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REVIEW

Effects of Tacrolimus on Ischemia-Reperfusion Injury

Shawn D. St. Peter, Adyr A. Moss, and David C. Mulligan

In addition to efficacious immunosuppression for the
benefit of organ transplantation, tacrolimus has diverse
actions that result in amelioration of ischemia-reperfusion
injury. Knowledge is accumulating rapidly on the mech-
anisms through which tacrolimus exerts these cytoprotec-
tive effects, including alterations in microcirculation, free
radical metabolism, calcium-activated pathways, inflam-
matory cascades, mitochondrial stability, apoptosis,
stress-response proteins, and tissue recovery. Within the
nucleus, actions mediating the effects of tacrolimus
appear to be dominantly influenced by interactions with
the transcription factor, nuclear factor-�B. Because
tacrolimus is a cornerstone agent in immunosuppression
regimens throughout the world and knowledge of its cel-
lular mechanisms is evolving, it is important to update the
clinical literature with this information. We reviewed the
published literature with intent to portray the interactions
of tacrolimus in the intricate cellular mechanisms initi-
ated by ischemia and reperfusion. (Liver Transpl 2003;9:
105-116.)

Tacrolimus (FK506; Prograf; Fugisawa Healthcare
Inc, Deerfield, IL), a macrolide antibiotic com-

pound, is a metabolite of the fungus Streptomyces tsuku-
baensis, discovered March 25, 1984, in a soil sample
from the base of Mount Tsukuba near Tokyo, Japan.1

In vitro demonstration of immunosuppressive proper-
ties was published 3 years later.2

Tacrolimus entered the clinical world classified as a
calcineurin inhibitor, and it showed suppression of in
vitro proliferation of lymphocytes to alloantigen at a
concentration 100 times lower than its predecessor,
cyclosporine A,1 which had revolutionized results of
transplantation in the mid-1980s.3,4 The drug was rap-
idly incorporated into the clinical practice of solid-
organ transplantation as a backup for cyclosporine A.5

Subsequent results from comparative clinical trials have
rendered tacrolimus a mainstay in immunosuppressive
regimens for kidney,6-9 liver,10-14 and pancreas trans-
plantation.15-17

Potential applications of this multifarious agent are
still under investigation. Favorable results have been
generated with the use of tacrolimus for treating various
immune-mediated phenomena, including rheumatoid
arthritis,18 dermatological conditions,19 ophthalmolog-
ical ailments,20 and inflammatory bowel disease.21

In this review, we present currently available data

addressing the impact of tacrolimus within the elabo-
rate and injurious cellular mechanisms induced by isch-
emia and subsequent reperfusion (I-R).

Mechanism

A calcineurin inhibitor, tacrolimus binds with high
affinity to the calcineurin-calmodulin complex, block-
ing its participation in calcium-dependent phosphory-
lation (activation) of an important intranuclear tran-
scription-regulating factor named nuclear factor of
activated T cells (NF-AT).22 As a highly lipophilic com-
pound, tacrolimus readily traverses the plasma mem-
brane to gain access to intracellular spaces without
dependence on cell-surface receptors.23 Inhibition of
NF-AT prevents transcription of the gene coding for
interleukin-2 (IL-2), thus blunting T-cell activation.24

Through blockade of calcineurin activity, tacrolimus
also inhibits binding of NF-AT to the enhancer region
of the IL-2 gene.25 Other transcription factors that cal-
cineurin has the capability to activate and that are thus
inhibited by tacrolimus include AP-1, AP-3, Oct-1,
and nuclear factor-�B (NF-�B).26

The intracellular target for tacrolimus is a soluble
cytosolic immunophilin known as FK-binding protein
(FKBP).27 The FKBP immunophilins represent a fam-
ily of binding proteins independent from cyclophilin,
the binding protein for cyclosporine.28 Several proteins
in the immunophilin family with the capacity of inter-
acting with tacrolimus have been described, including
FKBP12, FKBP12.6, FKBP13, FKBP25, FKBP51,
and FKBP59.29 Recently, FKBP12 has been defined as
the only FKBP activated in the pathway leading to the
T-cell–suppressing effects of tacrolimus.30
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Moderately specific T-cell inhibition may be the
major attributing factor to the immunosuppressive
properties of tacrolimus, but the complete cellular alter-
ation induced by tacrolimus is a more loquacious story.
Early studies found tacrolimus to defend tissues from
ischemic damage when administered intravenously
before ischemia, although no mechanism for such
effects was defined in these studies.31-34 Readily evident
from the accumulating literature is that the role of
tacrolimus in tissue protection from I-R injury is not
the consequence of a single pathway, butmultiple inter-
weaving mechanisms, including manipulation of
microcirculation, attenuation of free radical formation,
inhibition of calcium-dependent pathways, inhibition
of inflammatory response, and modification of cellular
responses to injury. Figure 1 schematically shows the
flow of injury mediated by these variables during isch-
emia and reperfusion.

