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Abstract

BACKGROUND—The DiGeorge syndrome, the most common of the microdeletion syndromes, 

affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by 

deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown.

METHODS—We conducted a genomewide search for structural variants in two cohorts: 2080 

patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed 

exome and targeted resequencing in samples obtained from 586 additional patients with congenital 

kidney anomalies. We also carried out functional studies using zebrafish and mice.

RESULTS—We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with 

congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5×10−14). 

We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region 

containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and 

crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 

patients with congenital urinary anomalies had newly identified, heterozygous protein-altering 

variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the 

mouse model induced developmental defects similar to those observed in patients with congenital 

urinary anomalies.

CONCLUSIONS—We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of 

kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract 

anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to 

the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by 

the National Institutes of Health and others.)

Deletions on chromosome 22Q11.2 are the most common cause of the DiGeorge syndrome 

(Online Mendelian Inheritance in Man [OMIM] number, 188400) and the velocardiofacial 

syndrome (OMIM number, 192430) and constitute the most common micro-deletion 

disorder in humans, with an estimated prevalence of 1 in 2000 to 4000 live births.1–3 The 

DiGeorge syndrome is a debilitating, multisystemic condition that features (with variable 

expressivity) cardiac malformations, velopharyngeal insufficiency, hypoparathyroidism with 

hypocalcemia, and thymic aplasia with immune deficiency. Additional phenotypes include 
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neurodevelopmental defects and urogenital malformations.4–7 The long arm of chromosome 

22 contains multiple segmental duplications (low-copy repeats) that confer a predisposition 

to genomic rearrangements.8–10 Most frequently, the DiGeorge syndrome is caused by a de 

novo heterozygous deletion of approximately 2.5 mb in length on chromosome 22q11.2 

between low-copy repeats (LCR22) A and D. Less frequently, the syndrome is the result of 

deletions between LCR22 A and B, between B and D, or between C and D.5,8,11

Congenital kidney and urinary tract anomalies are present in approximately 30% of the 

patients with the DiGeorge syndrome.4,6,12,13 Although some of the hallmarks of this 

syndrome (e.g., heart defects) can be attributed in part to haploinsufficiency of TBX1,14–18 

the identity of the genes that are responsible for such congenital kidney and urinary tract 

anomalies remains unknown.

METHODS

STUDY SAMPLES

We studied samples obtained from 2666 patients affected by congenital kidney and urinary 

tract anomalies at 26 international centers, along with additional samples provided by the 

Chronic Kidney Disease in Children Study (see the Methods section and Table S1 in the 

Supplementary Appendix, available with the full text of this article at NEJM.org). We 

performed genomewide genotyping for analysis of copy-number variations in 2080 of these 

samples. Among an additional 586 patients with congenital kidney and urinary tract 

anomalies, we performed either whole-exome sequencing (in 60 samples) or targeted next-

generation sequencing and Sanger validation (in 526 samples). All the patients provided 

written informed consent. The study was approved by the institutional review board at each 

site. (Descriptions of the patients, analyses of convolution defects in zebrafish, analysis of 

tissue localization in the patients and zebrafish, and the generation and analysis of a mouse 

model are provided in the Methods section in the Supplementary Appendix.)

GENETIC ANALYSES

Using samples obtained from 2080 patients with congenital kidney and urinary tract 

anomalies and 22,094 controls, we performed genomewide genotyping for analysis of copy-

number variation by means of high-density single-nucleotide polymorphism (SNP) 

microarrays manufactured by Illumina (1820 samples) or Affymetrix (260 samples), as 

described previously.19–21 We also performed whole-exome sequencing on samples obtained 

from 60 patients through the Yale Center for Mendelian Genomics, as described 

previously.22–24 We performed high-throughput next-generation sequencing for eight genes 

in the 370-kb minimal region of overlap for the DiGeorge syndrome in samples obtained 

from an additional 526 patients using microfluidic polymerase-chain-reaction capture 

(Fluidigm) coupled with next-generation sequencing on an Illumina 2500 HiSeq system, as 

described previously.25,26 We subjected CRKL coding exons to next-generation 

resequencing in samples obtained from 576 unaffected controls and from 1152 patients 

affected by IgA nephropathy but with normal results on renal ultrasonography. These 

additional 1728 controls were matched with the patients according to their ancestral origin 

and recruitment site.
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RESULTS

