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shear stress-mediated injury in the solitary kidney. Am J Physiol Renal
Physiol 307: F1323–F1333, 2014. First published September 18,
2014; doi:10.1152/ajprenal.00335.2014.—Hyperfiltration subjects
podocytes to increased tensile stress and fluid flow shear stress (FFSS).
We showed a 1.5- to 2.0-fold increase in FFSS in uninephrectomized
animals and altered podocyte actin cytoskeleton and increased synthesis
of prostaglandin E2 (PGE2) following in vitro application of FFSS. We
hypothesized that increased FFSS mediates cellular changes through
specific receptors of PGE2. Presently, we studied the effect of FFSS on
cultured podocytes and decapsulated isolated glomeruli in vitro, and on
solitary kidney in uninephrectomized sv129 mice. In cultured podocytes,
FFSS resulted in increased gene and protein expression of cyclooxygen-
ase (COX)-2 but not COX-1, prostanoid receptor EP2 but not EP4, and
increased synthesis and secretion of PGE2, which were effectively
blocked by indomethacin. Next, we developed a special flow chamber for
applying FFSS to isolated glomeruli to determine its effect on an intact
glomerular filtration barrier by measuring change in albumin permeabil-
ity (Palb) in vitro. FFSS caused an increase in Palb that was blocked by
indomethacin (P � 0.001). Finally, we show that unilateral nephrectomy
in sv129 mice resulted in glomerular hypertrophy (P � 0.006), increased
glomerular expression of COX-2 (P � 0.001) and EP2 (P � 0.039), and
increased urinary albumin excretion (P � 0.001). Activation of the
COX-2-PGE2-EP2 axis appears to be a specific response to FFSS in
podocytes and provides a mechanistic basis for alteration in podocyte
structure and the glomerular filtration barrier, leading to albuminuria in
hyperfiltration-mediated kidney injury. The COX-2-PGE2-EP2 axis is a
potential target for developing specific interventions to ameliorate the
effects of hyperfiltration-mediated kidney injury in the progression of
chronic kidney disease.

podocytes; fluid flow shear stress; glomerular hemodynamics; hyper-
filtration; glomerular filtration barrier

A NORMAL GLOMERULAR FILTRATION rate (GFR) is important for
maintaining homeostasis. Adaptive changes in glomerular hemo-
dynamics start even before metabolic and clinical signs of chronic
kidney disease (CKD) begin to manifest. In children born with
congenital anomalies of the kidney and urinary tract (CAKUT)
including a solitary kidney, the decrease in functional nephron
mass leads to adaptive hyperfiltration. Hyperfiltration involves
increased renal blood flow, glomerular capillary pressure (PGC),
single-nephron GFR (SNGFR), filtration fraction, and decreased
hydraulic conductivity associated with glomerular hypertrophy (4,
5). A considerable number of children born with a solitary kidney
develop albuminuria during adolescence and progress to renal
end-stage disease (ESRD) as young adults (34, 51–53). Investi-
gating the interplay of mechanical forces on podocytes within the
glomerulus may provide a better understanding of hyperfiltration-
mediated kidney injury.

Podocytes are exposed to mechanical forces such as tensile
stress as a result of capillary wall stretch and fluid flow shear
stress (FFSS) due to the flow of the ultrafiltrate (11, 17, 40, 41).
Glomerular capillary pressure creates tensile stress on the capil-
lary wall, which leads to stretching of the podocyte foot processes
that tightly cover the capillary. The tensile stress (or stretch) is
exerted over the basolateral aspect of the podocyte from the stress
in the vascular compartment that is studied in vitro using a biaxial
elongation (or substrate stretch) model (11). The flow of glomer-
ular ultrafiltrate creates shear stress on the surface of the podocyte
and causes cellular deformation. FFSS, largely exerted over the
exposed outer aspect of major processes and the soma of podo-
cytes, is studied in vitro using a flow chamber (17, 41). Differ-
ences between the effects of these forces are not well understood,
but FFSS appears to mediate greater change in cell morphology
compared with stretch (27).