Microcirculatory Effects

One of the first mechanisms suspected in the effect of
tacrolimus on I-R injury was alteration of hepatic
microcirculation.35 Laser Doppler scanning, which
quantifies microcirculatory perfusion, has been shown
to correlate with sinusoidal perfusion measured by
intravital microscopy.36 In a rat model, laser Doppler
showed more rapid recovery of peripheral hepatic
microcirculatory flow when tacrolimus was adminis-
tered before 30 minutes of warm ischemia.37 In this
study, histological examination confirmed periportal
congestion in the control group, whereas little conges-
tion was seen in subjects administered tacrolimus.
Subsequently, it was shown that tacrolimus may be

able to promote maintenance of microcirculation in the
face of the normally deleterious reperfusion by sup-
pressing endothelial expression of the potent vasocon-

Figure 1. Cascade of I-R injury. This flow diagram shows the cumulative injury induced by multiple variables on
reperfusion. Tacrolimus can ameliorate I-R injury by slowing of adenosine triphosphate (ATP) depletion, attenuation of
free radical formation, and inhibition of calcium-dependent pathways in the early phase of I-R injury. Inhibition of
inflammatory response and microvascular changes can help shelter tissue from the later phase of I-R injury. Finally,
tacrolimus offers some modification of cellular responses to injury, favoring the outcome of recovery and regeneration
over apoptosis. (PMN, polymorphonuclear neutrophil.)
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strictor endothelin-1.38 Tacrolimus also alters the nitric
oxide pathway, with demonstration of such common
substrates between nitric oxide and tacrolimus as AP-1
and glucocorticoid receptors.39,40 This interaction is
counteracted at least in part because tacrolimus inhibits
inducible nitric oxide synthase (NOS) gene expression
by blocking NF-�B activity.39 Although interaction
between these two molecules clearly exists, effects of
this relationship are not currently clear.
Alterations in microcirculatory flow seem to con-

tribute to ischemic protection offered by tacrolimus;
however, it appears the majority of its action lies within
the myriad of I-R pathways.

Free Radical–Mediated Injury

Products of adenosine triphosphate (ATP) breakdown
normally are converted to urea by xanthine dehydroge-
nase (XD). However, under ischemic conditions, XD is
converted to xanthine oxidase (XO). In the presence of
oxygen on reperfusion, XO will convert the accumulat-

ing products of ATP breakdown into xanthine and the
superoxide anion (free radical), which causes a “respira-
tory burst” of oxygen free radical release leading to lipid
peroxidation and cellular destruction (Fig. 2).41,42 This
reaction is of particular importance in the liver, which
holds the largest stores of ATP and XD in the body.43

Several investigators have documented decreased
free radical production in association with amelioration
of I-R injury when tacrolimus is administered before
ischemia.44-46

Although these studies document an end result of
tacrolimus pretreatment as suppression of free radical
elaboration, they offer little insight to the mechanisms
responsible for such effects. Maintenance of cellular ATP
content, suppressed free radical elaboration, and possible
antioxidant activities are all possible mechanisms acting
to produce tacrolimus-induced free radical protection.

Cellular ATP Content

Treatment of rats with tacrolimus before occlusion of
the hepatoduodenal ligament and two thirds partial

Figure 2. Hypoxanthine metabolism during normal metabolism compared with reperfusion. This flow diagram
shows that conversion of xanthine dehydrogenase to xanthine oxidase during ischemia facilitates formation of free
radicals on reperfusion through consumption of accumulation substrate (hypoxanthine). (ADP, adenosine diphosphate;
AMP, adenosine monophosphate.)
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hepatectomy resulted in improved survival and superior
restoration of hepatic ATP contents.34 Applying phos-
phorus 31 magnetic resonance spectroscopy to measure
the phosphomonoester to inorganic phosphate ratio in
a rat model of warm ischemia, the ATP–inorganic
phosphate ratio was improved significantly after reper-
fusion when tacrolimus was administered intravenously
before ischemia.37 This study shows ATP restoration
and/or preservation during ischemia, which may hold
the avalanche of ischemic injury at rest. Clinical signif-
icance of this finding can be inferred because this tech-
nology has correlated with viability of renal allografts
after transplantation in human recipients.47

