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OBSTETRICS

Down-regulation of placental neuropilin-1 in fetal growth restriction
Dev Maulik, MD, PhD; Alok De, PhD; Louis Ragolia, PhD; Jodi Evans, PhD; Dmitry Grigoryev, MD, PhD;
Kamani Lankachandra, MD; David Mundy, MD; Jolene Muscat, MD; Mary M. Gerkovich, PhD;
Shui Qing Ye, MD, PhD

BACKGROUND: Fetal growth restriction (FGR) is associated with

adverse outcomes extending from fetal to adult life, and thus, constitutes a

major health care challenge. Fetuses with progressive growth restriction

show increasing impedance in the umbilical artery flow, which may

become absent during end-diastole. Absent end-diastolic flow (AEDF) is

associated with adverse perinatal outcomes including stillbirths and

perinatal asphyxia. Placentas from such pregnancies demonstrate defi-

cient fetoplacental vascular branching. Current evidence, moreover, in-

dicates an antiangiogenic state in maternal circulation in several

pregnancy complications including preeclampsia, small-for-gestational-

age births, fetal death, and preterm labor. The angiogenic mediators in

maternal circulation are predominantly of placental origin. Information,

however, on the role of specific proangiogenic and antiangiogenic

mechanisms operating at the placental level remains limited. Elucidation of

these placenta-specific angiogenic mechanisms will not only extend our

understanding of the causal pathway for restricted fetal growth but may

also lead to the development of biomarkers that may allow early recog-

nition of FGR.

OBJECTIVE: We sought to test the hypothesis that fetoplacental

angiogenic gene expression is altered in pregnancies complicated with

FGR and umbilical artery Doppler AEDF.

STUDY DESIGN: Placental samples were collected from FGR preg-

nancies complicated with umbilical artery Doppler AEDF (study group,

n ¼ 7), and from uncomplicated pregnancies (control group, n ¼ 7), all

delivered by cesarean during the last trimester of pregnancy. Angiogenic

oligonucleotide microarray analysis was performed and was corroborated

by quantitative real-time polymerase chain reaction, Western blot analysis,

and immunohistochemistry. The Student t test with Bonferroni correction

was used with P < .05 considered statistically significant. Independent

groups t test was used to analyze the immunostain intensity scores with a

P < .05 considered statistically significant.

RESULTS: Our microarray results showed that among several differ-

entially expressed angiogenic genes in the growth-restricted group, only

the down-regulation of neuropilin (NRP)-1 was most significant (P <
.0007). Quantitative real-time polymerase chain reaction confirmed a

significantly lower NRP-1 gene expression in the FGR group than in the

control group (mean � SD

ˇ

cycle threshold: 0.624 � 0.55 and 1.325 �
0.84, respectively, P ¼ .04). Western blot validated significantly lower

NRP-1 protein expression in the FGR group than in the control group

(mean � SD NRP-1/b-actin ratio: 0.13 � 0.04 and 0.34 � 0.05,

respectively, P < .001). Finally, immunohistochemistry of placental villi

further corroborated a significantly decreased expression of NRP-1 in the

FGR group (P ¼ .006).

CONCLUSION: The study demonstrated significant down-regulation

of placental NRP-1 expression in FGR pregnancies complicated with

AEDF in umbilical artery. As NRP-1 is known to promote sprouting

angiogenesis, its down-regulation may be involved in the deficient

vascular branching observed in FGR placentas suggesting the pres-

ence of an antiangiogenic state. Further studies may elucidate such a

causal role and may lead to the development of novel diagnostic and

therapeutic tools.

Key words: antiangiogenic state, fetal growth restriction, immunohis-
tochemistry, microarrays, neuropilin-1, placental branching angiogenesis,

real-time polymerase chain reaction, small for gestational age, umbilical

artery absent end-diastolic flow

Introduction
Associated with adverse outcomes span-
ning fetal to adult life, fetal growth re-
striction (FGR) constitutes a major
obstetrical complication affecting 5-7%of
all pregnancies.1,2 Perinatal mortality is
substantially high in FGR and approxi-
mately 1 in 4 of the stillborn fetuses is
growth restricted. Perinatal morbidities

include asphyxia, preterm delivery,
neonatal depression, and a spectrum of
metabolic, respiratory, and neurological
complications. Long-term risks include
continuing growth deficit, cerebral
palsy, and neurodevelopmental abnor-
malities.3-6 Beyond the perinatal period
and infancy, adverse consequences of
FGR extend into adult life. Experimental
and epidemiological evidence indicates
that chronic intrauterine deprivationmay
induce epigenetic programming and a
thrifty phenotype setting the stage for
subsequent development of adult illnesses
including hypertension, stroke, ischemic
heart disease, type 2 diabetes, and central
obesity.7 Constrained fetal growth thus
constitutes a major health care concern.

