Maternal Antepartum Administration of Lactoferrin Ameliorates Neonatal Infection by Bacteremia-Producing *Escherichia coli* in Mice Charity L. Dunlop³; Rachel Chevalier^{2,3}; Norah Almahbub²; Joshua Wheatley¹; Osaruese C. Osa-Edoh¹;

Background

- Escherichia coli is the leading Gram-negative causing neonatal sepsis.
- Vaginal pathogenic E. coli strains ascend into the pregnant uterus infecting the offspring of colonized mothers.
- antibacterial • Lactoferrin (LF) and an IS glycoprotein that has been given to preterm newborns to prevent late-onset sepsis.
- The effects of maternal LF administration to prevent neonatal E. coli invasive infection by clinical isolates that produce sepsis and meningitis have not been studied.

Objective

To determine the efficacy of vaginal lactoferrin administered prenatally to pregnant mice to prevent invasive *E. coli* disease in their embryos.

Methods

- Human lactoferrin (LF) 100 mcg/mL or placebo were administered vaginally to pregnant C57BL/6 mice twice daily on E16 and E17.
- Two hours after the 4th dose on E17, mice were infected vaginally with 1x10⁵ colony forming units (CFU) of the archetypal bacteremia/meningitis-producing clinical isolate RS218, which was modified by transposon mutagenesis to constitutively express chloramphenicol (Cam) resistance (RS218-CamR) as selection marker.
- On E18, maternal vaginal fluid samples were obtained, and placentas and embryo tissues were collected after humane euthanasia to determine bacterial loads by culture on Cam plates.

Susana Chavez-Bueno^{1,3}

Results

immunomodulatory

differences growth **RS218** between wild-type RS218-CamR.

were significantly lower in CFU/mL, 1.7×10^{7} (Welch's t-test P < 0.02).

dams were significantly lower compared to those of placebo-treated dams, 433 CFU/mL (IQR 0-3100, n=15) vs. 5400 CFU/mL (IQR 1600-19666, n=15), respectively (P<0.01).

Infectious Diseases¹ and Gastroenterology² Children's Mercy Kansas City, Kansas City, MO, and UMKC School of Medicine³

n=18), respectively (P<0.001).

• RS218-CamR was found in the brain tissue of 50% (total n=16) of embryos from LF-pretreated dams vs. 100% (n=18) of embryo brain tissue in the placebo-pretreated group (Fisher exact test, P< 0.001).

Conclusions and Future Studies

- *E. coli* isolate.
- Placental bacterial loads, and burden of infection in the offspring were also significantly decreased.
- The mechanisms by which prenatal LF protects newborns from invasive *E. coli* disease need investigation.
- Prenatal lactoferrin is a potential preventative intervention against neonatal sepsis.

Results

Lactoferrin Placebo	coli RS218 Bacterial Loads	Figure 6		Brain E. coli RS218 Bacterial Loads
		Median E. coli CFU/100mg	12000 - 10000 - 8000 - 6000 - 4000 - 1600 1200 800 400 0 -	Lactoferrin Placebo

Fig. 5. Bacterial loads in the liver and spleen of embryos of LFpretreated dams were significantly lower compared to those of placebo-treated dams, 6.6 CFU/100 mg (IQR 0-48, n=16) vs. 1160 CFU/100 mg (IQR 229-4736, n=18), respectively (P<0.001).

Fig. 6. Bacterial loads in the brain of embryos of LF-pretreated dams were significantly lower compared to those of placebo-treated dams, 3.3 CFU/100 mg (IQR 0-56, n=16) vs. 605 CFU/100 mg (IQR 11-2132,

• Prenatal maternal vaginal administration of LF significantly decreased vaginal bacterial loads of a clinically significant neonatal invasive K1+

