Children's Mercy Kansas City

SHARE @ Children's Mercy

Posters

4-2022

Rare variants in renal developmental genes and the risk of hypertension and CKD: a UK Biobank study

Benjamin Spector Children's Mercy Hospital

Byunggil Yoo Children's Mercy Hospital

Neil Miller

Laurel K. Willig Children's Mercy Hospital

Let us know how access to this publication benefits you

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/posters

Part of the Nephrology Commons, and the Pediatrics Commons

Recommended Citation

Spector, Benjamin; Yoo, Byunggil; Miller, Neil; and Willig, Laurel K., "Rare variants in renal developmental genes and the risk of hypertension and CKD: a UK Biobank study" (2022). Posters. 270. https://scholarlyexchange.childrensmercy.org/posters/270

This Poster is brought to you for free and open access by SHARE @ Children's Mercy. It has been accepted for inclusion in Posters by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact hlsteel@cmh.edu.

Rare variants in renal developmental genes and the risk of hypertension and CKD: a UK Biobank study

Benjamin L. Spector¹, Byunggil Yoo², Neil Miller³, Laurel K. Willig¹

¹Division of Nephrology, Children's Mercy Hospital, Kansas City, MO; ²Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO ³Department of Biomedical and Health Informatics, University of Missouri-Kansas City, Kansas City, MO

Background

- Hypertension and chronic kidney disease (CKD) are heritable traits.
- The source of this heritability is largely unknown.
- Studies exploring this missing heritability have principally focused on common genetic variants.

Objectives

Identify rare genetic variants in renal developmental genes associated with hypertension and CKD.

Methods

49,989 volunteers, age 40-69 years with whole exome sequencing (WES)

58 kidney developmental genes:

- Early nephron development
- Podocytes
- Tubulointerstitial cells
- Collecting duct
- Endothelial cells

Qualifying variants:

- Minor allele frequency <0.1%
- Pathogenic, likely pathogenic, or variant of uncertain significance (VUS)

Logistic regression models for qualifying variants with CKD and blood pressure (BP)

Results

Table 1: Statistically significant predictors of BP

	All				Caucasian			Non-Caucasian		
Compartment	Gene	OR (99% CI)	Р	Gene	OR (99% CI)	Р	Gene	OR (99% CI)	Р	
Early nephron development	SIX1	0.574 (0.349-0.941)	0.004	SIX1	0.583 (0.342-0.992)	0.009	WT1	2.494 (1.076-5.778)	0.005	
development	WT1	1.581 (1.018-2.453)	0.007	-	-	-	-	-	-	
Podocytes	NPHS1	0.843 (0.719-0.987)	0.005	-	-	-	-	-	-	

Table 2: Statistically significant predictors of CKD

		All	Caucasian			Non-Caucasian			
Compartment	Gene	OR (99% CI)	Р	Gene	OR (99% CI)	Р	Gene	OR (99% CI)	Р
Tubulointerstitial	CLCN5	1.588 (1.022-2.469)	0.007		•		SLC12A3	2.020 (1.081-3.776)	0.004
cells		,		-	-	-		,	
Collecting duct							CALB1	3.119 (1.149-8.468)	0.003
	-	-	-	-	-	-		,	

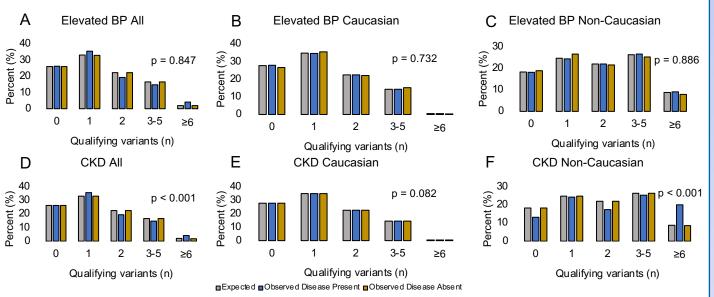


Figure 1: In the entire cohort and non-Caucasian subgroup, the proportion of individuals carrying ≥6 qualifying variants with CKD was greater than expected (D, F)

Discussion

- Rare genetic variants explain a degree of the heritability in CKD and BP.
- Individuals with CKD carry higher numbers of qualifying variants than expected.
 - Potential for linkage disequilibrium or additive effects.
- Ethnic variability exists regarding genes predictive of disease, and number of variants carried.
 - Certain non-Caucasian populations are at higher risk of CKD and elevated BP.
 - Possibly misclassifying certain variants as rare given heterogeneity of non-Caucasian subgroup.

Conclusions

- Rare variants in kidney developmental genes explain a portion of the heritability of CKD and BP.
- Further studies are needed to validate associations in underrepresented populations at risk for kidney disease.

Future Directions

- Replicative studies in underrepresented populations.
- · Further characterization of VUSs.
- Assessment linkage disequilibrium between qualifying variants.
- Development of a polygenic risk score assessing impact of multiple variants on CKD and elevated BP risk.