Compromised fetal supply line has
long been proposed as a major under-
lying mechanism for limiting fetal
growth.8,9 Consistent with this concept,
Doppler ultrasound studies have shown
increasing umbilical circulatory imped-
ance associated with progressive fetal
decompensation in FGR, eventually
leading to absent end-diastolic flow
(AEDF) in the umbilical artery.10 This
hemodynamic deterioration is associ-
ated with a spectrum of adverse perinatal
outcomes including stillbirths and peri-
natal asphyxia.11,12 There is morpho-
logical evidence, moreover, correlating
umbilical artery AEDF to diminished
fetoplacental vascular branching in
FGR pregnancies.13,14 The molecular
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mechanisms underlying aberrant feto-
placental angiogenesis in FGR, however,
require further elucidation.

Angiogenesis is a complex biological
process controlled by agonists and an-
tagonists directly or indirectly promoting
or inhibiting angiogenic activity. Normal
pregnancy represents a balanced angio-
genic state. Current evidence, however,
indicates the presence of an anti-
angiogenic state in several pregnancy
complications. Maynard et al15 first pro-
posed an antiangiogenic state in pre-
eclampsia involving up-regulation of
soluble fms-like tyrosine kinase-1 of
placental origin in maternal plasma,
which opposes proangiogenic vascular
endothelial growth factor (VEGF) and
placental growth factor (PlGF). Subse-
quently, the Romero group16-22 has pro-
vided extensive evidence for the presence
of an antiangiogenic state in maternal
circulation in several pregnancy disorders
including preeclampsia, small-for-
gestational-age (SGA) births, fetal death,
andpreterm labor, and in associationwith
placental massive perivillous fibrin
deposition, a condition known to be
associated with recurrent miscarriage and
stillbirths. Others also have documented
an antiangiogenic state in pregnancies
resulting from in vitro fertilization,23

obesity,24 twin transfusion syndrome,25

and invasive placentation.26 Moreover,
there is evidence that antiangiogenic
agents in maternal serum may serve as
potential biomarkers for subsequent
recognition of fetal growth compromise
and adverse pregnancy outcomes.27-29

These angiogenic mediators in
maternal circulation are predominantlyof
placental origin. Information, however,
on the role of specific proangiogenic and
antiangiogenic mechanisms operating at
the placental level remains limited.30,31

Elucidation of these placenta-specific
angiogenic mechanisms will not only
extend our understanding of the causal
pathway for restricted fetal growth but
may also lead to the development of bio-
markers for FGR that may allow early
recognition of FGR and differentiation of
constitutionally small fetuses from those
that are truly growth restricted. The latter
currently remains challenging despite
advances in fetal sonography. Such

mechanistic understanding may also lead
to the emergence of new management
strategies for promoting fetal growth.
The purpose of this study, therefore,

was to investigate the placental angio-
genic mechanisms in FGR pregnancies
complicated with fetal hemodynamic
compromise as evidenced by umbilical
artery AEDF. Specifically, we determined
in these pregnancies placental expres-
sions of angiogenic genes utilizing
oligonucleotide microarray analysis, and
to confirm the significant array findings
of differentially expressed messenger
RNA (mRNA) transcripts by quantita-
tive real-time polymerase chain reaction
(qPCR), Western Blot analysis of protein
expression, and immunohistochemistry
for localization and quantification in
placental tissues.

Materials and Methods
Study design
In this prospective study, angiogenic gene
expression was analyzed on placental
samples collected from pregnancies
complicated with FGR and umbilical ar-
tery Doppler AEDF (study group, n¼ 7),
and from uncomplicated pregnancies
(control group, n ¼ 7). FGR was defined
as an ultrasound-estimated fetal weight
<10th percentile for gestational age
following the American Congress of Ob-
stetricians and Gynecologists (ACOG)
guidelines.32We followed these guidelines
to restrict the terms “fetal growth re-
striction” to the fetus and “small for
gestational age” to the neonate. Pregnant
mothers receiving prenatal care were
approached for consent and participation
in the study. The inclusion criteria for the
study group were: singleton pregnancies,
gestational age ascertained according to
the ACOG guidelines,33 gestational age
>36 weeks, ultrasound biometric diag-
nosis of FGR, AEDF in the umbilical ar-
tery Doppler, and delivery by cesarean
delivery. This mode of delivery was cho-
sen to minimize possible placental
oxidative stress from labor and delivery as
demonstrated by others.34 The exclusion
criteria were labor; pregnancy complica-
tions other than FGR such as pre-
eclampsia, multiple gestation, fetal
aneuploidy, fetal malformations, pro-
longed rupture of membranes, and

