Children's Mercy Kansas City

SHARE @ Children's Mercy

Research Days

GME Research Days 2024

May 17th, 12:00 PM - 12:15 PM

Association of respiratory viral testing and antibiotic use for pediatric patients admitted for acute respiratory illness between 2017-2021 at Children's Mercy-Kansas City

Edward Lyon
Children's Mercy Kansas City

Brian Lee Children's Mercy Kansas City

Rangaraj Selvarangan Children's Mercy Kansas City

Jennifer Schuster Children's Mercy Kansas City

Let us know how access to this publication benefits you

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/researchdays

Part of the Higher Education and Teaching Commons, Medical Education Commons, Pediatrics Commons, and the Science and Mathematics Education Commons

Lyon, Edward; Lee, Brian; Selvarangan, Rangaraj; and Schuster, Jennifer, "Association of respiratory viral testing and antibiotic use for pediatric patients admitted for acute respiratory illness between 2017-2021 at Children's Mercy-Kansas City" (2024). *Research Days*. 1.

https://scholarlyexchange.childrensmercy.org/researchdays/GME_Research_Days_2024/ResearchDay5/1

This Oral Presentation is brought to you for free and open access by the Conferences and Events at SHARE @ Children's Mercy. It has been accepted for inclusion in Research Days by an authorized administrator of SHARE @ Children's Mercy. For more information, please contact hlsteel@cmh.edu.

Association of Respiratory Viral Testing and Antibiotic Use for Pediatric Patients Admitted for Acute Respiratory Illness between 2017-2021 at Children's Mercy-Kansas City

Edward Lyon, DO

Pediatric Infectious Diseases Fellow

Children's Mercy Hospital

University of Missouri-Kansas City School of Medicine

CMH Research Days 2024

May 17, 2024

Disclosures

Nothing to disclose

Background

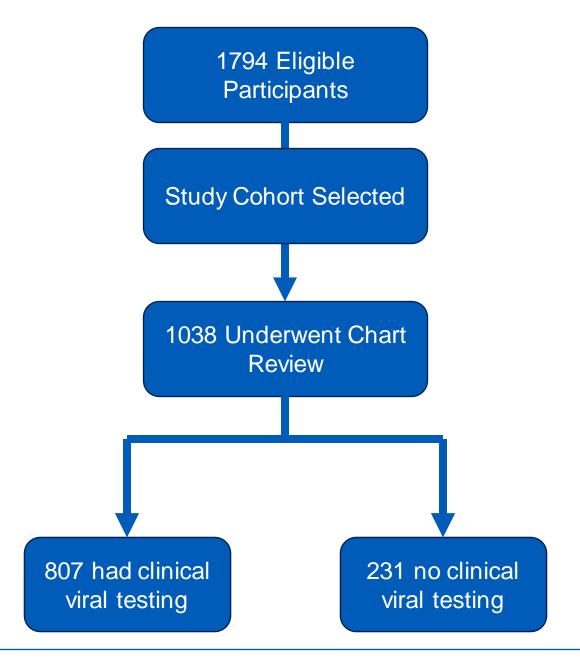
- Acute respiratory illnesses (ARI) are common in pediatrics
 - Most are caused by viruses
- Testing is varied
 - Single pathogen vs multiple pathogens
- Clinical variability in usage of these tests
- How, or if, they impact antibiotic use is unclear

Objective

Understand frequency of use for clinical viral testing and its impact on antibiotic usage in children hospitalized with ARI

Methods

- New Vaccine Surveillance Network
 - CDC based network at 7 sites
 - Standardized enrollment for ARI
 - 0-18 years of age, Jackson County residents
 - Symptoms consistent with Acute Respiratory Illness
 - Enrolled within 48 hours of admission
 - Standardized data collection via parent interview, chart review
 - All participants have a surveillance RPP (sRPP)



