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EXTENDED REPORT

Fine-mapping the MHC locus in juvenile idiopathic
arthritis ( JIA) reveals genetic heterogeneity
corresponding to distinct adult inflammatory
arthritic diseases
A Hinks,1 J Bowes,1 J Cobb,1,2 H C Ainsworth,3 M C Marion,3 M E Comeau,3

M Sudman,4 B Han,5,6 Juvenile Arthritis Consortium for Immunochip, M L Becker,7

J F Bohnsack,8 P I W de Bakker,9 J P Haas,10 M Hazen,11 D J Lovell,12

P A Nigrovic,11,13 E Nordal,14 M Punnaro,15,16 A M Rosenberg,17 M Rygg,18

S L Smith,1 C A Wise,19,20 V Videm,18 L R Wedderburn,21,22 A Yarwood,1

R S M Yeung,23 S Prahalad,24 C D Langefeld,3 S Raychaudhuri,1,5,25,26

S D Thompson,4 W Thomson1,2

ABSTRACT
Objectives Juvenile idiopathic arthritis ( JIA) is a
heterogeneous group of diseases, comprising seven
categories. Genetic data could potentially be used to
help redefine JIA categories and improve the current
classification system. The human leucocyte antigen (HLA)
region is strongly associated with JIA. Fine-mapping of
the region was performed to look for similarities and
differences in HLA associations between the JIA
categories and define correspondences with adult
inflammatory arthritides.
Methods Dense genotype data from the HLA region,
from the Immunochip array for 5043 JIA cases and
14 390 controls, were used to impute single-nucleotide
polymorphisms, HLA classical alleles and amino acids.
Bivariate analysis was performed to investigate genetic
correlation between the JIA categories. Conditional
analysis was used to identify additional effects within
the region. Comparison of the findings with those in
adult inflammatory arthritic diseases was performed.
Results We identified category-specific associations and
have demonstrated for the first time that rheumatoid
factor (RF)-negative polyarticular JIA and oligoarticular
JIA are genetically similar in their HLA associations. We
also observe that each JIA category potentially has an
adult counterpart. The RF-positive polyarthritis
association at HLA-DRB1 amino acid at position 13
mirrors the association in adult seropositive rheumatoid
arthritis (RA). Interestingly, the combined oligoarthritis
and RF-negative polyarthritis dataset shares the same
association with adult seronegative RA.
Conclusions The findings suggest the value of using
genetic data in helping to classify the categories of this
heterogeneous disease. Mapping JIA categories to adult
counterparts could enable shared knowledge of disease
pathogenesis and aetiology and facilitate transition from
paediatric to adult services.

INTRODUCTION
Juvenile idiopathic arthritis ( JIA), the most common
arthritic disease of childhood, is a heterogeneous

group of diseases. The current International League
of Associations for Rheumatology (ILAR) classifica-
tion system defines seven categories based on clinical
features, including an undifferentiated category for
cases that do not fall into one of the defined categor-
ies.1 Genetic data could be used to help define JIA
categories and improve the current classification
system. Prior studies of the best established genetic
risk factor for JIA, the major histocompatibility
region (MHC) on chromosome 6, have been in
modest sample sizes.2 3 The development of methods
for imputation of classical human leucocyte antigen
(HLA) alleles and amino acids4 from genotyping
array data enables a comprehensive and cost-effective
approach for generating HLA typing on much larger
JIA cohorts. We sought to use this powerful approach
to dissect and refine the HLA associations of the het-
erogeneous JIA categories.
While there are considerable clinical similarities

between some JIA categories and adult inflamma-
tory arthritides, there is also substantial heterogen-
eity. Hence, we sought to compare the associations
across the MHC region observed in JIA cohorts
with those observed in adult inflammatory arthri-
tides, such as rheumatoid arthritis (RA).5 6

Furthermore, some categories of JIA have obvious
adult counterparts (eg, enthesitis-related arthritis
(ERA) and adult ankylosing spondylitis (AS), or
juvenile psoriatic arthritis ( jPsA) with psoriatic
arthritis), the most common categories of JIA, oli-
goarthritis and rheumatoid factor (RF)-negative
polyarthritis, do not appear to map to any adult
form of disease. Mapping each of the JIA categories
to RA and other adult inflammatory arthritic dis-
eases could have many benefits including enhanced
understanding of the genetic basis and etiopatho-
genesis of inflammatory arthritis in general, allow
extrapolation of results from clinical trials in adult
inflammatory arthritis to paediatric counterparts to
improve the therapy of JIA, and facilitate smooth
transition of paediatric patients to adult care provi-
ders with consistent clinical designations.
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The goals of this study were threefold, to use comprehensive
MHC fine-mapping genetic data to refine HLA associations
across each JIA category, to assess correspondences between the
JIA categories and finally compare associations with adult
inflammatory arthritic diseases.