chorioamnionitis; placental pathology
such as abruption, placenta previa, and
placental accreta; and maternal diseases
such as infection, diabetes, and chronic
hypertension. The control group included
uncomplicated pregnancies, matched by
gestational age with the study group, and
delivered by elective cesarean delivery
before labor indicated by previous cesar-
ean delivery or breech presentation. The
birthweight centile was determined uti-
lizing the US national reference values as
reported byOken et al.35 The institutional
review boards of TrumanMedical Center/
University of MissourieKansas City
School of Medicine and Winthrop Uni-
versity Hospital approved the study.
Informed consent was obtained from
each patient according to the institutional
review board protocol.

Placental sample acquisition
Within 10 minutes after the placental
delivery, placental tissue samples were
collected using a sterile scalpel. Three
samples each measuring approximately
2 � 2 � 2 cm were removed from a
mediobasal location as defined by Wyatt
et al.36 Each sample was then divided into
3 identical pieces, rinsed thoroughly in
sterile phosphate buffer solution, and
snap-frozen in liquid nitrogen. The sam-
ples were stored in a biorepository ac-
cording to the institutional regulations.

Angiogenesis gene array analysis
Two angiogenesis-oriented arrays were
used for gene expression analysis.
Angiogenic SuperArray HS-009 con-
tained 96 genes and 16 internal controls
and angiogenic SuperArray OHS-024
contained 114 genes and 14 internal
controls (SuperArray Biosciences Corp,
Frederick, MD).

The total RNA was extracted from
placental tissues using Trizol (Invi-
trogen, Carlsbad, CA) according to the
manufacturer’s instructions. RNA sam-
ples (3 mg) were then reverse transcribed
and labeled with biotin-16-dUTP
(Roche, Nutley, NJ) by polymerase
chain reaction (PCR) using the
AmpoLabeling-LPR kit (SuperArray
Biosciences Corp). Then, probes were
hybridized to either GEArray HS-009 or
GEArray OHS-024. The hybridization
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signals were generated by GEArray
chemiluminescent detection kit (Super-
Array Biosciences Corp) and evaluated
by the Kodak Image Station 4000R and
the ChemiDoc XRS (BioRad Labora-
tories, Hercules, CA), respectively. The
relative expression levels of angiogenesis
gene were normalized to a panel of
housekeeping genes of the correspond-
ing array and cross-linked using gene
symbols.

qPCR analysis
qPCR analysis was used to confirm the
significant angiogenic findings of the
differentially expressed mRNA tran-
scripts (SuperArray Biosciences Corp).
Total RNA (1.5 mg/sample) was reverse
transcribed using the First Strand cDNA
synthesis kit according tomanufacturer’s
instructions (Roche). The primers were
designed using the Primer3 software
(MIT) for sense and antisense and pur-
chased from Origene Technologies
(Rockville, MD). The sequences of for-
ward and reverse primers were: human
GAPDH (GenBank accession no.
NM_002046) 50 CTCTCTGCTCCTCC
TGTTCGAC 30 and 50 TGAGCGATGT
GGCTCGGCT 30 and human neuropilin
(NRP)-1 (GenBank accession no.
NM_001024628) 50 ACGATGAATGTG
GCG ATA CT 30 and 50 AGT GCA TTC
AAG GCT GTT GG 30. Real-time qPCR
was performed by using Fast SYBRGreen
on a StepOne Plus real-time PCR system
(Applied Biosystems, Grand Island, NY).
Relative expression values were calculated
using the 2-delta delta Ct method and
were normalized against reference gene
GAPDH. In these calculations we
accounted for the PCR efficiency of the
individual PCR reactions, calculated on
the basis of linear regression as described
elsewhere.37 The specificity of amplifica-
tion was confirmed by evaluation of the
melting curve.