Tacrolimus can improve hepatocyte oxidation/
reduction states, with improved ketone body ratios,
found to prevent ATP content deprivation under
hypoxic conditions.48 Interestingly, the same model
failed to show a similar effect with cyclosporine A.48

In cerebral ischemia studies, tacrolimus has shown
protective effects from I-R associated with superior
recovery of mitochondrial respiration and thus superior
regeneration of high-energy phosphates, although a
specific mechanism for this effect was not identified.49

More recently, mitochondrial investigations from the
rat brain model have shown that tacrolimus inhibits
two different complexes in the electron transport chain,
complexes III and V, which result in attenuation of free
radical production.50

Antioxidant Mechanisms

Evidence of tacrolimus showing antioxidant properties
is not entirely concurrent. As in many physiological
cascades, retrograde actions exist. The ligand blocked
by tacrolimus-calcineurin complex, NF-AT, is bound
and activated by antioxidants (pyrrolidine dithiocar-
bamate, N-acetyl-L-cysteine).51 If NF-AT (also called
AP-1) is an antioxidant-responsive transcription factor,
then tacrolimus blocks the actions of these antioxi-
dants. However, this mechanism does not speak of an
injurious pathway stimulated by tacrolimus, but merely
grounds a theory for antioxidant agents that act
through AP-1 activation to not be effective if adminis-
tered in the presence of tacrolimus. Conversely, another
ligand blocked by tacrolimus, the oxidative stress-
responsive transcription factor NF-�B, behaves in a
manner contrary to NF-AT. NF-�B has been shown to
be strongly activated by the reactive oxygen species
hydrogen peroxide, whereas antioxidants alone sup-
pressed NF-�B, providing a mechanism through which
tacrolimus acts as an antioxidant.51

Calcium-Mediated Pathways

During ischemia, oxygen depletion leads to inefficient
anaerobic metabolism, which handicaps cellular resto-
ration of ATP, resulting in the accretion of acidic prod-
ucts.52,53 Membrane ion pumps, driven by ATP,
become ineffective, which compromises electrolyte gra-
dients between intracellular and extracellular spaces, as
well as between intracellular compartments. Attenuated
membrane integrity results in cellular edema as ions,
including calcium, move into intracellular spaces.
Moreover, the developing acidic milieu liberates cyto-
plasmic calcium stores, normally bound to proteins at
physiological pH. Intracellular calcium concentration
is of critical significance because it serves as a secondary
messenger capable of activating phospholipases, which
commence the enzymatic cascades of inflammation and
degradation pathways of cell death.
Data to date on the effect of tacrolimus on calcium-

mediated cell injury have been mixed. Tacrolimus
administered before ischemia has been shown to sup-
press intramitochondrial calcium concentration, main-
tain mitochondrial function, and regulate enzymatic
systems that initiate inflammatory pathways.54 How-
ever, compared with cyclosporine A, tacrolimus has
been shown to be 3,000-fold less effective in the inhi-
bition of mitochondrial release of calcium.52 These data
may imply that attenuation of calcium-mediated path-
ways is not among the primary effects of tacrolimus, at
least compared with cyclosporine. However, mitochon-
drial calcium may not be the dominant variable.
In nonischemic studies using toxins to alter mem-

brane permeability, extracellular calcium moved across
damaged membranes, driven by a steep electrochemical
gradient, causing an increase in intracellular calcium
levels that was found to be the final common pathway
of toxic cell death.55 Thus, minimizing membrane
damage and subsequent cytoplasmic calcium concen-
trations may be more important in preventing ischemic
injury. In the canine liver model, tacrolimus pretreat-
ment has been shown to inhibit accumulation of intra-
cellular calcium, measured at 15 and 30 minutes after
reperfusion, with a resultant decrease in hepatocellular
injury.54

Inflammatory Response to Ischemia

Interaction between parenchymal inflammatory cells,
vascular endothelium, and circulating inflammatory
cells is an important factor in I-R injury. As reperfusion
injury ensues, parenchymal and endothelial cell injury
precipitates a chain of events that includes endothelial
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expression of adhesion molecules, platelet activation,
leukocyte activation, leukocyte infiltration, and subse-
quent activation of the entire inflammatory armamen-
tarium, culminating in further tissue damage (Fig.
3).53,56 Tacrolimus, a diverse immunomodulatory
agent, imparts mutifaceted actions of attenuation on
inflammatory damage occurring after reperfusion,
shown in Figure 3.