PATIENTS WITH 22Q11.2 DELETIONS

In a genomewide search for rare copy-number variations in a discovery cohort of 1752 

patients with congenital kidney and urinary tract anomalies, we identified deletions at the 

chromosome 22q11.2 locus in 11 patients (0.6%) and in 3 of 22,094 population controls 

(0.01%; odds ratio for patients versus controls, 46.4; P = 9.7×10−11). An analysis of 

breakpoints indicated that all deletions in the 11 patients overlapped with the common 

deletion between LCR22 A and D: 2 patients had the classic deletion of DNA between A 

and D, 1 patient had a smaller deletion (bounded by B and D), and 8 patients had the 

smallest deletion, between C and D (Table 1 and Fig. 1, and Table S2 in the Supplementary 

Appendix).

Of the 11 patients, 9 had renal agenesis or hypodysplasia, and 2 had an isolated ureteric 

phenotype, findings indicating that the 22q11.2 locus between LCR22 C and D is critical for 

human nephrogenesis and is possibly specific for renal agenesis or hypodysplasia (in 9 of 

765 patients [1.2%]). In a replication study involving an additional 328 patients with renal 

agenesis or hypodysplasia, we identified 3 (0.9%) with 22q11.2 deletions, for a total of 14 

patients with these deletions (Table 1 and Fig. 1). Taken together, we identified deletions at 

this locus in 12 of 1093 patients (1.1%) with renal agenesis or hypodysplasia, as compared 

with 3 of 22,094 controls (odds ratio, 81.5; P=4.5×10−14), which implicates deletions at the 

locus associated with the DiGeorge syndrome as the second most common genomic disorder 

of the kidney and urinary tract after the 17q12 microdeletion associated with the renal cysts 

and diabetes syndrome (Table S2 in the Supplementary Appendix).19,27

Of the 14 patients with the 22q11.2 deletion, Patients P1, P2, and replication Patient 1 (RP1) 

carried the most frequent deletion between LCR22 A and D; in Patient P2, the deletion was 

inherited from the mother, in whom a clinical diagnosis of the DiGeorge syndrome had not 

been made. In all the patients, the molecular genetic diagnosis preceded a clinical diagnosis 

of the DiGeorge syndrome (in which some but not all features of the syndrome were 

observed) and had a direct effect on the patient’s treatment. In patients with deletions 

between LCR22 B and D and C and D, additional urinary tract defects consisted of 

vesicoureteral reflux in 6 patients and hypospadia in 1 patient. Extrarenal defects were rare 

and mild in patients with deletions between LCR22 B and D and C and D. The deletion 

between LCR22 C and D that was identified in Patient P10 was also observed in a sibling 

who was affected by left renal agenesis and an undescended testis.

The analysis of the breakpoints in copy-number variation that was based on SNP array data 

localized the critical region for the phenotype associated with congenital kidney and urinary 

tract anomalies to a locus of approximately 370 kb, which contains nine genes (Fig. 1, and 

Table S3 in the Supplementary Appendix). This region excluded the gene encoding T-box 1 

(TBX1), a protein that is not expressed in the murine embryonic kidney,28 so Tbx1-null 

mice have normal early nephrogenesis (Fig. S2 in the Supplementary Appendix). 

Interrogation of the “22q and You” database from the Children’s Hospital of Philadelphia 

identified kidney malformations in 2 of 10 patients with the 22q11.2 deletion between 

LCR22 C and D (Table S4 in the Supplementary Appendix). Finally, we reexamined the 
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three controls with 22q11.2 deletions; one carried the typical deletion between LCR22 A 

and D, one the deletion between B and D, and one the deletion between C and D. We 

obtained clinical records for Control C1, who had Parkinson disease, congenital 

hypoparathyroidism, and advanced chronic kidney disease (Table S5 in the Supplementary 

Appendix). Thus, we found a patient with undiagnosed DiGeorge syndrome with renal 

involvement among our 22,000 population controls, which provided further support for the 

pathogenicity of the 22q11.2 deletion in patients with congenital kidney and urinary tract 

anomalies. After removal of this patient from the control data set, the strength of association 

between 22q11.2 deletions and renal agenesis or hypodysplasia increased further (12 of 

1093 patients vs. 2 of 22,093 controls, P=8.5×10−15; odds ratio, 123.7).