Protein extraction and Western blot
The protein was extracted from
placental samples and its concentration
was measured by the BCA protein assay
method per manufacturer’s protocol
(Pierce, Rockford, IL). Each sample (50
mg) was separated in 10% sodium
dodecyl sulfate-polyacrylamide gel. The

protein was transferred onto nitrocel-
lulose membrane. The membrane was
blocked with blocking serum (Ther-
moscientific, Waltham, MA) followed
by incubation with mouse antihuman
NRP-1 antibody (1:1000) (Abcam,
Cambridge, MA) overnight at 4�C.
After washing with Tris-NaCl-tween
20 buffer, the membrane was incu-
bated with antimouse IgG (1:15000)
(Abcam) at room temperature for 1
hour. Immunoreactivity was detected
using an enhanced chemiluminescence
Western blotting system (Thermo-
scientific). Qualitative analysis was
performed and expressed in relation
to b-actin.

Immunohistochemical localization
and quantification
The placental tissues were fixed in 4%
buffered formaldehyde solution, dehy-
drated, and embedded in paraffin. The 4-
mm thickness sections were transferred
onto poly-l-lysin-coated slides, depar-
affinized, rehydrated, and immuno-
stained with NRP-1 antibody (1:200)
using the Vectastain Immpress Reagent
Kit (Vector Laboratories, Burlingame,
CA). Two investigators blinded to the
sample source independently graded
immunostain intensity. Slides were first
examined at�4 magnification to identify
NRP-1 immunopositive regions in
placental sections. In each section, 5
different areaswith 8-12 villi per areawere
selected at random and were evaluated
microscopically with a �40 objective
magnification. All sections were scored in
a semiquantitative fashion as described by
Hsu et al,38 which considered both the
intensity and percentage of cells staining.
Intensities were classified as 0 (no
staining), þ1 (weak staining), þ2 (mod-
erate staining), and þ3 (very strong
staining).

Statistics
Angiogenic data (SuperArray Bio-
sciences Corp) were normalized to cor-
responding internal controls and
resulting gene expression values were
cross-referenced between arrays. The
Student t test was applied to 67 genes
that were common to both SuperArrays
and genes with P < .05 considered

significant. The final candidate selection
was done by filtering for the Bonferroni
correction for multiple comparisons (P
< .0007). The values from qPCR were
adjusted to GAPDH, and the values from
Western blot were adjusted for b-actin,
then mean and SD values were deter-
mined. The immunostain intensity met
the distributional assumptions of a
parametric statistical test. Independent
groups t test was used to compare the
control and FGR groups for these values.
Differences were considered significant
when P was <.05.

Results
Clinical characteristics
The basic clinical characteristics of the
control and the FGR groups are pre-
sented in the Table. There were no dif-
ferences between the groups regarding
maternal age and gestational age. The
population was racially diverse and the
sample size did not permit any analysis
of the impact of race. Notably, this was
not an objective of this study. The
birthweights and the placental weights
were significantly lower in the FGR
group than those in the control group.
The birthweights were <5th centile for
the study group and >20th centile for
the control group. There were no fetal
deaths in this population.

Down-regulation of placental
NRP-1 mRNA expression in FGR
To investigate that placenta-specific
angiogenic mechanisms may underlie
restricted fetal growth, we first deter-
mined expressions of genes in angiogenic
pathway using 2 angiogenesis-oriented
arrays (SuperArray Biosciences Corp
and Qiagen, Valencia, CA). Several
angiogenesis-related genes were differen-
tially expressed in placentas from FGR
pregnancies. A representative microarray
photograph depicts expression of angio-
genic genes in control and FGR in
Figure 1, A. Densitometric analysis
showed significant reduction in NRP-1 in
FGR placentas (Figure 1, B). A heat map
depicting the results obtained in control
and FGR placentas is shown in Figure 1,
C. The scatter plot shown in Figure 1, D,
demonstrates underexpression and over-
expression of genes in FGR placentas.
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Although several genes in the study
group were down-regulated by >30% of
those in the control group, only NRP-1
was inhibited by >2-fold (Figure 2).
When the gene expression profiles of
the 2 microarray platforms, SuperArray
HS-009 and SuperArrayOHS-024
(SuperArray Biosciences Corp), were
cross-referenced and filtered by Student t
test, only 3 genes were significantly
underexpressed, of which only NRP-1
remained significant (P < .0007) when
further filtering was performed by

TABLE
Clinical characteristics of control and fetal growth restriction groups

Parameter Control (n ¼ 7) FGR (n ¼ 7) Significance

Maternal age, y 26.57 � 2.60 25.71 � 1.85 NS

Gestational age, wk 39 � 0.85 37.46 � 0.86 NS

Birthweight, g 3181.86 � 234.31 2377.86 � 72.88 P < .01

Placental weights, g 563.66 � 43.17 217.60 � 54.58 P < .001

Values are mean � SEM.

FGR, fetal growth restriction; NS, not significant.