Platelet Activation

Platelet adherence to the altered sinusoidal lining cell
may contribute to microvascular changes that lead to
subsequent ischemic damage in the liver.53 After attach-
ment to the endovascular lining, platelets are activated,
releasing inflammatory communication signals that
include platelet-activating factor (PAF). Platelet adhe-
sion to vascular endothelium, mediated through fibrin-
ogen deposition on intercellular adhesion molecule-1
(ICAM-1), has been shown to induce microvascular
injury and hepatocellular apoptosis after I-R of the liver
during early reperfusion.57 PAF production, which
stimulates platelet activation, has been shown in the
liver within 12 hours of such an insult.58

In a heart model, tacrolimus was synergistic with a

PAF-receptor antagonist in reducing I-R injury.59 A
combination of these two agents also has shown synergy
in a non–heart-beating donor porcine liver model,
allowing survival in transplant recipients after 90 min-
utes of warm ischemia followed by 4 hours of cold
storage.56 Tacrolimus was injected intramuscularly 18
hours before ischemia in this study.

Cytokines and Intercellular Communication

Adhesion molecules have a cornerstone role in I-R
injury by instigating andmaintaining the inflammatory
response.60 After endothelial injury, adhesion mole-
cules attract leukocytes from the circulation and bind
with them. This not only initiates leukocyte activation,
which engages the inflammatory response, but enables
the leukocyte to exit circulation through diapedesis to
enter tissue parenchyma, accumulate at the site of
injury, and propagate further cellular damage.61 The
selectin family is an important class of adhesion mole-
cules that consists of three closely related cell-surface
molecules with differential expression by leukocytes
(L-selectin), platelets (P-selectin), and vascular endothe-
lium (E- and P-selectin).61 Antibodies against E-selec-
tin and ICAM-1 have been shown to protect myocar-

Figure 3. Tacrolimus effect on inflammatory response to the I/R insult. This diagram shows events that follow activation
of endothelial cells, platelets, and PMNs, propagating further tissue injury. Tacrolimus has a diverse role in attenuating
this cascade.
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dium from I-R injury, providing experimental evidence
to implicate this pathway as a cofactor in I-R injury.62-64

Tacrolimus has been shown to suppress NF-�B and
thus reduce transcription of the ICAM-1 gene, which
resulted in reduced leukocyte accumulation.65 More
recently, tacrolimus has been documented to reduce
expression of the adhesion molecules P-selectin and
ICAM-1, with a reduction in leukocyte rolling and
adhesion.66

Tumor necrosis factor-� (TNF-�) clearly is an
important mediator of I-R injury.67 Specifically,
TNF-� has been documented to activate neutrophils to
produce local damage during hepatic I-R injury.68 In
addition, release of TNF-� after injury not only medi-
ates local injury, but participates in distant organ dys-
function, as well.67,69 Also, undefined mechanisms of
tissue toxicity by TNF-� exist that are not coupled with
neutrophil activity.70 Neutralization of TNF-� has
been documented to decrease hepatocellular damage
after I-R injury.70 Investigations in hepatic ischemia
have shown tacrolimus pretreatment reduces IL-1 and
TNF-� levels, as well as neutrophil migration.48 Other
studies have shown that tacrolimus pretreatment results
in decreased expression of interferon-� (IFN-�),
TNF-�, ICAM-1, P-selectin, IL-1�, IL-1�, IL-2, IL-3,
IL-5, and IL-6.48,65,66,71-74

