Large single center experience in pediatric oncology and bone marrow transplant patients on ECMO: How should we decide candidacy?

Jordan Marquess
Children's Mercy Hospital

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/researchdays

Part of the Higher Education and Teaching Commons, Medical Education Commons, Pediatrics Commons, and the Science and Mathematics Education Commons

This Oral Presentation is brought to you for free and open access by the Conferences and Events at SHARE @ Children's Mercy. It has been accepted for inclusion in Research Days by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact hlsteel@cmh.edu.
Large Single Center Experience in Pediatric Oncology and Bone Marrow Transplant Patients on ECMO: A Reflection on Candidacy

Jordan Marquess MD

Mentors: Jenna Miller MD FAAP and Asdis Finnsdottir Wagner DO
Contributors: Brittany Lyons MD, Debbie Newton MSN RN CCRN, Kari Davidson MSN RN CCRN and Mikaela Miller

Research Days May 3, 2022
Disclosures

• No disclosures or conflicts for presenter, authors and mentor
Outline

• Background
• Methods
• Results
• Conclusions
• Limitations
ECMO basics

• A form of life-support that provides oxygenation, CO2 removal, and cardiac output.

• **VV**: VenoVenous ECMO → bypasses lungs

• **VA**: VenoArterial ECMO → bypasses heart and lungs
Background

- ECMO survival for the general pediatric population: 50-60%

- ECMO is rarely used or considered in the pediatric oncology/bone marrow transplant (BMT) populations due to concerns for high mortality and high rates of complications.

- There is a paucity of data to determine ECMO candidacy for these patients.

- Our center has one of the highest known number of pediatric patients in this population treated with ECMO.
Methods

• A retrospective single center cohort study was conducted at Children’s Mercy Kansas City.

• Children aged 0-17 years with a history of primary oncologic diagnosis or BMT who required VA- or VV- ECMO from 2015-2020.
Our Sample

• 12 total patients included in study
• Most common underlying diagnosis was leukemia/lymphoma (8/12).
• Solid tumors
 • Neuroblastoma
 • Wilm’s tumor
• Non-oncologic
 • Aplastic anemia
 • PIK3 mutation
Results

<table>
<thead>
<tr>
<th></th>
<th>Survived to Hospital Discharge</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes (N=7)</td>
<td>No (N=5)</td>
</tr>
<tr>
<td>Age at cannulation</td>
<td>13.9 (4.4-16.1)</td>
<td>4.4 (3.7-4.8)</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Leukemia/Lymphoma</td>
<td>3 (42.9%)</td>
<td>5 (100.0%)</td>
</tr>
<tr>
<td>-Solid Organ</td>
<td>2 (28.6%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>-Non-oncology</td>
<td>2 (28.6%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Bone marrow transplant?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Received BMT</td>
<td>4 (67%)</td>
<td>2 (33%)</td>
</tr>
<tr>
<td>-Did not receive BMT</td>
<td>3 (50%)</td>
<td>3 (50%)</td>
</tr>
</tbody>
</table>

Survival to De-Cannulation

- Yes: 58%
- No: 42%

Children's Mercy Kansas City
Results

<table>
<thead>
<tr>
<th></th>
<th>Survived to Hospital Discharge</th>
<th></th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes (N=7)</td>
<td>No (N=%)</td>
<td>0.99</td>
</tr>
<tr>
<td>ECMO Complications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Hemorrhagic</td>
<td>3 (42.9%)</td>
<td>3 (60.0%)</td>
<td>0.99</td>
</tr>
<tr>
<td>- Thromboembolic</td>
<td>1 (14.3%)</td>
<td>0 (0.0%)</td>
<td>0.99</td>
</tr>
<tr>
<td>- Component/circuit change</td>
<td>5 (71.4%)</td>
<td>2 (40.0%)</td>
<td>0.56</td>
</tr>
<tr>
<td>- Blood Product Use</td>
<td>3 (42.9%)</td>
<td>4 (80.0%)</td>
<td>0.29</td>
</tr>
<tr>
<td>- Infection</td>
<td>2 (28.6%)</td>
<td>2 (40.0%)</td>
<td>0.99</td>
</tr>
<tr>
<td>Days on ECMO</td>
<td>12.0 (7.5-32.0)</td>
<td>5.0 (4.0-18.0)</td>
<td>0.22</td>
</tr>
<tr>
<td>Length of Hospital Stay</td>
<td>115.0 (70.0-187.0)</td>
<td>10.0 (10.0-38.0)</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Conclusion

• Younger patients and those with leukemia or lymphoma had higher mortality.
• History of BMT did not predict higher mortality.
• Complications on ECMO did not suggest higher mortality.
• Longer ECMO runs did not suggest higher mortality.

• Oncology and BMT pediatric patients should not be presumptively excluded from ECMO therapy.
Limitations

• Vast variability of patient population, including primary diagnoses
• Small patient population, difficulty with powering study
• Varying definitions of morbidity and mortality in published literature
Next Steps

• Newly established guidelines regarding BMT patients’ cannulation to VA ECMO
• Retroactively apply guidelines to our BMT patients at CMH and compare their outcomes
 • Capturing their clinical course
 • Are we successful at cannulating this patient population?
 • Can we support them with ECMO without/ despite complications from the transplant?
References

References
Acknowledgement

• Asdis Finnsdottir Wagner DO, Division of Pediatric Intensive Care
• Jenna Miller, MD, Division of Pediatric Intensive Care
• Brittany Lyons MD, Division of Pediatric Intensive Care
• Debbie Newton MSN RN CCRN, Division of Extracorporeal Support
• Kari Davidson MSN RN CCRN, Division of Extracorporeal Support
• Mikaela Miller, MS, MPH, MA, Biostatistician
Questions?