold-Change in UACR Over Time in Pediatric Patients**
 - **UACR remained unchanged vs baseline in pediatric patients**

WEIGHT AND HEIGHT

- **Mean changes in weight were minimal in pediatric patients**
- **Pediatric patients generally continued along their baseline growth curves** for height and weight in both treatment groups

SAFETY: ADVERSE EVENTS

- **Number of Patients With:**
 - Placebo (n=12): 10 (83.3%), 11 (100%)
 - Bardoxolone Methyl (n=11): 11 (100%)

- **AE leading to permanent treatment discontinuation**
 - Common Adverse Drug Reactions
 - Azanize aminotransferase increased 1 (8.3%), 4 (36.4%)
 - Hypokalemia 1 (8.3%), 3 (27.3%)
 - Cough 0
 - Aspartate aminotransferase increased 1 (8.3%), 1 (9.1%)
 - Brain natriuretic peptide increased 0
 - Weight decreased 0
 - Diarrhea 0

- **AE profile in pediatric patients similar to overall study population**
- **No severe adverse events in Bard patients**
- **No AE leading to permanent treatment discontinuation in Bard patients**

CONCLUSION

In CARDINAL, the addition of Bard to RAAS in pediatric patients with CKD due to Alport syndrome appeared to preserve kidney function and was generally well-tolerated.

DISCLOSURES

- **REATA Pharmaceuticals.**
- **SA, RG, and KL have nothing to disclose.**

REFERENCES

Pediatric Academic Society 2021 April 30 – May 4, Virtual