Children's Mercy Kansas City SHARE @ Children's Mercy

Posters

8-2024

Variables affecting neurodevelopmental outcomes in infants with critical congenital heart disease

Elizabeth Loughman

Marcie G. Files

Julie Weiner

Let us know how access to this publication benefits you

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/posters

Part of the Pediatrics Commons

Variables Affecting Neurodevelopmental Outcome in Infants with Critical Congenital Heart Disease

Elizabeth Loughman, MD; Marcie Files, MD; Julie Weiner, DO

Children's Mercy Hospital, University of Missouri-Kansas City, Kansas City, MO

Background

- The mortality of cardiac conditions in infancy is improving with advances in surgical planning and medical management.
- Neurologic morbidity remains significant, and clinically correlating an infant with their neurologic exam, MRI/EEG, and subsequent developmental testing remains a challenge.

Objective

• To Identify factors associated with poor neurodevelopmental outcomes in infants with critical congenital heart defects (CCHD) as assessed by the Bayley Scales of Infant and Toddler Development Edition IV (Bayley).

Methods

- Retrospective, single site study
- Neonates were inborn or admitted to the neonatal or cardiac intensive care units after diagnosis of CCHD requiring cardiac surgery
- 2015-2020, n=383, Bayleys done at 12 mo (36.3%) and 24 mo (25.8%)
- Primary outcomes: neurologic exam, MRI, and EEG at discharge as well as 12- and 24-month Bayleys
- Statistical analysis= univariable logistic regression, Fisher exact test, chi square analysis, Wilcoxon-Mann-Whitney test

Table 1.	Patient	characteris	tics
	i acionic	onaraotonio	

Bayley at 12-month	Normal	Abnormal	p-value [_]	<u>SMD</u> ₫
	N = 81	N = 58		
Maternal age:	28 (25, 31)	29 (24, 32)	0.77	0.04
Maternal race Minority	16 (20%)	13 (22%)	0.87	0.07
Marital status Single	22 (27%)	21 (36%)	0.34	0.20
Prenatal counseling Yes	51 (63%)	39 (67%)	0.73	0.09
Delivered at FHC Yes	43 (53%)	35 (60%)	0.50	0.15
Deliver mode C-section	23 (28%)	25 (43%)	0.11	0.31
Sex Female	34 (42%)	24 (41%)	>0.99	0.01
Gestation age (weeks) ^a	39 (37, 39)	39 (38, 39)	0.71	0.06
Birth weight (kg)ª	3.2 (2.7, 3.6)	3.2 (2.7, 3.5)	0.55	0.09
Norman A	33 (41%)	29 (50%)	0.34	0.26
В	32 (40%)	16)28%)		
С	16 (20%)	13 (22%)		
Respiratory complication. No	63 (78%)	43 (74%)	0.62	0.17
Distress	7 (9%)	8 (14%)		
Failure	11 (14%)	7 (12%)		
Genetic diagnosis	36 (44%)	21 (36%)	0.045	0.43
No				
VUS	35 (43%)	20 (35%)		
Yes	10 (12%)	17 (29%)		
CHD repair	43 (53%)	12 (21%)	<0.001	0.71
Biventricular				
Length of stay (days) ^a	37 (24, 60)	62 (41, 119)	<0.001	0.62
Enteral feeding at D/C	36 (44%)	47 (81%)	<0.001	0.82
Abnormal neurologic exam	3 (4%)	8 (14%)	0.052	0.36
Abnormal EEG	4/38 ^b (11%)	8/33 ^b (24%)	0.20	0.37
Abnormal MRI	16/42 ^ь (38%)	23/35 ^b (66%)	0.03	0.58
Failure To Thrive	39 (48%)	46 (79%)	<0.001	0.69