FUNCTIONAL MODELING IN ZEBRAFISH

The genetic data suggested that dosage perturbation of one or more of the nine genes in the 

micro-deletion on 22q11.2 is a driver of congenital kidney and urinary tract anomalies. We 

had previously found that systematic in vivo suppression of experimentally tractable genes 

within a deletion copy-number variant, coupled with quantitative phenotyping, can 

determine the contribution of specific transcripts to disease associated with copy-number 

variation in humans.29–31

We first sought to establish a phenotypic surrogate for congenital kidney and urinary tract 

anomalies in zebrafish embryos. Previous studies in mice and humans have shown the 

critical role of the gene encoding ret proto-oncogene (RET) for kidney development and 

branching morphogenesis.32–35 We therefore injected an established morpholino 

oligonucleotide (MO) against RET 36 into zebrafish that were engineered to enable 

visualization of the developing nephron and then examined the convolution of the 

pronephros (the earliest developmental stage in the zebrafish) at 4.5 days after fertilization.37 

The injection of 8.0 ng of a splice-blocking MO, which suppressed approximately 80% of 

wild-type message and induced the inclusion of intron 2, followed by staining of embryos 

with an antibody against sodium–potassium ATPase, induced convolution defects of the 

proximal pronephros and an overall reduction in the length of the tubules (Fig. S3 in the 

Supplementary Appendix). We captured this phenotype by measuring the length of the 

tubule corrected for the overall length of the embryonic body axis, thus controlling for 

possible developmental delay due to the mechanical manipulation of embryos (P<0.05 for 

all comparisons between MO knockdown and wild type) (Fig. 2A and 2B). This phenotype 

was specific; not only were we able to rescue this anomaly by coinjection of 200 pg of 

human capped RET messenger RNA (mRNA) (Fig. 2B), but deletions at this locus that were 

mediated by CRISPR–Cas9 also reproduced this anomaly in a manner indistinguishable 

from the MO, both qualitatively and quantitatively (Fig. 2C and 2D). We therefore 

proceeded to deploy this assay across all testable genes within the region of copy-number 

variation.

First, we used the Basic Local Alignment Search Tool (BLAST) algorithm for sequence 

searching, in which we detected orthologues for seven of nine genes. RNA sequencing data 

indicated that all seven genes were expressed in the early embryo, between 2 and 4 days 

after fertilization.38 We therefore designed MOs to knock down the expression of these 
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genes and injected them into zebrafish reporter lines in parallel with the ret–MO as a control. 

For four of the transcripts (lztr1, pi4ka, serpind1, and slc7a4) we observed no differences in 

convolution complexity or length of the pronephros between the knockdown zebra-fish and 

controls in 26 to 34 embryos, with each analysis repeated twice with blinded scoring (Fig. 

S4 in the Supplementary Appendix). In contrast, the suppression of crkl expression or 

interruption of splicing of aifm3 and snap29 phenocopied the pathologic features of RET 
(Fig. 2A and 2B). These phenotypes could be rescued for each of the three genes by 

coinjection with human mRNA (Fig. 2B). In addition, deletions of snap29 and crkl mediated 

by CRISPR–Cas9 on the day of fertilization induced insertions or deletions in 60 to 80% of 

cells within each mutant embryo (Fig. S5 in the Supplementary Appendix). (The gene aifm3 
was intractable to this method.) Subsequently, the mutant fish fully reproduced the renal 

disease (Fig. 2C and 2D). We observed no renal phenotypes when each human mRNA was 

injected alone, nor did we find any other gross morphologic defects in embryos subjected to 

either MO knockdown or overexpression at the studied developmental time points that might 

indicate nonspecific toxicity. Because kidney morphogenesis could be affected by extrarenal 

defects (e.g., loss of cardiac output and collective cell migration of the nephron induced by 

loss of flow), we analyzed heart function in both ret and crkl mutants and found no effect on 

the morphologic features or rate of the heart. We also found no evidence of kidney cysts, 

which would be expected if cilia-dependent flow were to be impaired. Analysis of body 

length as an indication of global-developmental delay showed no significant difference 

between “knocked down” zebrafish and control zebrafish (Fig. S6 in the Supplementary 

Appendix). Thus, we concluded that the defects we observed were not due to the known 

indirect causes of failed nephron convolution in zebrafish and support our use of this assay 

as a screening technique for intrinsic kidney defects.