Maulik et al. Placental neuropilin-1 in fetal growth restriction. Am J Obstet Gynecol 2016.

FIGURE 1
Fetal growth restriction (FGR) reduces expression of angiogenesis-related genes in FGR placentas

A, Representative photograph of microarrays from control and FGR placentas; expression of neuropilin (NRP)-1 (arrows). B, Histogram showing reduced
expression of NRP-1 in FGR placentas compared to controls. Values are mean � SEM of densitometric ratios of NRP-1 and GAPDH. C, Representative
heat map of angiogenesis-related genes from control and FGR placentas (left). Magnification of selected area of heat map showing NRP-1 expression
status (right). Magnitude of gene expression (far right). D, Representative scatterplot of angiogenic gene expression in FGR vs control placentas. Genes
were either underexpressed (green) or overexpressed genes (red) in FGR placentas. * P < 0.05, as compared with the control group.

Maulik et al. Placental neuropilin-1 in fetal growth restriction. Am J Obstet Gynecol 2016.
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Bonferroni correction for repeated mea-
sures (Figure 3).

To confirm the microarray findings
by alternative approach, we quantified
placental NRP-1 by qPCR. It demon-
strated significantly lower NRP-1 gene
expression in the FGR group compared
to the control group (Figure 4). The

ˇ

cycle threshold mean (�SD) was 0.624
� 0.55 for the FGR group, and 1.325 �
0.84 for the control group and the dif-
ference was significant (P ¼ < .05).

Validation of placental NRP-1
protein expression by Western
blot analysis and
immunohistochemistry
To validate placental down-regulated
NRP-1 protein expression, we per-
formed Western blot and immunohis-
tochemical analysis. Western blot
analysis showed that the expression of
NRP-1 was reduced in FGR placentas
(Figure 5). Loading error was deter-
mined with b-actin. Densitometric
analysis of Western blot showed reduced
expression of NRP-1 in FGR placentas
(Figure 5). NRP-1 protein expression,
measured as NRP-1/b-actin ratio, was
significantly lower in the FGR samples

than in the control samples (0.13 � 0.04
vs 0.34 � 0.05, P < .001).
Immunohistochemistry for the local-

ization of NRP-1 protein in placental
tissue revealed strong immunoreactivity
in cytotrophoblasts of the placental villi
(Figure 6, A and B). NRP-1 immunore-
activity was also found in the vascular
endothelium of placental stem vessels,
Hofbauer cells, and syncytiotrophoblast
cells (Figure 6). In the FGR group the
staining intensity was significantly lower
in comparison to the control group: 2.6
� 1.5 vs 8.9� 4.2, respectively (P< .05).
We did not identify NRP-1 immuno-
staining in syncytial knots in either
group. Intensity scoring corroborated
significant reduction (<.05) in the tissue
expression of NRP-1 in FGR placentas
(Figure 6, C).

Comment
Primary findings
In this study, we demonstrate the down-
regulation of NRP-1 in placentas from
FGR pregnancies compared to those
from pregnancies with appropriate fetal
growth. The angiogenesis array data

showed that although various angio-
genesis and related genes differentially
expressed, only the down-regulation of
NRP-1 from FGR placentas achieved
significance compared to those from the
controls. This finding was validated by
qPCR and Western blot that showed
down-regulation of NRP-1 mRNA and
protein, respectively, in the FGR pla-
centas. Decreased immune localization
of NRP-1 in the various components of
villous tissue in FGR placentas further
corroborated this. The relevance of our
finding lies with the existing evidence
that there is deficient branching angio-
genesis in fetal placental vascular system
in FGR with hemodynamic compro-
mise13,14 and with the emerging evi-
dence that NRP-1 plays an important
role in modulating sprouting angiogen-
esis through tip cell formation.39 These
are further addressed below.

Fetoplacental angiogenesis
and FGR
In a human placenta, fetoplacental
vascular development begins at about 3
weeks postconception with vasculo-
genesis, which is the de novo formation of
first vessels frommultipotent angioblastic

FIGURE 2
Relative expression of 11 down-
regulated angiogenic genes in
fetal growth restriction (FGR)
placentas

Vertical axis shows expression level ratios of
each gene to GAPDH in both control and FGR
groups. Horizontal axis depicts 11 down-
regulated angiogenic genes in FGR placentas.
Arrow highlights neuropilin-1 down-regulation.

Maulik et al. Placental neuropilin-1 in fetal growth restric-
tion. Am J Obstet Gynecol 2016.