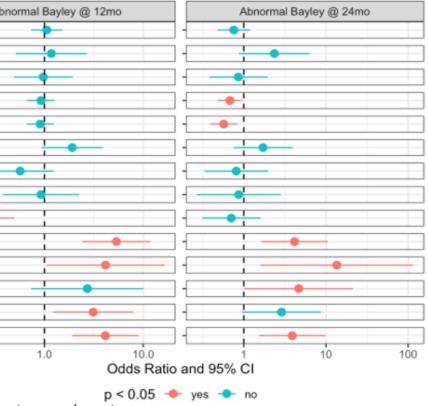
Bayley at 24-month		Normal	Abnormal	p-value	SMD₫
		N = 61	N = 38		
Maternal age*		28 (25, 32)	28 (23, 31)	0.28	0.19
Maternal race	Minority	9 (15%)	11 (29%)	0.15	0.35
Marital status	Single	14 (23%)	17 (45%)	0.04	0.47
Prenatal counseling Yes		39 (64%)	22 (58%)	0.70	0.12
Delivered at FHC	Yes	35 (57%)	20 (53%)	0.80	0.10
Deliver mode	C-section	21 (34%)	18 (47%)	0.29	0.27
Sex	Female	28 (46%)	16 (42%)	0.87	0.08
Gestation age (weeks) ^a		39 (37, 39)	38 (36, 39)	0.052	0.35
Birth weight (kg) ^a		3.2 (2.8, 3.6)	2.8 (2.4, 3.3)	0.006	0.50
Norman	A	26 (43%)	18 (47%)	0.89	0.10
	В	25 (41%)	14 (37%)		
	С	10 (16%)	6 (16%)		
Respiratory complication No		45 (74%)	23 (61%)	0.38	0.29
	Distress	6 (10%)	6 (16%)		
	Failure	10 (16%)	9 (24%)		
Genetic diagnosis	No	27 (44%)	19 (50%)	0.15	0.41
	VUS	25 (41%)	9 (24%)		
	Yes	9 (15%)	10 (26%)		
CHD repair B	iventricular	31 (51%)	16 (42%)	0.52	0.18
Length of stay (days) ^a		41 (25, 82)	77 (41, 169)	0.004	0.53
Enteral feeding at	D/C	29 (48%)	30 (79%)	0.004	0.69
Abnormal neurolo	gic exam	1 (2%)	7 (18%)	0.005	0.58
Abnormal EEG		3/27 ^b (11%)	7/19 ^b (37%)	0.07	0.63
Abnormal MRI		16/42 ^b (38%)	23/35 ^b (66%)	0.03	0.58
FTT		30 (49%)	30 (79%)	0.006	0.65
Ves					

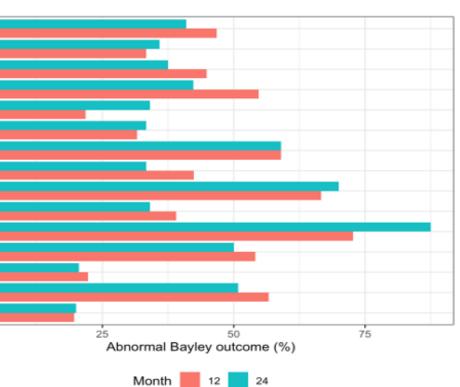
median (1st quartile, 3rd quartile); b Among patients who had EEG or MRI scans; c Wilcoxon Mann-Whitney test for maternal age, gestational age, birth weight, and length of stay, Fisher's exact test for abnormal neurologic exam, and Chi-squared test for all the other variables; ^d standardized mean <u>difference</u>

Results

Figure 1. Abnormal Bayley exams and associated patient characteristics

	Ab
Maternal age	
Maternal race minority	
Female sex	
GA (weeks)	
Birth wt (kg)	
C-section	
Norman B	-
Norman C	
Biventricular repair	
Enteral feeding @D/C	
Abn neuro ex	
Abn EEG	
Abn MRI	
Failure to thrive	
	0.1


Figure 2. Abnormal Bayley outcomes by category


Norman a -	
Norman b -	
Norman c -	
repair univentricular -	
repair biventricular -	
MRI_res normal -	
MRI_res abnormal -	
EEG_res normal -	
EEG_res abnormal -	
neuro_ex normal -	
neuro_ex abnormal -	
FTT yes -	
FTT no -	
feed_dc enteral -	
feed_dc oral -	

Results

Univariable logistic regression

40% of Bayleys were abnormal (gross motor, expressive language) P 145 infants with EEGs, 17% showed seizures or focal slowing. Of these abnormal EEGs, 45% had an Z©] abnormal Bayley. 146 MRIs, 58% showed ischemia, infarct, atrophy, stroke, or hemorrhage. Abnormal Bayley at 12 mo 3.11x higher with abnormal MRI (95% CI 1.22-7.94, d= 0.63) 73% and 87.5% of abnormal neuro exams had **£**3 abnormal Bayleys (12 and 24 mo)

Conclusion

- Delineating risk factors in infants with congenital heart defects could aid in predicting long-term neurodevelopmental outcomes.
- Statistically significant predictors of abnormal Bayleys include:
 - Enteral feeding at discharge
 - Single ventricle repair
 - Failure to thrive
 - Abnormal neuro exam
- Abnormal MRIs
- Increased length of stay
- Genetic diagnosis
- Lower BW
- Abnormal neurologic exams, MRI, and EEG at discharge can be associated with abnormal Bayleys in childhood.