Previous functional dissections of copy-number variation have revealed a complex genetic 

architecture, in which a single driver may account for the induction of disease either alone or 

in cis epistasis with other genes within the copy-number variation.29–31 We tested this 

possibility in vivo by asking whether the three transcripts in zebrafish embryos that induce 

congenital kidney and urinary tract anomalies could interact genetically. For this purpose, 

we injected embryos with subeffective doses of each transcript, with the requirement that 

each dose by itself should induce modest or no disease; we then tested all possible pairwise 

combinations. We observed no genetic interaction between crkl and either aifm3 or snap29. 

In contrast, cosuppression of aifm3 with snap29 phenocopied the convolution defect of 

strong morphants and CRISPR mutants, which suggested a contributory role to the copy-

number variation pathology. This interaction was specific and not due to toxicity caused by 

the presence of multiple MOs, since it could be rescued by coinjection of SNAP29 mRNA 

(Figs. S7 and S8 in the Supplementary Appendix).

WHOLE-EXOME AND TARGETED SEQUENCING OF CRKL

We asked whether sporadic patients with congenital kidney and urinary tract anomalies 

might have loss-of-function lesions in any of the nine genes included in the minimal region 

of overlap for the kidney defects of the DiGeorge syndrome. We first queried exome-

sequencing data from 60 patients with renal agenesis or hypodysplasia. None of the genes 

showed excess burden of rare truncating mutations as compared with controls (Table S6 in 
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the Supplementary Appendix). LZTR1, P2RX6, and SLC7A4 have a high frequency of loss-

of-function mutations (defined as premature termination, splicing, and frameshift 

mutations), a prevalence that approaches or exceeds that of such anomalies in the general 

population. Conversely, SERPIND1, SNAP29, CRKL, and THAP7 carry loss-of-function 

mutations in no more than 2 of 10,000 persons. Among more than 60,500 publicly available 

population controls from the Exome Aggregation Consortium (ExAC) database 

(exac.broadinstitute.org), only 1 had a high-quality loss-of-function variant in CRKL, which 

ranks in the top second percentile in the genome for haploinsufficiency — in other words, 

there is a high probability of a detrimental effect on phenotype when only one copy of the 

gene is deleted. This finding suggests that loss-of-function variations in CRKL have 

deleterious effects on genetic fitness (Table S3 in the Supplementary Appendix).39

We also performed targeted next-generation resequencing of all 107 coding exons of PI4KA, 

SERPIND1, SNAP29, CRKL, AIFM3, THAP7, P2RX6, and SLC7A4 in 526 patients with 

renal agenesis or hypodysplasia. We identified six loss-of-function variants in 11 patients: 

two in SERPIND1, one in CRKL, one in AIFM3, and two in P2RX6 (in 7 patients) (Table 

S7 in the Supplementary Appendix). Loss-of-function mutations in SERPIND1 have been 

associated with a mendelian clotting disease (heparin cofactor II deficiency) that has no 

known associations with kidney and urinary tract development.40 In contrast, the CRKL 
truncating mutation, p.Q31*, was found in a patient (P13) with isolated unilateral renal 

agenesis and was predicted to result in haploinsufficiency. We also identified four additional 

missense variants that were absent from the ExAC database, that were conserved across 

vertebrates, and that were predicted to affect protein structure and function (Table S8 and 

Figs. S9 and S10 in the Supplementary Appendix).

