Longitudinal analysis of myocardial function using strain in patients receiving cardiotoxic chemotherapy

Anmol Goyal
Amulya Buddhavarapu
Kayla Simpson
Nataliya Kibiryeva
Wendy Hein

See next page for additional authors

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/posters

Part of the Cardiology Commons, and the Oncology Commons
Authors
Anmol Goyal, Amulya Buddhavarapu, Kayla Simpson, Nataliya Kibiryeva, Wendy Hein, Joy M. Fulbright, and Sanket Shah
Longitudinal myocardial function assessment for chemotherapy-related cardiotoxicity and possible association with genetic polymorphism in pediatric population

Anmol Goyal, MBBS; Amulya Buddhavarapu, MBBS; Kayla Simpson, RDCS, Nataliya Kibiryeva, PhD; Wendy Hein, APRN; Joy Fulbright, MD; Sanket Shah, MD

INTRODUCTION

• Chemotherapy-related cardiotoxicity (CTRC) can result in significant morbidity and mortality in long term cancer survivors.
• Our goal was to assess longitudinal myocardial function using left ventricular ejection fraction (LV-EF) and left ventricular global longitudinal strain (LV-GLS).
• Our secondary objective was to identify cardiovascular genetic polymorphism that may influence CRTC.

METHODS

• 50 Subjects ≥10 years of age who survived >2 years after completion of cancer treatment.
• 29 Subjects consented for genetic analysis and longitudinal evaluation with echocardiography.
• LV-EF: Measures using area-length bullet method.
• LV-GLS: Measured by using speckle tracing with 2D STE offline analysis software developed by TomTec Imaging Systems.
• Whole exome sequencing for genetic polymorphism was performed.
• GLS ≤-18% was considered normal.
• Data was analyzed with chi-square and paired T-test for categorical and continuous variables, respectively.

RESULTS

• 59% had longitudinal echocardiographic data for serial LV-EF and LV-GLS measurements.
• Baseline EF: 60.1% ± 5.4%; Baseline GLS: -21.71% ± 2.36%
• Mean follow-up duration was 4.1 years [range 2.2-6.5 years].
• All were clinically asymptomatic, NYHA Class I.
• Follow-up evaluation:
 • Mean reduction of LV GLS: 1.4% ± 2.1% [p=0.015]
 • Mean Reduction of EF: 1% ± 5.6% [p=0.45]
• Longitudinal data:
 • Decrease in GLS by > 2% in 47% of patients
 • Decrease in EF by ≥ 5% in 11.7% of patients

Table 1. Baseline characteristics at cumulative anthracycline dose <200 and ≥200 mg m^-2

<table>
<thead>
<tr>
<th>Category</th>
<th>All Patients</th>
<th>Cumulative anthracyline dose (mg m^-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 200</td>
<td>≥ 200</td>
</tr>
<tr>
<td>N (%)</td>
<td>29</td>
<td>16</td>
</tr>
<tr>
<td>Age (years)</td>
<td>17 ± 4</td>
<td>16.7 ± 3.7</td>
</tr>
<tr>
<td>Female (%)</td>
<td>14 (48.3)</td>
<td>7 (43.8)</td>
</tr>
<tr>
<td>Type of Cancer (%)</td>
<td></td>
<td>7 (53.8)</td>
</tr>
<tr>
<td>Solid</td>
<td>18 (62.1)</td>
<td>9 (56.2)</td>
</tr>
<tr>
<td>Leukemia</td>
<td>11 (37.9)</td>
<td>7 (43.8)</td>
</tr>
<tr>
<td>Radiation Exposure (Gy)</td>
<td>9.5 ± 15.9</td>
<td>12.5 ± 19.6</td>
</tr>
<tr>
<td>Bone marrow transplant</td>
<td>5 (17)</td>
<td>1 (6.2)</td>
</tr>
<tr>
<td>Follow up duration (years)</td>
<td>4.1 ± 1.5</td>
<td>3.4 ± 1</td>
</tr>
</tbody>
</table>

Table 2. Genetic polymorphism associated with changes in LV-GLS

CONCLUSION

• LV-GLS is a more sensitive marker for longitudinal analysis of cardiac function than LV-EF.
• Certain polymorphisms may influence CRTC and can be a valuable tool in risk-stratification of these patients.