FIGURE 3
Identification of fetal growth
restriction candidate genes

Gene expression profiles of 2 microarray plat-
forms were cross-referenced. SuperArray HS-
009 is depicted as array 1 and
SuperArrayOHS-024 as array 2 (SuperArray
Biosciences Corp, Frederick, MD). Student t test
was used on genes that were common to both
microarrays. Final candidate selection was done
by Bonferroni correction for multiple
comparisons.

Maulik et al. Placental neuropilin-1 in fetal growth restric-
tion. Am J Obstet Gynecol 2016.

FIGURE 4
Quantitative real-time polymerase
chain reaction (qPCR) analysis of
neuropilin (NRP)-1 genes in
control and fetal growth
restriction (FGR) placentas

Differential NRP-1 gene expression by qPCR in
placentas from control and FGR groups. Relative
expression values were calculated using 2-delta
delta Ct method and were normalized against
reference gene GAPDH. Data are mean � SD
values of average mean of delta or difference in
cycle threshold (

ˇ

ct) values in 7 control and 7
FGR placentas. *P < .05, significantly different
from control group.

Maulik et al. Placental neuropilin-1 in fetal growth restric-
tion. Am J Obstet Gynecol 2016.
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precursor cells, and continues until the
42nd day.40 Angiogenesis follows with the
generation of new vessels from the pre-
existing ones by either elongation or
branching, and the process continues
until the end of gestation. As reviewed by
Burton et al,30 there is substantial evi-
dence suggesting continuing branching

angiogenesis throughout gestation in
human placenta. Our finding of NRP-1
expression in near-term placentas indi-
rectly corroborates this. The expanding
fetoplacental vascular tree leads to a pro-
gressive decrease in the umbilical artery
vascular impedance and a concomitant
increase in the umbilical blood flow,
which is essential for sustaining fetal
growth. As the arterial Doppler waveform
is shaped by vascular impedance,41 these
hemodynamic changes are reflected in the
rising end-diastolic flow and falling pul-
satility indices in the umbilical arterial
Doppler waveforms as pregnancy
advances.
This pattern of fetoplacental angio-

genesis is perturbed in FGR. Placentas
from FGR pregnancies show significant
reductions in peripheral villous capillary
and surface areas.42 Utilizing scanning
electron microscopy of perfusion-fixed
villous tissue and vascular plastic cast,
it was demonstrated that in FGR preg-
nancies complicated with umbilical ar-
tery AEDF velocity, the terminal villi
showed significant paucity in the num-
ber of capillaries as well as a decrease in
their branching.14 Further corrobora-
tion was provided by morphological
examination of the FGR placentas that
demonstrated progressive reductions in
fetal placental stem artery branching,
terminal villous branching, and

villous capillarization as the umbilical
artery end-diastolic flow progressively
deteriorated and became absent or
reversed.15 These and similar observa-
tions establish a strong association be-
tween defective placental branching
angiogenesis, abnormal fetoplacental
circulatory dynamics, and fetal growth
compromise. The fetoplacental vascular
development involves multiple angio-
genic agents and pathways involving
VEGF and related genes.43 Discovery of
the role of NRP-1 may further elucidate
the molecular regulation of fetoplacental
branching angiogenesis, especially in
pregnancies complicated with FGR.

Role of NRP-1 in angiogenesis
NRP-1, a single-pass transmembrane
glycoprotein, is essential for axonal
guidance in neuronal development and
for angiogenesis.44-46 Highly conserved
in the vertebrates, its molecular structure
consists of 3 regions: extracellular,
transmembrane, and intracellular. The
extracellular region contains 5 domains.
Domains a1 and a2 are N-terminal
binding CUB (C1r/C1s, urchin embry-
onic growth factor and bone morpho-
genic protein 1) domains, and bind
class-3 semaphorins, which are essen-
tial for axonal guidance. Domains b1 and
b2 are coagulation factors V and VII
homology domains, act as ligands for

FIGURE 6
Neuropilin (NRP)-1 immunoreactivities in control and fetal growth restriction (FGR) placentas

Representative photomicrograph showing reduced expression of NRP-1 immunostaining in FGR placentas. A, Control, B, FGR. C, Histogram shows
staining intensities of NRP-1 in control and FGR placental cells. Placentas were fixed and immunostained with NRP-1 antibody and photographed
at �400 magnification. Bar ¼ 50 mm. Values are mean � SD of 7 placentas from each group. *P < .05, as compared with control group. Arrows
indicate different cell types.
CT, cytotrophoblast; HC, Hofbauer cells; SK, syncytial knot; ST, syncytiotrophoblast; VE, vascular endothelium.