Whole-exome sequencing of DNA obtained from P13 did not show pathogenic mutations in 

genes that had previously been implicated in congenital kidney and urinary tract anomalies 

or loss-of-function variants in newly plausible candidates (Table S9 in the Supplementary 

Appendix). Finally, because of the formal possibility that the discovered CRKL variants 

were population-specific polymorphisms, we performed targeted resequencing on samples 

obtained from 576 additional controls and from 1152 patients with IgA nephropathy and 

normal results on renal ultrasonography who were matched with our patients according to 

ethnic background and recruitment site. All CRKL variants were absent in the more than 

60,500 population controls from the ExAC database and in the 1728 controls. Aggregating 

our sequencing data and performing burden tests between our 586 patients with congenital 

kidney and urinary tract anomalies and 33,352 European controls from ExAC or 1728 

ethnically and geographically matched controls showed significant excess of rare functional 

CRKL variants in our patients (P = 3.7×10−3 by Fisher’s exact test for the comparison with 

ExAC controls; odds ratio, 5.2; and P= 4.9×10−3 for the comparison with matched controls; 

odds ratio, 14.8) (Table S10 in the Supplementary Appendix).

EXPRESSION AND FUNCTIONAL STUDIES OF CRKL

We performed mRNA and protein expression studies in relevant tissues and examined a 

mouse model with a Crkl mutation. In humans, CRKL protein showed mild, diffuse 

cytoplasmic expression in both ureteric bud and metanephric mesenchyme derivatives during 
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the sixth week of fetal development (Fig. S11A in the Supplementary Appendix). At week 

21, CRKL was detected only in proximal tubules and collecting tubules at the apical side of 

epithelial cells (Fig. S11B in the Supplementary Appendix). In the kidney of a 1.5-year-old 

boy, we observed abundant CRKL expression in the proximal and collecting tubules at the 

apical side, along with diffuse cytoplasmic signaling in glomerular endothelial cells, 

podocytes, Bowman’s capsule, and distal tubules (Fig. S11C in the Supplementary 

Appendix). The expression of SNAP29 and AIFM3, although present at very low levels in 

zebrafish pronephros (not shown), was seen in the urinary tract in fetuses and children (Figs. 

S12 and S13 in the Supplementary Appendix).

In the mouse kidney on embryonic day E15.5, Crkl showed specific expression in structures 

derived from the ureteric bud and, occasionally, in S-shaped bodies and developing proximal 

tubules (Fig. 3A, and Fig. S14 in the Supplementary Appendix). In zebrafish, crkl was 

specifically expressed in the pronephros (Fig. 3B and 3C). RNA studies that were performed 

with the use of flow cytometry and cell sorting, along with in situ hybridization, confirmed 

that crkl was expressed in the pronephric convoluted tubule and pronephric duct (Figs. S15 

and S16 in the Supplementary Appendix).

Finally, we engineered a mouse model that targets Crkl exon 2. We generated three different 

crosses with transgenic Cre-recombinase mice to effect the deletion of exon 2 in specific 

compartments: E2a-Cre for global knockout, Six2-Cre in the cap mesenchyme, and Hoxb7 

in the ureteric bud–derived structures. We analyzed four litters (one E2a, one Hoxb7, and 

two Six2) at embryonic days E14.5 through E15.5. We observed developmental anomalies in 

the kidney and urinary tract, including bilaterally duplicated kidneys, duplicated ureters, 

ureteric bud–branching defects, dysplastic features, hydronephrosis, microcystic tubules and 

glomeruli, and tubular and glomerular capsule dilatation, in eight mice (Fig. 3D, 3E, and 3F, 

and Fig. S17 in the Supplementary Appendix). We observed phenotypes related to 

congenital kidney and urinary tract anomalies in embryos that were heterozygous and those 

that were homozygous for the targeted deletion.

DISCUSSION

We determined that deletions in the telomeric 22q11.2 classic region are associated with 

sporadic congenital kidney and urinary tract anomalies and renal disease in the DiGeorge 

syndrome. Correlations between genotype and phenotype suggest that these variants are 

specific for kidney parenchyma defects (i.e., renal agenesis or hypodysplasia), rather than 

ureteric and lower urinary tract disease. However, the presence of these variants may be an 

indication of kidney disease in persons with apparently isolated ureteric defects, since the 

two patients with obstructive uropathy and vesicoureteral reflux whom we identified in this 

study showed renal insufficiency. We observed that the 22q11.2 deletions were present in 

1.1% of our sample of 1093 patients with renal agenesis or hypodysplasia, which suggests 

that such deletions constitute the second most common structural variant associated with 

congenital kidney and urinary tract anomalies after the 17q12 deletion that causes the renal 

cysts and diabetes syndrome, which we identified in 2.2% of patients with renal agenesis or 

hypodysplasia from the same cohort. Our data also support the hypothesis that 22q11.2 
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microdeletions are medically actionable variants that confer a predisposition to renal 

hypodysplasia and kidney disease.