METHODS
Subjects
All cohorts comprised individuals from populations of
European descent from the USA, UK, Canada, Norway and
Germany. Descriptions of the datasets can be found in the
online supplementary information. The total dataset prequality
control comprised all JIA categories and included 5737 patients
with JIA and 16 403 controls genotyped for 191 494 markers.

Genotyping and quality controls
Samples were genotyped using ImmunoChip, a custom-made
Illumina Infinium array, described previously.7 The
ImmunoChip includes dense coverage of the HLA region and
186 additional non-HLA loci. Genotyping was performed
according to Illumina’s protocols at labs in Hinxton, UK,
Manchester, UK, Cincinnati, USA, Utah, USA, Charlottesville,
USA, New York, USA, Brisbane, Australia and Toronto, Canada.
The Illumina GenomeStudio GenTrain V.2.0 algorithm was used
to recluster all 22 140 samples together.

Single-nucleotide polymorphisms (SNPs) were initially
excluded if they had a call rate <98% and a cluster separation
score of <0.4. A SNP was subsequently removed from the
primary analysis, if it exhibited significant differential missing-
ness between cases and controls (p<0.05), had significant
departure from Hardy-Weinberg equilibrium (p<0.000001 in
cases or p<0.01 in controls), or had a minor allele frequency
(MAF) <0.01. Based on the SNPs that passed the above quality
control thresholds, samples were then excluded for call rate
<98%, or if there were inconsistencies between recorded and
genotype-inferred gender or excess heterozygosity on the auto-
somes. Duplicates and first-degree or second-degree relatives
were removed based on identity-by-descent statistics computed
using the programme KING.8 Admixture estimates were com-
puted on the remaining samples while including the HapMap
phase III individuals (CEU, YRI and CHB) as reference popula-
tions using the software ADMIXTURE.9 The admixture esti-
mates were then used to identify and remove genetic outliers.
Three of these admixture estimates were included as covariates
in the logistic regression (association) analysis to account for
within-sample variation.

HLA imputation
The markers spanning 29–34 Mb (hg build19) on chromosome
6 which encompasses the HLA region were extracted from the
post-QC Immunochip dataset. Cases and controls were imputed
together using SNP2HLA (V.1.0) (http://www.broadinstitute.org/
mpg/snp2hla/).4 This is a robust approach which enables imput-
ation of classical HLA alleles as well as specific amino acid posi-
tions within HLA alleles, which may play an important
functional role. The method uses a large reference dataset col-
lected by the type 1 diabetes genetics consortium10 (n=5225).
This dataset has gold-standard HLA typing and high SNP
density, thus using linkage disequilibrium patterns around SNPs
and classical HLA alleles enables the inference of classical HLA
alleles, amino acids and SNPs across the region based on the
SNP data generated from Immunochip, an approach successfully
used by a number of researchers.5 6 11 12 Post-imputation QC
included removing variants with a MAF <0.01 and variants

with an r2 <0.8. The dosage output, which accounts for imput-
ation uncertainty, was used for the association analyses.

To assess the quality of the imputation, a proportion of the
UK and the US JIA cases have two-digit and four-digit
HLA-DRB1 typing available (n=1562) performed using a semi-
automated, reverse dot-blot method,2 3 which was used to
calculate the proportion of accurately imputed two-digit and
four-digit HLA-DRB1 alleles. In addition, the DRB1 two-digit
and four-digit allele frequencies were compared between geno-
typed and imputed HLA allele calls.

Association analysis of HLA alleles and amino acid
polymorphisms
To compare the differences and similarities of HLA associations
across the different JIA categories, genetic correlation of the
MHC region between the categories was calculated using bivari-
ate analysis13 implemented using GCTA.14 This analysis first cal-
culates the genetic variance (heritability) of each category and
then calculates the genetic correlation between the categories
across the HLA region. High correlation suggests similarities or
pleiotropy between the two categories compared. This analysis
requires independent controls for the two categories being com-
pared and therefore the controls were randomly assigned to the
two categories, splitting equally, taking into account the propor-
tions of controls from each population.