Maulik et al. Placental neuropilin-1 in fetal growth restriction. Am J Obstet Gynecol 2016.

FIGURE 5
Western blot of control and fetal
growth restriction (FGR)
placentas

Upper panel shows representative photograph
of Western blot of neuropilin (NRP)-1. b-Actin
was included as housekeeping protein control
for each blot. Lower panel shows mean � SD
values of densitometric ratio of NRP-1 with b-
actin at bottom of each respective gel in 7
control and 7 FGR placentas. *P < .001.

Maulik et al. Placental neuropilin-1 in fetal growth restric-
tion. Am J Obstet Gynecol 2016.
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VEGF and class-3 semaphorins, and are
essential for angiogenesis.47 The b1
domain forms a complex with VEGF-2
(VEGF receptor 2 [VEGFR-2]), acts as
a holoreceptor for VEGF-165, and
stimulates angiogenesis. However, the
angiogenic role for NRP-1 is not entirely
dependent on VEGF. Fantin and associ-
ates demonstrated angiogenic capability
of NRP-1 without VEGF interaction in a
NRP-1 hypomorphic mice knock-in
model.48 Alternative suggested path-
ways for NRP-1 action include p130
(Cas) tyrosine phosphorylation that in-
volves the intracellular domain of NRP-
1.49 Lanahan et al50 and others have
shown that the intracytoplasmic C
domain of NRP-1 molecule containing
the PDZ binding site facilitates intracel-
lular VEGFR-2 trafficking, which pro-
motes ERK1/2 signaling and stimulates
arteriogenesis. In human, primate, and
mouse circulations, soluble NRP-1
molecules, expressing either the com-
plete extracellular domain or parts of the
domain, have been identified.51,52 These
soluble forms of NRP-1 offer potential
opportunities for developing biomarkers
for FGR, although their functional sig-
nificance in developmental angiogenesis
remains to be elucidated.

There is evidence that the NRP-1
molecule may be involved in tip cell
formation, which constitutes an
essential initial step in sprouting
angiogenesis.53 In response to an
angiogenic signal, a subset of dormant
endothelial cells of a vessel loses peri-
cyte cover, becomes less adherent to the
adjoining cells and the basement
membrane, and is ready to migrate.
The migration is led by the tip cell,
which is an endothelial cell modified by
the presence of several angiogenesis-
related molecules. Once a tip cell is
formed, the adjacent endothelial cells
preferentially become stalk cells and
proliferate to form the stalk of the
vessel branch. Whereas VEGF, VEGFR-
2, and NRP-1 promote tip cell forma-
tion, NOTCH ligands DLL4 and JAG-
GED1 act as inhibitors of tip cells and
promoters of stalk cells, and their dy-
namic balance guide tip cell and stalk
cell differentiation. Under the effects of
vascular endothelium-cadherin, VEGF,

and other molecules, the stalks develop
lumens and form a vascular sprout.
The above steps in sprouting angio-

genesis have not yet been demonstrated
in human fetal placental vascular devel-
opment although there is evidence that
NRP-1 plays a role in modulating
decidual vascular development in early
gestation in a mouse model and in hu-
man beings.54,55 In light of the known
role of NRP-1 as a vessel guidance cue in
sprouting angiogenesis, our finding that
NRP-1 is significantly down-regulated in
FGR placentas suggests that it may play a
role in deficient fetoplacental vascular
branching in FGR pregnancies. Similar
to FGR, preeclampsia is also character-
ized by deficient fetoplacental vascular
branching and an antiangiogenic state.
The role of NRP-1 in preeclampsia,
however, remains to be elucidated. Zhou
et al56 recently demonstrated in an
in vitro study that, in severe preeclamp-
sia, cytotrophoblasts overexpress class-
3B semaphorins, a transmembrane and
secreted protein that competitively
blocks VEGF binding to NRP-1 and
NRP-2, leading to suppression of cyto-
trophoblastic invasion and promotion of
antiangiogenic activity. However, this
finding has been contested in a more
recent report.57 Further studies are
needed to clarify this issue.