Methods

- Only some enrolled patients have clinical testing performed
 - Included PCR tests: Rapid RSV/Influenza, Rapid COVID, Multi-plex (cRPP)
- Analyzed all enrolled participants from Kansas City
 - September 2017-September 2021
- Chart Review
 - Demographic characteristics
 - Laboratory studies
 - Antimicrobial management

Results: Demographics Features of Patients with and without clinical viral testing

	Clinical Viral Testing (N=807)	No Clinical Viral Testing (N=231)	P-value		
Median Age (months) [IQR]	17 [5, 49]	18 [6, 58]	0.451		
Parental Reported Race/Ethnicity					
White, non-Hispanic (NH)	266 (33%)	96 (41.6%)			
Black, NH	304 (37.7%)	304 (37.7%) 74 (32%)			
Other, NH	er, NH 15 (1.9%) 4 (1.7%)		0.021		
Hispanic	160 (19.8%)	33 (14.3%)			
Multi-Racial, NH	55 (6.8%)	24 (10.4%)			
Unknown	7 (0.9%)	0 (0%)			
Smoking Exposure	188 (23.3%)	70 (30.3%)	0.061		

Results: Demographic Features and their Association with Clinical Viral Testing

	Clinical Viral Testing (N=807)	No Clinical Viral Testing (N=231)	P-value		
Daycare, Pre-School, School Exposure	188 (23.3%)	70 (30.3%)	0.002		
Parent Reported Prematurity	118 (14.6%)	13 (5.6%)	<0.001		
Complex Care Condition					
0 Conditions	542 (67.4%)	195 (84.4%)	-0.001		
≥ 1 Conditions	262 (32.6%)	36 (15.6%)	<0.001		
Technology Dependence, Assistance	109 (13.6%)	6 (2.6%)	<0.001		

Results: Further Diagnostic Work-up and it's Association with Clinical Viral Testing

		Clinical Viral Testing (N=807)	No Clinical Viral Testing (N=231)	P-value
Blood Culture	Collected	297 (36.8%)	26 (11.3%)	< 0.001
	Positive	18 (6.1%)	1 (3.8%)	0.999
CSF Culture	Collected	53 (6.6%)	6 (2.6%)	0.022
	Positive	2 (3.8%)	1 (16.7%)	0.279
Urine Testing	Urine Tested	234 (29%)	27 (11.7%)	<0.001
	Positive UA	53/234 (22.7%)	1/27 (3.7%)	0.214
	Positive Culture	15/149 (6.4%)	1/16 (3.7%)	0.535
Chest X-Ray	Performed	501 (62.2%)	78 (33.8%)	<0.001
	Abnormal	432 (86.2%)	69 (88.5%)	0.591

includes pyuria, bacteriuria and/or both

Results: Positive Clinical Viral Testing and Associated Antibiotic Usage

	Positive Clinical Result (n=459)	Positive Surveillance Result (n=184)	P-value
Length of Stay Median hours [IQR]	52 [37, 91]	38 [25, 51]	<0.001
Inpatient Antibiotics	168 (36.6%)	27 (14.7%)	<0.001
Inpatient Antibiotics >48hr	60 (35.7%)	3 (11.1%)	0.013
Discharge Antimicrobials	66 (14.4%)	15 (8.2%)	0.035

Conclusions

- There were differences in clinical viral testing between racial/ethnic groups
- Some participants were more likely to receive clinical viral testing
 - Medical complexity, technological dependence, prematurity
- Patients with positive clinical viral testing received more antibiotics
 - Across care settings
- Further analysis
 - Level of care
 - Diagnosis codes
 - Understand the influence of COVID pandemic on results

Acknowledgments

Mentorship and Collaboration

Jennifer Schuster MD, MSCI

Brian Lee PhD, MPH

Rangaraj Selvarangan BVSc, PhD

Funding

NVSN NIH Grant U01IP001057

CMH Fellows Grant FP00001333