NF-�B Activation

Inflammation is based on multiple costimulatory bidi-
rectional pathways, making it difficult to decipher the
key actions of tacrolimus within this area of I-R injury.
However, central to many tacrolimus-mediated cyto-
kine alterations is NF-�B. This ubiquitous transcrip-
tion factor mediates early gene expression of cytokines,
chemokines, growth factors, immunoreceptors, and cell
adhesion molecules during I-R injury.65,74-84 Selective
blockade of NF-�B with proline dithiocarbamate dur-
ing the early phase of reperfusion resulted in remarkable
tissue protection after severe ischemic stress.85 In paral-
lel, tacrolimus has been documented to block early acti-
vation of NF-�B.65,74,75 In a rat lung model of I-R
injury, NF-�B inactivation by low-dose tacrolimus (0.2
mg/kg) resulted in reduction in IL-1, IL-2, IL-3, IL-5,
TNF-�, and IFN-� levels, resulting in improved endo-
thelial continuity, suppressed inflammation on reperfu-
sion, and reduced tissue damage from I-R insults.74

Unfortunately, an implication of NF-�B inactiva-
tion accounting entirely for the tacrolimus effect on
acute inflammation would be gross oversimplification.
Some of the same cytokines elaborated consequential to
gene activation by NF-�B have the ability, in return, to
stimulate transcription of NF-�B.81

However, evidence suggests cytokine transcription is
regulated through occupancy of the enhancer region by
multiple promoters, and all must be bound for activa-
tion.86 It therefore has been suggested that in such cases
as ICAM-1 and IL-2 activation, NF-�B protein may be
required for the persistence of stable binding with other
factors.81 If this is the case, clarity is gained on the
potent effects of NF-�B blockers, such as tacrolimus, to
broadly inhibit immune response.

Polymorphonuclear Neutrophils

The release of free radicals is not only a product of
substrate variation, as described, but also a secondary
effect of resident macrophage and circulating leukocyte
activation.53 Among circulating leukocytes, polymor-
phonuclear neutrophils (PMNs) possess an imposing
capacity for cytodestruction through free radical
release, making them a formidable presence to tissues
exposed to I-R.87,88 In addition to free radical release,
activated PMNs elaborate proteolytic enzymes, and
inflammatory mediators result in further tissue injury
after reperfusion of ischemic tissue. Inflammatory
mediators cause microvascular alteration, increase vas-
cular permeability, activate leukocytes, and facilitate
leukocyte migration.89-92 Data from neutrophil inacti-
vation studies have implicated PMNs to be primarily
for the late phase of I-R injury.70 Some investigators
suggested that PMN infiltration and the cumulative
resultant free radical production are themost important
mediators of I-R injury.66,93

As discussed, expression of adhesion molecules on
endothelial surfaces represents one of the initial steps
leading to local PMN accumulation in injured tissue.
Therefore, the demonstrated ability of tacrolimus to
suppress cytokine release and adhesion molecule
expression results in reduction of PMN infiltration and
activation.48,67,74 As such, tacrolimus pretreatment has
reduced PMN infiltration into tissues exposed to I-R in
small-bowel and liver models.94,95 Beyond interrupting
PMN activation by suppressing communication mole-
cules, tacrolimus appears to show inhibitory actions
specific to the PMN.
Tacrolimus has been shown to inhibit superoxide

free radical production in PMNs, thus blunting I-R
damage.96 Migration of PMNs on extracellular matrix
proteins occurs through cell release from the matrix
protein vitronectin. This process is triggered by
increased concentrations of intracellular free calcium
through calcineurin-dependent processes and therefore
is inhibited by the presence of tacrolimus through the
formation of a tacrolimus-FKBP-calcineurin com-
plex.97
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Glucocorticoid Stimulation

As potent and diverse immunosuppressants, glucocor-
ticoids should have the capacity to attenuate cell-medi-
ated I-R injury through the suppression of inflamma-
tory pathways. Cellular effects of tacrolimus may
overlap with glucocorticoid action, which would repre-
sent a separate pathway through which tacrolimus
mediates consequences of I-R injury.
Glucocorticoids have the capacity to inhibit phos-

pholipase A2 activity and therefore suppress the entire
arachadonic acid cascade, including leukotrienes, bra-
dykinins, kallekreins, prostaglandins, and thrombox-
anes. Activated glucocorticoid receptors in the cyto-
plasm activate the gene for I�B�, a protein that then
inhibits NF-�B, resulting in broad inhibition of cellular
communication proteins.83,84 Calcineurin, which is
blocked by tacrolimus, can activate NF-�B by inacti-
vating I�B, representing an overlap in the mechanism
of tacrolimus and corticosteroids.22 More proximally in
the mechanism of drug action, receptors for both
tacrolimus and corticosteroids appear to be biochemi-
cally linked. One member of the immunophilin family
with the capacity to bind tacrolimus (FKBP59) has
been shown to congregate with heat-shock proteins
(HSP90 and HSP90) during inactivation to form a
glucocorticoid receptor.98 Additional evidence has
shown potentiation of glucocorticoid receptor–medi-
ated gene expression by tacrolimus.99 In studies of end-
organ effect, tacrolimus enhances glucocorticoid-medi-
ated suppression of histamine-induced tissue edema
(capillary leakage from endothelial disruption).40