Previously, we showed that the calculated FFSS over podo-
cytes is increased 1.5–2.0-fold in unilateral nephrectomy ani-
mal models (40). FFSS applied to podocytes in vitro resulted in
an altered actin cytoskeleton, upregulation of cyclooxygenase
(COX)-2, and increased secretion of PGE2 (41). PGE2 is
known to modulate glomerular hemodynamics and permselec-
tivity (26, 37). We hypothesized that a hyperfiltration-induced
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increase in FFSS over podocytes increases PGE2 synthesis,
which alters the filtration barrier, leading to albuminuria, kid-
ney injury, and progression of CKD. To investigate the role of
COX-2 and PGE2 in hyperfiltration-mediated kidney injury,
we studied the effect of FFSS on 1) cultured podocytes in vitro,
2) isolated decapsulated rat glomeruli, and 3) sv129 mice
following unilateral nephrectomy. This report highlights the
significance of the COX2-PGE2-EP2 axis in podocytes ex-
posed to FFSS. FFSS-mediated changes could be the mecha-
nistic basis for albuminuria and progression of CKD in hyperfil-
tration-mediated kidney injury. We believe this COX-2-PGE2-
EP2 axis is a potential target for developing interventions to
prevent CKD progression in CAKUT.

MATERIALS AND METHODS

Animals. Studies involving rats and mice were carried out using
protocols approved by the Institutional Animal Care and Use Committee
(IACUC), Safety Subcommittee, and the R&D Committee at the Veter-
ans Affairs Medical Center (Kansas City, MO). Male Sprague-Dawley
rats (7–8 wk old) from Harlan (Madison, WI) and male sv129 mice
(13–14 wk) from Charles River (Indianapolis, IN) were obtained. Ani-
mals were maintained at Association for Assessment and Accreditation of
Laboratory Animal Care-approved facilities with unrestricted access to
food and water under 12:12-h light-dark cycles.

Cell culture. Conditionally immortalized mouse podocyte line
(kind gift from Peter Mundel) with thermosensitive tsA58 mutant T
antigen was used in these studies. Podocytes were propagated in
RPMI 1640 with L-glutamine supplemented with 10% fetal bovine
serum, 100 U/ml penicillin, and 0.1 mg/ml streptomycin (Invitrogen,
Carlsbad, CA) under permissive conditions (33°C with 10 U/ml of
�-interferon, Cell Sciences, Norwood, MA). To induce differentiation,
cells were transferred to nonpermissive conditions (37°C without
�-interferon). Three glass slides (25 � 75 � 1 mm, Fischer Scientific,
Pittsburgh, PA) were maintained in one culture dish containing 12 ml
of culture medium. Differentiated podocytes were used for FFSS

experiments on day 14. We evaluated the podocyte actin cytoskeleton
with phalloidin tagged to Alexa Fluor 568 and cell morphology by
crystal violet stain as described earlier by us (41).

FFSS application to podocytes. FFSS was applied to differentiated
podocytes using a FlexCell Streamer Gold apparatus (Flexcell, Hills-
borough, NC). The apparatus was sterilized with 300 ml of 70%
ethanol for 30 min and checked for leaks. This was followed by two
wash steps with 300–400 ml of sterilized PBS for 5 min each. PBS
was then replaced by 350 ml of media. The flow chamber was moved
to a sterile hood by using sterilized forceps. One glass slide with
podocytes was placed in each one of the slots of the flow device
chamber. All six slots were filled to ensure consistent flow. The
chamber was then placed in the incubator at 37°C with 5% CO2. The
computer was programmed to apply FFSS at 2 dynes/cm2 (or 75
ml/min) for 2 h at 37°C with 5% CO2. In another set of experiments,
podocytes were incubated with indomethacin (2.5 �M, 1 h) before
application of FFSS. Following FFSS treatment, podocytes on slides
were returned to the original medium for recovery up to 24 h in the
incubator at 37°C under a 5% CO2 humidified atmosphere. In a set of
experiments a three-way stop-cock was attached to collect 1.5 ml
aliquots of the medium at 0, 30, and 120 min during application of
FFSS. Control podocytes were grown on glass slides and placed in the
same hood and incubator as experimental cells but were not exposed
to FFSS. We evaluated the suitability of untreated “no-flow” control
as a surrogate for very low FFSS under physiological conditions.
Untreated cells were compared with podocytes exposed to low FFSS
at 0.2 dynes/cm2 for 2 h using the flow cell we developed to apply
FFSS to glomeruli (see below). Samples obtained before FFSS and
post-FFSS treatment were termed pre-FFSS, post-2hr and post-24hr,
respectively. Culture media were collected from control podocytes at
the same time points. Pre-FFSS and post-FFSS (2 h/24 h) cells were
harvested for analysis.

Enzyme immunoassay to determine changes in secreted and intra-
cellular PGE2. PGE2 in media and the cell lysate was measured using
a PGE2 EIA kit (514010, Cayman Chemical, Ann Arbor, MI) follow-
ing the manufacturer’s instructions.