A review of the literature indicates the presence of kidney and urinary tract defects in about 

one third of the patients with chromosome 22q11.2 deletions spanning LCR22 B and D or C 

and D,5,41 a prevalence that is nearly identical to that of kidney and urinary tract defects 

among patients with the DiGeorge syndrome caused by the typical 22q11.2 deletions 

spanning LCR22 A and D.4,6,42 These observations, together with our data, strongly suggest 

that the kidney disease associated with the DiGeorge syndrome is attributable largely to 

haploinsufficiency of one or more genes located between LCR22 C and D.

Genetic interaction studies using zebrafish suggested a complex genetic architecture, in 

which haploinsufficiency of crkl had a potent detrimental effect on renal development, 

whereas knockdown of its flanking genes, aifm3 and snap29, generated the phenotype only 

with cosuppression. Consistent with these data, we found deleterious CRKL variants, 

including a premature truncating allele, in approximately 1% of the patients with sporadic 

congenital renal agenesis or hypodysplasia. We obtained other molecular data in humans, 

mice, and zebrafish that supported the role of CRKL in urinary tract development.

CRKL encodes an adapter protein that regulates intracellular signaling transduction from 

multiple growth factors, including the fibroblast growth factors,43 which are key regulators 

of kidney and urinary tract development.44,45 Inactivation of Crkl in mice recapitulates some 

of the phenotypes of the DiGeorge syndrome, in particular cardiac malformations,46,47 but 

the kidney phenotype in the mutant embryos had not hitherto been studied. We observed that 

genetic inactivation of Crkl in the mouse model results in developmental phenotypes of the 

kidney and urinary tract that resemble congenital anomalies in the human urinary tract.

We suggest that CRKL mutations sensitize the genetic background and contribute to the 

penetrance of congenital kidney and urinary tract anomalies in patients with the DiGeorge 

syndrome. It is possible that other genes within or outside the locus of the DiGeorge 

syndrome and 22q11.2 deletions might also be involved. Two of the genes in the minimal 

region were refractory to our studies, and it is possible that the deletion copy-number variant 

affects the expression of genes across the chromosome or elsewhere in the genome, as has 

been shown for other copy-number variants.48

In conclusion, our approach provides support for the causal role of CRKL in the 

pathogenesis of kidney developmental defects. Such defects occur specifically in the context 

of the DiGeorge syndrome and 22q11.2 deletions and, more broadly, in sporadic congenital 

kidney and urinary tract anomalies.
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Figure 1. Genomic Organization of Chromosome 22q11.2 and the Deletions Associated with 
Kidney and Urinary Tract Malformations Identified in This Study
In approximately 90% of the patients with the DiGeorge syndrome, the congenital disorder 

is caused by a classic de novo heterozygous deletion of approximately 2.5 mb in length 

spanning chromosome 22q11.2 low-copy repeats (LCR22) A and D, as shown in blue. Less 

than 10% of the patients with this syndrome carry the critical 1.5-mb deletion between 

LCR22 A and B. Shown in red are deletions that were identified in 14 patients who were 

affected by congenital anomalies of the kidney and urinary tract among the 2080 patients 

who were tested. According to the megabase coordinates for the Human Genome 19 release, 

the proximal and distal breakpoints for the chromosome 22q11.2 deletions that were 

identified in the patients are as follows: P1, 18.88 to 21.47 mb; P2, 18.89 to 21.47 mb; P3, 

20.73 to 21.46 mb; P4, 21.02 to 22.47 mb; P5, 21.05 to 21.47 mb; P6, 21.06 to 21.47 mb; 

P7, 21.06 to 21.46 mb; P8, 21.06 to 21.46 mb; P9, 21.07 to 21.46 mb; P10, 21.08 to 21.47 

mb; P11, 21.09 to 21.47 mb; Patient 1 from the replication cohort (RP1), 18.88 to 21.46 mb; 