FGR and antiangiogenic state
Our discovery of placental under-
expression of NRP-1, a molecular agent
known to promote branching angio-
genesis, suggests that an antiangiogenic
state prevails also at the placental level
in FGR pregnancies complicated with
fetal hemodynamic compromise. This
observation is consistent with the pre-
vious demonstration that an anti-
angiogenic state exists in several
pregnancy disorders including pre-
eclampsia and, more relevantly, SGA
births. These are briefly discussed below.
In a longitudinal nested case-control

study involving 144 singleton pregnan-
cies, Romero et al17 observed that the
maternal plasma levels of antiangiogenic
agent soluble endoglin (s-Eng) was
up-regulated and proangiogenic agent
PlGF was down-regulated prior to the
development of preeclampsia and SGA

births. In another longitudinal case-
control study involving 402 singleton
pregnancies, the same group measured
s-Eng, soluble VEGFR-1 (sVEGFR-1),
and PlGF and their ratios between the
first and second trimesters of preg-
nancy.16 Again, an increase in the anti-
angiogenic state was evident as the
up-regulation of s-Eng and the down-
regulation of PlGF was associated with
a greater propensity to the development
of preeclampsia and SGA births. There
was, however, no observed association
between sVEGFR-1 levels and the risk of
SGA. In general the antiangiogenic state
was more pronounced in preeclampsia
than in SGA. Further corroboration was
provided by a cross-sectional study
involving 340 pregnant mothers in
whom plasma levels of the soluble re-
ceptor tyrosine kinase Tie-2 were
measured.58 Tie-2 promotes angiogen-
esis in conjunction with angiopoietin
system, a component of the VEGF fam-
ily. The levels were lower in preeclampsia
and in SGA births suggesting an anti-
angiogenic milieu in these disorders.
Finally, our finding is consistent with a
previous report by Chaiworapongsa
et al,59 who demonstrated that in preg-
nancies with SGA births, an association
exists between abnormal uterine and
umbilical artery Doppler and a higher
maternal plasma concentrations of
sVEGFR-1, a known antiangiogenic
molecule. Furthermore, the same group
more recently demonstrated that in
singleton pregnancies between 24-34
weeks with suspected SGA, angiogenic
and antiangiogenic factors in maternal
plasma could predict subsequent devel-
opment of preeclampsia or indicated
early preterm delivery in most women.60

Strengths of the study
There are several strengths to our study.
The study was prospective with a well-
defined population. The gestational age
was determined in early pregnancy; ul-
trasound biometric determination of
FGR was according to national guide-
lines; and the evidence of fetoplacental
hemodynamic compromise as reflected
in the Doppler AEDF further defined the
population. The study and control pop-
ulations were matched by gestational
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age, and only cesarean deliveries
were included. The latter approach
minimized the risk of altered placental
angiogenic gene expression from peri-
odic placental ischemia and hypoxia
caused by uterine contractions, which
was reported by Cindrova-Davies et al.34

We collected tissue samples from the
mediobasal location of the placental disk
as defined by Wyatt et al36 who demon-
strated that the sampling site signifi-
cantly affected hypoxia-related genes
including VEGF in term placentas. The
mediobasal area is well perfused, less
likely to express hypoxia-induced
angiogenic gene expression, and most
likely to have normal branching
angiogenesis.

Limitations of the study
There are several limitations of our
study. Our findings may not be appli-
cable to early-onset FGR. We did not
include these patients because of the
difficulty in finding appropriate gesta-
tional age-matched control subjects who
would be delivered by elective cesarean at
a preterm gestational age. In addition,
our study demonstrated an association
between NRP-1 and FGR but did not
actually establish a causal relation be-
tween down-regulation of NRP-1 and
FGR, nor did it establish the role of NRP-
1 in tip cell formation in fetoplacental
vascular development in normal and
growth-restricted pregnancies. Future
studies will address these opportunities
both for in vitro and in vivo models as
well as the validation of our findings in
an independent and larger patient
population.

Conclusion
In this study, we demonstrate a significant
down-regulation of NRP-1 in placentas
from FGR pregnancies complicated with
umbilical hemodynamic compromise. To
our knowledge this is the first timeNRP-1
has been implicated in FGR. The trans-
lational significance of our finding resides
with the potential of developing NRP-1
measurement in maternal circulation as
a biomarker for pregnancies destined to
develop FGR. Such a toolmay also be able
to distinguish FGR fetuses from those that
are constitutionally small. Such a

distinction is not possiblewith the current
diagnostic approaches. Future potential
also exists for therapeutic innovations
specifically targeting deficient placental
NRP-1 expression. Furthermore, as FGR
with umbilical artery AEDF shows defi-
cient placental branching angiogenesis
and as NRP-1 is involved in vascular
sprouting, we speculate that NRP-1 plays
a significant role in fetoplacental branch-
ing angiogenesis and its down-regulation
may be mechanistically involved in
abnormal vascular development in FGR.
Future investigationsmay establish such a
causal role advancing our understanding
of the complex pathogenic mechanisms
underlying FGR. n
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