Cellular Response to Injury

Mitochondrial Permeability Transition

A dramatic shift in permeability of the inner mitochon-
drial membrane occurs when a large permeability tran-
sition (PT) pore opens.100 Reactive oxygen species, ele-
vated calcium concentrations, and pH shifts stimulate
PT pore opening, which depolarizes the membrane
completely, disabling oxidative phosphorylation of
ATP.101 Retention or recovery of membrane polar-
ization directly correlates with cell viability.102 At
nanomolar concentrations, cyclosporine has blocked
mitochondrial depolarization through permeability
transition.103 The effect of tacrolimus on the PT pore
and mitochondrial PT has not been studied, but on the
basis of effects exerted by cyclosporine A, this is an
interesting prospect for tacrolimus-mediated tissue pro-
tection that deserves investigation.

Apoptosis Versus Necrosis

Necrosis is the culminating result of deleterious reac-
tions initiated by I-R in which cells are mechanically
destroyed, analogous to a building burning down. Con-
versely, apoptosis is a form of cellular differentiation
concluding in the orderly resorption of the cell, analo-
gous to evacuating the inhabitants of a building, then
taking it down in a safe controlled manner. The cumu-
lative impact of cellular changes induced by tacrolimus
help prevent cells from acutely succumbing to the total
injury induced by I-R (necrosis). However, as an inde-
pendent mechanism to minimize cell death, tacrolimus
may alter steps leading to apoptosis.
Such proteins as TNF-�, Fas-ligand, apoptosis-

inducing factor, and cytochrome c can trigger apoptosis
through activation of cysteine-aspartate proteases
(caspases).104-106

Investigations in a rat renal model of I-R have shown
significant decreases in Fas-ligand and caspases com-
pared with controls, with a resultant reduction in apo-
ptosis when low-dose tacrolimus is administered sys-
temically before ischemia.73 Interestingly, this study
found tacrolimus pretreatment resulted in postreperfu-
sion Fas-ligand levels similar to the sham group, which
received no ischemic insult. Cytochrome c, a protein in
the electron transport chain of the inner mitochondrial
membrane, may be released after mitochondrial PT or
rupture of mitochondrial membranes.101 Cyclosporine
A prevents the membrane PT induced by TNF-�,
blocking cytochrome c release and subsequent caspase
activation and averting apoptosis.107 Although not spe-
cifically studied, this mechanism is a possible means for
tacrolimus to inhibit apoptosis, being a well-docu-
mented inhibitor of TNF-�.44,71-74

Inhibition of calcineurin-mediated dephosphoryla-
tion of NOS causes decreased NOS activity.107 Recent
studies in a cancer model have shown inducible
NOS activity to correlate directly with apoptosis.108

However, tacrolimus-induced apoptosis suppression
through an NOS mechanism is entirely speculative at
this time.
The path of apoptosis, a product of sequential

enzyme activation, is a process that can be inhibited or
blocked. The same cannot be said for necrosis, which is
a result of irreparable membrane damage. Therefore,
diversion of distressed cells toward apoptosis may be
desirable, considering distress is unavoidable during
organ preservation. A likely determinant that separates
the cellular courses of apoptosis from necrosis is ATP
content.109 Necrosis occurs in the presence of ATP
depletion, whereas ATP levels greater than 20% result
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in aversion of necrosis. After necrosis is averted, persis-
tent nontotal deficiency (�20%) of energy substrates
leads to apoptosis.110 The aforementioned ATP-pre-
serving actions of tacrolimus, in combination with
potential apoptosis-blocking actions, provide a theoret-
ical mechanism for tacrolimus to limit parenchymal loss
after I-R injury.
The ability of tacrolimus to inhibit NF-�B repre-

sents a separate possible mechanism to promote aver-
sion of apoptosis. Blockade of NF-�B activation has
prevented apoptosis in human cell cultures, although it
is unclear from these studies whether this is a primary
effect of NF-�B inactivation or a consequence of block-
ing downstream events precipitated by NF-�B activ-
ity.111