HLA variants were binary coded (presence or absence) and
included SNPs and two-digit and four-digit HLA alleles.
Association analysis was performed using logistic regression in
R, using dosage data (genotype probabilities), which takes into
account imputation uncertainty. For the analysis of each JIA cat-
egory, the total control dataset was used for each comparison.
HLA amino acid polymorphisms have multiple residues at each
position and were analysed using the omnibus test. This is a
log-likelihood ratio test comparing the likelihood of the null
model against the likelihood of the fitted model, which gave a p
value assessing the improvement in fit of the model, the devi-
ance is calculated (−2×the log likelihood ratio), which follows a
χ2 distribution with m−1 degrees of freedom (where m is the
number of HLA variant alleles).5 Three of the admixture esti-
mates were included as covariates to account for potential popu-
lation stratification.

To look for independent effects across the HLA region, condi-
tional analysis was performed. Logistic regression, as described
above, was performed to identify the most associated marker.
Then this marker was used as a covariate in the model and logis-
tic regression repeated. This analysis was continued sequentially
in a forward stepwise approach until no variant satisfied the
genome-wide significance threshold (conditioned p<5×10−8).
When the covariate was an amino acid, all multi-allelic variants
of the amino acid were included as covariates, excluding the
most frequent variant. To look for additional effects outside
HLA-DRB1, we included all two-digit and four-digit HLA-DRB1
alleles within the model and looked for any residual effects.

To confirm the results of the conditional analysis and to
check that there were no other combinations of variants that
better fitted the models derived from the forward stepwise
approach, described above, we exhaustively tested all possible
combinations of 2, 3 and 4 amino acid positions, including the
three admixture estimates as covariates. For each combination
we calculated deviation from the null hypothesis, which
included only the admixture covariates. To assess the improve-
ment in the model fit we also calculated the improvement in the
Akaike information criterion (ΔAIC), and also the improvement
in the Bayesian information criterion (ΔBIC).
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We used a disease prevalence of 0.001 to estimate the vari-
ance explained (h2) by the HLA region and some of the inde-
pendent effects and compared with the estimate calculated for
all Immunochip, implemented using GCTA.14

RESULTS
HLA imputation
Post-QC data was available for 6920 SNPs, 335 amino acids and
171 HLA alleles in 5043 JIA cases and 14 390 healthy controls
(see online supplementary table S1). A detailed breakdown of
the JIA cases by ILAR category is shown in table 1, and by
population and gender in online supplementary table S2.

For a proportion of the UK and US JIA cases (n=1562), two-
digit and four-digit HLA-DRB1 classical typing was available.
The accuracy of the imputed data was calculated as 97.9% for
two-digit and 89.3% for four-digit alleles, which is similar to
those calculated in previous studies in RA.5 A detailed analysis
strategy is shown in online supplementary figure S1.

Bivariate analysis to look for genetic correlation between
the JIA categories
We performed bivariate analysis to calculate the estimated HLA
region genetic correlation between each pair of JIA categories
(figure 1). The heritability for each category estimated from the
bivariate analysis was similar to that estimated from univariate
analyses performed in the total dataset (see online
supplementary tables S3 and S4). The estimates of correlation
between each pair of JIA categories showed a surprisingly strong
correlation between the most common categories of JIA:
RF-negative polyarthritis, persistent and extended oligoarthritis
(rG>0.88). In contrast, the correlations between these three cat-
egories and the other categories of JIA were lower (figure 1).