RP2, 20.74 to 21.46 mb; and RP3, 20.74 to 21.46 mb. The deletion between LCR22 C and D 

defines the smallest region of overlap for congenital kidney disease among patients with 

22q11.2 deletions.
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Figure 2. Functional Modeling of the DiGeorge Syndrome Terminal Deletion Genes Associated 
with Kidney and Urinary Tract Malformations
Panel A shows zebrafish larvae 4.5 days after fertilization, in which the proximal tubule is 

folded into a hairpin structure, displaying proper anterior convolution in noninjected control 

embryos (staining with antibody against sodium–potassium ATPase). Knockdown of ret, 
aifm3, crkl, and snap29 by the injection of 8.0 ng of a splice-blocking morpholino 

oligonucleotide (MO) against RET resulted in major convolution defects, which are apparent 

by the failure of the anterior portion of the pronephros (the earliest developmental stage in 

the zebrafish) to progress, along with an overall reduction in the length of the tubules. Panel 

B shows the relative length of the pronephros, which was defined as the ratio of the length of 

the pronephros (a) to the length of the body axis (b), in individual larvae (inset). The number 

of replicate measurements were as follows: control or sham-injected control, 177 in Panel A 

and 68 in Panel B; ret-MO, 50; ret-MO+mRNA, 42; aifm3-MO, 38; aifm3-MO+mRNA, 42; 

crkl-MO, 43; crkl-MO+mRNA, 58; snap29-MO, 48; snap29-MO+mRNA, 39; ret-gRNA

+Cas9, 44; crkl-gRNA+Cas9, 31; and snap29-gRNA+Cas9, 41). Morphant phenotypes 

could be rescued by the coinjection of each respective human messenger RNA (mRNA). In 

each box-and-whisker plot, the horizontal line represents the median, the top and bottom of 

the boxes the interquartile range, and the I bars the minimum and maximum values. Panel C 

shows embryos that have been injected with CRISPR–Cas9 and that are reproducing the 

convolution defects observed in the morphant embryos. Guide RNA (gRNA) that targeted 

each respective gene was coinjected with purified Cas9 protein, and the relative length of the 

pronephros was measured in founders, as shown in Panel D. In Panels B and D, a single 

asterisk indicates P<0.05, two asterisks P<0.01, and three asterisks P<0.001. WT denotes 

wild type.
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Figure 3. Localization of Crkl in Developing Urinary Tracts in Mice and Zebrafish and 
Phenotypes of Crkl Knockout Mice
Panel A shows immunostaining for Crkl in kidney obtained from a transgenic mouse on 

embryonic day E15.5, in which Six2 has been tagged with enhanced green fluorescent 

protein (GFP), with specific Crkl staining of the ureteric bud (in red) surrounded by Six2-

positive cap mesenchyme cells (in green) (subpanel a). A magnified field shows ureteric-bud 

branching within condensing metanephric mesenchyme (subpanel b). Panel B shows specific 

pronephros expression of crkl in zebrafish, as shown by colocalization after staining with 

antibody against sodium–potassium ATPase. In the orientation symbol, D denotes dorsal, V 

ventral, C caudal, and R rostral. Panel C shows images of negative controls (i.e., fish treated 

with fluorophore-conjugated secondary antibodies only). In Panels B and C, the scale bars 

represent 100 μm. In a mouse model that targets Crkl exon 2, three crosses with transgenic 

Cre-recombinase mice were created to effect the deletion of exon 2 in specific 

compartments: E2a-Cre for global knockout, Six2-Cre in the cap mesenchyme, and Hoxb7 

in the structures derived from ureteric buds. Panel D shows tissue from a Six2-Cre mouse in 

which duplication of the right kidney is accompanied by an irregular, dysplastic pattern or 

ureteric-bud branching on embryonic day E15.5. Panel E shows tissue from an E2a-Cre 

mouse in which a single kidney with duplicated ureters (arrowheads) is accompanied by 

failure of medullary and renal papillary development on day E14.5. Panel F shows tissue 

from a Six2-Cre mouse, in which the kidney is hydronephrotic with dilated pelvis, absence 

of medullary architecture, and several microcystic glomeruli and tubules on day E15.5.
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