B-type Natriuretic Peptide (BNP): A Potential Biomarker for Extubation Failure in Infants Following Cardiac Surgery

Jennifer Flint
Lori Erickson
Dawn Tucker
Erica Molitor-Kirsch

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/posters

Part of the Cardiology Commons, Critical Care Commons, and the Pediatrics Commons
B-TYPE NATRIURETIC PEPTIDE (BNP): A POTENTIAL BIOMARKER FOR EXTUBATION FAILURE IN INFANTS FOLLOWING CARDIAC SURGERY

Jennifer Flint MD, Lori Erickson APRN, Dawn Tucker CPNP-AC, Erica Molitor-Kirsch MD
University of Kansas City-School of Medicine, Children’s Mercy Hospital and Clinics, Kansas City, MO

Background: BNP is a hormone released from the cardiac ventricles in response to increased pressure and volume overload and is an important biomarker in heart failure. Following congenital heart surgery, elevated BNP levels correlate with longer duration of mechanical ventilation, low cardiac output syndrome, and increased ICU length of stay. Mechanical ventilation (MV) has an exaggerated impact on cardiopulmonary interactions in children with myocardial dysfunction, and extubation readiness can be difficult to determine post-operatively following congenital heart surgery.

Hypothesis: An increase in post-extubation BNP levels can predict extubation failure and the need for reintubation within 48 hours.

Methods: Design: prospective, observational, blinded pilot
Participants: Infants ≤ 30 days of age with RACHS-1 score ≥3 admitted to the PICU following congenital heart surgery

Participants were enrolled post-operatively following congenital heart surgery. Measurements: BNP levels were obtained on full MV just prior to weaning per standardized weaning protocol, one hour following a pressure support trial (PST), and at 2, 6, and 12 hours following extubation.

Results: Data analyzed on first 20 patients

<table>
<thead>
<tr>
<th></th>
<th>Group 1 (n=5) (pg/mL)</th>
<th>Group 2 (n=5) (pg/mL)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full MV</td>
<td>4043 (1960-2948)</td>
<td>611 (296-3647)</td>
<td>0.422</td>
</tr>
<tr>
<td>PST</td>
<td>6060 (1650-5001)</td>
<td>712 (293-3841)</td>
<td>0.146</td>
</tr>
<tr>
<td>2hr post</td>
<td>5001 (270-5001)</td>
<td>1326 [544-4928]</td>
<td>0.479</td>
</tr>
<tr>
<td>4hr post</td>
<td>5040 (1150-5001)</td>
<td>2191 [600-5001]</td>
<td>0.479</td>
</tr>
<tr>
<td>12hr post</td>
<td>5001 (2239-5001)</td>
<td>3265 [615-4785]</td>
<td>0.432</td>
</tr>
</tbody>
</table>

Median BNP levels were compared using Mann Whitney test. 3 required reintubation (RI group), 17 did not (NoRI group). Measurements:

- Full MV
- PST
- 2hr post
- 4hr post
- 12hr post

Conclusions:
1. Patients who failed extubation had a trend towards higher BNP levels compared to those who did not fail extubation.
2. BNP levels increased in all patients with MV weaning and following extubation.
3. Single ventricle patients had higher BNP levels compared to biventricular patients.

Speculations:
4. BNP may be an important biomarker in predicting extubation failure.
5. MV weaning causes more cardiac stress than what is clinically appreciated.
6. Serial BNP levels may be useful to determine extubation readiness and guide the use of peri-extubation inotropic support.

References:

Speculations:
4. BNP may be an important biomarker in predicting extubation failure.
5. MV weaning causes more cardiac stress than what is clinically appreciated.
6. Serial BNP levels may be useful to determine extubation readiness and guide the use of peri-extubation inotropic support.