Association analysis of HLA markers
After conducting primary association analysis of all 7426 var-
iants, in each of the seven JIA categories (table 2), we observed
that for oligoarthritis and both RF-positive and RF-negative
polyarthritis the strongest association was with HLA-DRB1
amino acid position 13. However, for oligoarthritis and
RF-negative polyarthritis, the most common categories of JIA,
glycine13 confers the strongest risk; serine13 also confers a risk
effect but histidine13 is protective. By contrast, in RF-positive
polyarthritis, it is histidine13 that confers the strongest risk and
serine13 confers a strong protective effect (see figure 2, online

supplementary table S5 and supplementary figure S2). When
the effect estimates for the histidine13 residue in the associated
JIA categories were compared using multinomial logistic regres-
sion, strong protective effects were observed in persistent and
extended oligoarthritis, with no significant difference in the
effect estimates (p=0.63). There was a slightly weaker, protect-
ive effect for RF-negative polyarthritis compared with that for
persistent and extended oligoarthritis (p<0.05). Importantly,
there was a significantly different risk effect in RF-positive poly-
arthritis compared with RF-negative polyarthritis, persistent and
extended oligoarthritis. The remaining JIA categories had dis-
tinct HLA associations from these common categories. The
most significant association in systemic JIA (sJIA) was for
HLA-DRB1*11 and for the ERA category was HLA-B*27. For
jPsA, no associations reached genome-wide level of significance
(p<5×10−8).

Investigation of multiple effects within the region
Observing that oligoarthritis and RF-negative polyarthritis
showed similar HLA associations and evidence for pleiotropy
from the bivariate analysis in GCTA,13 14 these categories were
combined to increase power for further analyses (total sample
size=3934). To look for independent genetic effects across the
HLA region, we conditioned on the most associated marker,
HLA-DRB1 amino acid 13 and detected a second independent
effect within HLA-DRB1 at amino acid position 67 (omnibus
p=7.01×10−83). Further conditioning revealed separate effects
at amino acid positions 181 (omnibus p=3.33×10−22) and 71

Table 1 Breakdown of the total JIA cohort by ILAR category

ILAR category Number

All JIA 5043

Systemic JIA 373

Oligoarthritis

Persistent 1751

Extended 658

RF-negative polyarthritis 1525

RF-positive polyarthritis 337

Enthesitis-related arthritis 183

Juvenile psoriatic arthritis 112

Undifferentiated 104

Combined oligoarthritis and RF-negative polyarthritis dataset 3934

ILAR, International League of Associations for Rheumatology; JIA, juvenile idiopathic
arthritis; RF, rheumatoid factor.

Figure 1 Heatmap showing genetic correlation for human leucocyte
antigen (HLA) between the juvenile idiopathic arthritis ( JIA) categories.
Each square shows the level of correlation between each JIA category.
With a scale of red colour representing higher correlation through
orange to yellow for low correlation. The numbers within the squares
represent the correlation values ranging from 0 to 1 for high
correlation. Note that this plot is symmetrical. POligo, persistent
oligoarthritis; EOligo, extended oligoarthritis; RF, rheumatoid factor;
RFnegpoly, RF-negative polyarthritis; RFpospoly, RF-positive
polyarthritis; sJIA, systemic JIA; ERA, enthesitis-related arthritis; jPsA,
juvenile psoriatic arthritis.
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(omnibus p=1.16×10−8) (see online supplementary table S6
and supplementary figure S3). Conditioning on all two-digit and
four-digit HLA-DRB1 alleles found independent effects at
HLA-DPB1*02:01, HLA-A amino acid 95 and HLA-B amino
acid 152 (see online supplementary table S6 and figure 3). All
possible combinations of 2, 3 and 4 amino acids in HLA-DRB1
were exhaustively tested. HLA-DRB1 amino acids 13 and 67
were the most strongly associated of all possible 2 amino acid
combinations. However, for both the 3- amino acid and
4-amino acid combinations, there were two other combinations
that had a better model, according to deviance from the null
hypothesis, compared with the combination of HLA-DRB1
amino acids at positions 13, 67 and 181 or for HLA-DRB1 at
positions 13, 67, 181 and 71, the 3- and 4-amino acid models
that might have been expected to be the most significant consid-
ering the results of the conditional analysis. Therefore, while
there appears to be multiple independent effects within the
HLA-DRB1 gene, we can only be confident in the HLA-DRB1
amino acids at positions 13 and 67.

Variance explained by the HLA region
We calculated the proportion of variance explained by the inde-
pendent HLA variants in the combined oligoarthritis and
RF-negative polyarthritis dataset (see table 3 and online
supplementary table S4) and found that the total HLA region

explained 8% of the total phenotypic variance, with the
HLA-DRB1 region, driven by the amino acid at position 13,
contributing 50% of variance explained by the HLA region.

