Children's Mercy Kansas City

SHARE @ Children's Mercy

Research Days

GME Research Days 2024

May 14th, 11:30 AM - 1:30 PM

NRP, PALS, and their utilization during code events in a pediatric quaternary hospital: a 'compressed' analysis

Mitch Kinkor Children's Mercy Hospital

Deepa Kumar Children's Mercy Hospital

Allison Taber Children's Mercy Kansas City

Stephen Pfeiffer Children's Mercy Hospital

Jessica Brunkhorst Children's Mercy Hospital

see hext pager power and anonar authors publication benefits you

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/researchdays

Part of the Higher Education and Teaching Commons, Medical Education Commons, Pediatrics Commons, and the Science and Mathematics Education Commons

Kinkor, Mitch; Kumar, Deepa; Taber, Allison; Pfeiffer, Stephen; Brunkhorst, Jessica; and Reed, Danielle, "NRP, PALS, and their utilization during code events in a pediatric quaternary hospital: a 'compressed' analysis" (2024). *Research Days*. 11.

https://scholarlyexchange.childrensmercy.org/researchdays/GME_Research_Days_2024/ResearchDay2/11

This Poster Presentation is brought to you for free and open access by the Conferences and Events at SHARE @ Children's Mercy. It has been accepted for inclusion in Research Days by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact hlsteel@cmh.edu.

Authors Mitch Kinkor, Deepa Kumar, Allison Taber, Stephen Pfeiffer, Jessica Brunkhorst, and Danielle Reed							

NRP, PALS, and their utilization during ICU code events in a pediatric quaternary hospital: a 'compressed' analysis

Mitchell Kinkor, MD¹; Deepa Kumar, MD¹; Steve Pfeiffer, MD²; Ali Taber, MD²; Jessica Brunkhorst, MD³; Danielle Reed, MD³

¹Department of Pediatrics, ²Division of Critical Care, ³Division of Neonatology

Children's Mercy Kansas City

Background

- •1-3% of hospitalized neonates and infants require cardiopulmonary resuscitation (CPR)
- •Neonatal Resuscitation Program (NRP) and Pediatric Advanced Life Support (PALS) are the most common pediatric resuscitation algorithms
- Best age to transition from NRP to PALS is unclear and dependent on unit protocol at Children's Mercy
 - •NRP in NICU, PALS in PICU/CICU

Objective

•Describe clinical characteristics of code events in the NICU, PICU, and CICU for patients of the same age group (36 weeks – 18 months) undergoing resuscitation with different protocols (NRP, PALS)

Methods/Design

- •Retrospective, descriptive chart review study
- •Inclusion criteria were **age** (36 weeks corrected gestational age 18 months old), **admission to ICU**, and **code event requiring chest compressions** from Jan 2020-July 2023
- Patient characteristics and code management variables abstracted from paper and electronic medical record
- •Distribution of variables compared with one way ANOVA and Chi-squared analysis with post-hoc testing

Results

Table 1. Patient Characteristics						
	NICU	CICU	PICU	P-value		
Total patients	44	41	20			
Total code events	79	66	25			
Gestational age (weeks)	29.1	37.1	33.9	<0.001		
Age at code (years)	0.45	0.37	0.83	<0.001		
Birth weight (kg)	1.32	2.8	2.3	<0.001		
Weight at time of code	4.68	4.97	8.48	0.004		
Respiratory support at time						
of code				<0.001		
Endotracheal tube	58%	62%	44%			
Tracheostomy tube	32%	6%	36%			
Non-Invasive ventilation	6%	5%	0%			
High flow nasal cannula,						
nasal cannula, room air	4%	27%	20%			
Vasoactive support at time						
of code				<0.001		
None	85%	29%	72%			
1 vasoactive agent	5%	41%	20%			
2+ vasoactive agents	10%	30%	8%			
Gender				0.272		
Male	63%	64%	80%			
Female	37%	36%	20%			
Race				0.876		
White/caucasian	61%	53%	60%			
Black/African descent	18%	24%	20%			
Other	21%	23%	20%			

Table 2. Code management						
	NICU	CICU	PICU	p-value		
Time to chest compressions						
(minutes)	2.1	1.28	1.52	0.230		
Duration of chest						
compressions (minutes)	6.9	9.0	3.7	0.150		
Use of epinephrine	42%	76%	56%	<0.001		
Use of 'dwindle dose' epi	1%	32%	20%	<0.001		
Use of atropine	14%	5%	0%	0.033		
Use of bicarb	8%	42%	4%	<0.001		
Use of calcium	8%	29%	25%	<0.001		
Use of anti-arrhythmic	0%	6%	0%	0.040		
Use of fluid bolus	70%	82%	84%	0.142		
Defibrillation	4%	9%	0%	0.161		
Primary reason for code				<0.001		
Cardiac	20%	76%	36%			
Pulmonary	80%	24%	64%			
Outcome				0.384		
Death during code event	9%	6%	12%			
Survival of code event, death						
prior to hospital discharge	14%	15%	28%			
Survival past hospital discharge	77%	79%	60%			

Conclusions

- •Similar code outcomes seen across NICU, PICU, and CICU despite significant differences in management of cardiac arrest events and utilization of different resuscitation algorithms
- •PICU patients in our cohort were more likely to be older and bigger at time of code
- •NICU and CICU had similar patient populations in terms of weight and age with clear differences in underlying etiology of code and medication administration in the code setting