Heat Shock Proteins

HSPs are a family of stress-response molecules named
for discovery in heat-challenged cells, and their produc-
tion after heat stress was found to protect organisms
from a second thermal insult.112 HSPs subsequently
were shown to be induced in response to other physio-
logical stresses, including ischemia.113,114 Induction of
HSPs by heat exposure has protected rat livers from
ischemia.115 A short period (15 minutes) of ischemic
preconditioning has induced HSP72, significantly
improving hepatic tolerance to 30 minutes of complete
warm ischemia.116 In the same study, heat-conditioned
animals responded similarly to those preconditioned
with ischemia. Transgenic mice with increased HSP70
expression are less susceptible to ischemic injury.117

Tacrolimus has been found to enhance expression of
the inducible form ofHSP70 in cultured hepatocytes.50

Induction of HSP70 has been seen in rat kidneys after a
low nonnephrotoxic dose of tacrolimus (0.3 mg/kg)
administered intravenously, and these animals subse-
quently showed significantly better renal functionwhen
exposed to I-R injury.72 The same study showed that
tacrolimus-pretreated animals had better postischemic
renal function than animals pretreated with cyclospor-
ine A (3 mg/kg).
Although the full spectrum of HSP action is not

defined, the presence of these protective proteins may
provide an independent mechanism of tacrolimus-
mediated protection from cellular stresses.

Hepatotropic Effects (Tissue Regeneration)

After damage of an I-R insult is complete, organ sur-
vival can be enhanced through tissue recuperation by
replacing cells lost to necrosis or apoptosis. Only the
liver has a capacity for regeneration, whereas all other
solid organs currently transplantedmust rely on cellular

recovery. Tacrolimus facilitates recovery byminimizing
I-R damage through the aforementioned mechanisms,
but within the liver, it has shown fascinating abilities to
promote hepatic regeneration.118,119 In these studies,
ongoing ischemic injury was present during tacrolimus
administration, which partly blurs true hepatotropic
effects with the known I/R protective effects. However,
increased mitosis was shown in tacrolimus-treated
groups, implying stimulated regeneration as an inde-
pendent effect of tacrolimus.
Cyclosporine A also has shown hepatotropic

effects.120,121 Comparison of low-dose cyclosporine A
(0.06 to 0.6 mg/kg/d) with low-dose tacrolimus (0.01
to 0.06 mg/kg/d) directly infused into the portal vein
under partially ischemic conditions showed no differ-
ence in hepatotropic properties.121 However, when
greater doses of cyclosporine A (4 mg/kg/d) are com-
pared, significantly greater mitosis is stimulated by
high-dose tacrolimus (1 mg/kg/d).119 These doses are
not reasonable to draw conclusions applicable to the
clinical setting, but the prospect of hepatotropic effects
are an important variable to consider in the effects of
tacrolimus as we enter the era of living donor liver
transplantation.

Clinical Application

Effects of tacrolimus on I-R injury unfortunately are
based only on data generated from animal models.
Administration of tacrolimus to the donor before har-
vest appears to ameliorate I-R injury in these animal
models, although clinical application has yet to be
examined. Supplementation of tacrolimus to the per-
fusate or flush solution also should provide the donor
organ some protection from the pending storm. In our
center, we recently showed that flushing the liver before
transplantation with a solution containing tacrolimus
results in superior early graft function and decreased
hepatocellular injury after reperfusion compared with
flushing with placebo.122

Summary

Calcineurin inhibitors possess diverse characteristics
that limit tissue injury resulting from I-R. Tacrolimus is
the most potent and effective calcineurin inhibitor in
this capacity. Its ability to ameliorate I-R injury is
the cumulative result of effects on microcirculation,
free radical metabolism, calcium-activated pathways,
inflammatory cascades, mitochondrial stability, apo-
ptosis, stress-response proteins, and tissue recovery.
Within the nucleus, actions mediating effects of tacroli-
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mus appear to be more influenced by its interactions
with NF-�B than with NF-AT, the factor credited for
its T-cell suppression. Supplementing flush or perfusate
with tacrolimus may have a similar effect. Further
delineation of the precise cellular mechanisms imparted
by this fascinating agent will have widespread therapeu-
tic implications extending well beyond the boundaries
of transplantation.
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