Comparison with adult inflammatory arthritic diseases
We compared our HLA association findings across JIA categories
with those of adult inflammatory arthritic diseases (see online
supplementary table S7). In seropositive RA, Raychaudhuri et al
showed multiple independent associations within the HLA-DRB1
gene at three amino acid positions (11, 71 and 74) and also inde-
pendent associations at amino acid position 9 in HLA-B and
amino acid position 9 in HLA-DPB1.5 The DRB1 amino acid at
position 11 is in strong linkage disequilibrium with the amino
acid at position 13, which makes it difficult to assign causality to
one or the other. In this study, oligoarthritis and polyarthritis
each showed association with HLA-DRB1 amino acid at position
13. If the ORs of the residues at HLA-DRB1 amino acid position
13 for paediatric and adult arthritic diseases are compared, the
combined oligoarthritis and RF-negative polyarthritis dataset
shows similar ORs to that seen in seronegative RA6 (see online
supplementary figure S4), suggesting that these JIA categories
could potentially have an adult counterpart. Likewise, in
RF-positive polyarthritis, the histidine residue at position 13 at
HLA-DRB1 confers the greatest risk for disease and, unsurpris-
ingly, this mirrors the association in seropositive RA5 (see online
supplementary figure S4). For the ERA category, as expected the
most significant association was for HLA-B*27, the same HLA
allele found in AS.

DISCUSSION
This is the largest investigation of association of the HLA region
with JIA and its categories to date, exploiting novel imputation
strategies we have observed differences and similarities between
HLA associations for the different categories. The most
common and also the most clinically homogeneous categories of
JIA, oligoarthritis and RF-negative polyarthritis, showed strong
genetic correlation across the HLA region supporting our previ-
ous approaches of combining these categories for genetic
studies.15 Combined analysis of these categories show they share
association across the HLA region with strong association for
HLA-DRB1 amino acid position 13. The results for these com-
bined categories are consistent with previous findings investigat-
ing association of classical HLA alleles in JIA. For example,
there is previous evidence for association of HLA-DRB1*08 and
the HLA alleles that lie on this haplotype, with oligoarthritis
and RF-negative polyarthritis.2 3 At HLA-DRB1 amino acid pos-
ition 13, the glycine residue lies on the HLA-DRB1*08 haplo-
type. The association with the amino acids is much stronger
than that for the classical HLA allele (see online supplementary
figure S3A). These combined categories also show multiple inde-
pendent effects across the region, at HLA-DRB1 amino acid

Table 2 Primary association of the HLA region in JIA ILAR categories

Category HLA variant primary association Position p Value Amino acid residue OR 95% CI

Systemic JIA HLA-DRB1*11 32660042 3.41×10−11 2.09 1.67 to 2.59

Persistent oligoarthritis HLA-DRB1 AA pos 13 32660109 9×10−256 Glycine 2.72 2.41 to 3.08

Extended oligoarthritis HLA-DRB1 AA pos 13 32660109 1.05×10−104 Glycine 2.87 2.4 to 3.42

RF-negative polyarthritis HLA-DRB1 AA pos 13 32660109 4.29×10−99 Glycine 2.02 1.76 to 2.32

RF-positive polyarthritis HLA-DRB1 AA pos 13 32660109 3.65×10−31 Histidine 2.44 2.0 to 2.97

ERA HLA-B*27 31431272 8.81×10−98 1.71 1.32 to 2.24

ERA, enthesitis-related arthritis; HLA, human leucocyte antigen; ILAR, International League of Associations for Rheumatology; JIA, Juvenile idiopathic arthritis; RF, rheumatoid factor.

Figure 2 Different effect sizes (ORs and 95% CIs) for amino acid
residues at human leucocyte antigen (HLA)-DRB1 position 13 between
the combined dataset of oligoarthritis and rheumatoid factor
(RF)-negative polyarthritis compared with those for RF-positive
polyarthritis.
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Figure 3 Analysis in the combined dataset of persistent and extended oligoarthritis and rheumatoid factor (RF)-negative polyarthritis, evidence for
multiple independent effects across the major histocompatibility region (MHC). (A) Association results for all human leucocyte antigen (HLA)
markers, HLA-DRB1 amino acid position 13 showed the strongest association (p<10−377). (B) Conditioning on all HLA-DRB1 two-digit and four-digit
alleles, HLA-DPB1*02:01 was associated (p<10−57). (C) Conditioning on all HLA-DRB1 two-digit and four-digit alleles and HLA-DPB1*02:01, HLA-A
amino acid position 95 was associated (p<10−37). (D) Conditioning on all HLA-DRB1 two-digit and four-digit alleles, HLA-DPB1*02:01 and HLA-A
amino acid position 95, HLA-B amino acid position 152 was associated (p<10−10).
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position 67, additional association at HLA-DPB1*02:01, an
effect at HLA-A and at HLA-B. There is previous evidence for
association of HLA-DPB1*0201 and HLA-A*02 (we found
stronger association considering amino acids, specifically a
valine residue at HLA-A amino acid position 95 in HLA-A*02).
Previous studies have failed to demonstrate an association with
HLA-B, which are apparent only with the additional samples
available for this study.

A striking finding has been the shared association of
HLA-DRB1 amino acid position 13 for both paediatric and
adult diseases. It is known that amino acid position 13 is
involved in shaping the peptide-binding pocket 4 of
HLA-DRB1.16 We find that the association in the combined oli-
goarthritis and RF-negative polyarthritis dataset mirrors the
findings seen in seronegative RA and similarly, in RF-positive
polyarthritis, the findings correspond to the association in sero-
positive RA. Interestingly, the magnitudes of associations are
stronger in the paediatric diseases compared with adult, suggest-
ing the paediatric disease is more genetically driven.

We then further compared the associations seen in each of the
other JIA categories with those of their proposed adult counter-
parts. Based on clinical features, it is likely that sJIA would map
to adult Still’s disease, but there is currently no HLA genetic
data to support or refute this. The most significant association
in sJIA was for HLA-DRB1*11, consistent with recent findings
from a large genome-wide association study for sJIA, which
used an overlapping set of samples.17 Previous studies of a HLA
association with sJIA had yielded conflicting results, but there is
now clear evidence for association of the HLA region with this
category of JIA. Data from the current study also show that the
association is distinct to that seen in the other categories. This
supports emerging evidence that sJIA is a distinct disease, with
less of an autoimmune phenotype and displaying auto-
inflammatory features18 and builds on previous genetic
evidence, which reported no association with another well-
established JIA susceptibility gene, PTPN22, in sJIA.19

Unsurprisingly, the strongest association seen in ERA,
HLA-B*27, is the same as adult AS.20 Although no associations
reaching genome-wide level of significance (p<5×10−8) were
seen in jPsA, the most significant HLA alleles were
HLA-DQA1*0401 (p=0.0001), HLA-DRB1*08 (p=0.0003)
and HLA-DQB1*0402 (p=0.0008), which all lie on the same
haplotype. The established HLA association in adult-onset PsA
is HLA-C*0602,21 which is also the primary HLA association in
psoriasis,22 was also modestly associated in this study
(p=0.008). There was also evidence in jPsA for association with
HLA-B*27 (p=0.003), the HLA allele that is the most

significant in ERA. The mixed HLA associations in jPsA may
suggest some misclassification such that the jPsA samples may
contain some individuals from oligoarthritis, RF-negative poly-
arthritis or ERA categories. This is perhaps not surprising given
that jPsA is difficult to classify, and that some of the jPsA classifi-
cation criteria have been disputed.23

The results of this study have important implications for
understanding disease pathogenesis, aetiology and potential
future therapeutic strategies for JIA categories. Despite the devel-
opment of a classification system, heterogeneity still exists within
the ILAR categories. This heterogeneity of JIA remains a key
challenge to paediatric rheumatologists; however, these results
may inform the debate on classification and help define a more
biological-driven and molecular-driven classification system. We
show clear differences among many of the categories in terms of
their HLA associations, but here we have also shown that the
most common categories of JIA, oligoarthritis and RF-negative
polyarthritis, are genetically similar and also notably similar to
adult-onset seronegative RA. It is only relatively recently that the
heterogeneous nature of adult RA has been recognised, with sero-
negative RA less common than seropositive RA.24 25 There are
no specific therapeutic strategies for seronegative RA at this time,
but given the rarity of this subphenotype of RA and the JIA cat-
egories individually, this study suggests that further comparisons
of genetic studies for these diseases could help identify novel
pathways and targets for therapy for both adult-onset and
childhood-onset forms of inflammatory arthritis.
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