Fig. 1. Flow chamber for application of fluid flow shear stress (FFSS) over glomeruli. The flow chamber is constructed of metal, rubber, and plastic parts to allow
laminar flow and to create a seal to prevent fluid leak. Left: flow chamber assembled for an experiment. Top right: lower and upper sides of the metal chamber,
plexiglas base and top, glass slide, steel mesh, rubber gaskets, and plastic spacer. The thickness and the width of the plastic spacer (top right, red arrowhead)
determine the height of the fluid column. Bottom right: schematic illustrating the line diagram for flow of the fluid column over the glomeruli kept in place by
a mesh screen (yellow arrow, top right).
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Quantitative real-time PCR to determine gene expression of cyclo-
oxygenase enzymes and prostanoid receptors in podocytes. Podocyte
total RNA was extracted using the Micro-Midi Total RNA Purifica-
tion System (Invitrogen) and analyzed for quality and quantity by
absorbance at 260 and 280 nm using a DNA/RNA calculator (Phar-
macia Biotech/GE Healthcare, Uppsala, Sweden). The OD260/OD280

absorbance ratio was 1.8–2.0, indicating clean RNA preparations.
One microgram of total RNA was reverse transcribed using the
SuperScript III First Strand Synthesis System (Invitrogen). Quantita-
tive real-time PCR (RT-qPCR) was performed with SYBR Supermix
(Bio-Rad, Hercules, CA) using a Bio-Rad iCycler (Bio-Rad) with
specific sets of primers for each of the COX enzymes, EP receptors,
and �-actin. �-Actin was used as the housekeeping gene. Samples
from five separate experiments were analyzed by RT-qPCR for
each experimental condition, i.e., FFSS with or without indometh-
acin. The sequences (5=-3=) of primers used for RT-qPCR are
shown in Table 5. PCR products were sequenced to further confirm
the COX enzymes, EP receptors, and �-actin at the KUMC Core
Facilities (Kansas City, KS).

Western blotting to determine protein expression of COX enzymes
and prostanoid receptors in podocytes. Podocytes were lysed with
RIPA buffer containing protease and phosphatase inhibitors. Total
protein was determined using a bicinchoninic acid protein assay kit
(BCA1, Sigma-Aldrich, St. Louis, MO). Western blotting was per-
formed as described previously (42). Briefly, proteins were denatured
in sample buffer containing �-mercaptoethanol at 94°C for 5 min. Ten
micrograms of total protein was electrophoresed on a 10% Bis-Tris
gel. Proteins were transferred to a polyvinylidene membrane, washed
with PBST (0.1% Tween 20) and blocked using 5% nonfat milk. A
rabbit polyclonal COX-1 antibody (sc-7950, Santa Cruz Biotechnol-

ogy, Dallas, TX) at 1:200 dilution, COX-2 antibody (ab6665, Abcam,
Cambridge, MA) at 1:2,000 dilution, EP2 antibody (sc-20675, Santa
Cruz) at 1:500 dilution, and EP4 antibody (ab93486, Abcam) at
1:2,000 dilution were used. After washing with PBST, the membrane
was incubated with horseradish peroxidase-conjugated secondary an-
tibody to each primary antibody. Chemiluminescence (ECL, GE
Healthcare Biosciences, Piscataway, NJ) reagent was used for detec-
tion on X-ray film. Developed X-ray films were imaged and analyzed
using FluorChem using built-in AlphaEaseFC software (Alpha Inno-
tech, San Leandro, CA). Samples from three to five replicates for each
experimental treatment (FFSS with or without indomethacin) were
analyzed.

FFSS treatment of isolated rat glomeruli. Glomeruli were isolated
as described below and placed on a stainless screen in a flow chamber
designed and constructed in our laboratory. The flow chamber is
constructed of a two-part metal shell to house a flow cell with fixed
dimensions. The plexiglas base and top are lined with rubber gaskets
to seal the glomeruli in a compartment with defined dimensions (Fig. 1).
The thickness of the transparent plastic spacer determines the height
of the fluid column. FFSS (�; in dynes/cm2) was calculated as � �
6	Q/(w * h2), where 	 is viscosity, Q is rate of fluid flow, and w and
h are width and height of the fluid column, respectively. FFSS was
applied at 0.3 dyne/cm2 for 60 or 120 min, and again following a
recovery for 120 min at 37°C. In separate experiments, glomeruli
were pretreated with 2.5 �mol/l indomethacin before FFSS treatment.
Untreated glomeruli maintained in parallel without FFSS treatment
were used as a control at time T0 and TFinal. Glomeruli from four rats
were used in separate experiments (20 glomeruli/group from n � 4
rats with 5 glomeruli/rat). Glomeruli from these treatment and control

Fig. 2. FFSS induces cyclooxygenase (COX)-2
and EP2 gene expression. Cultured podocytes
were exposed to FFSS at 2 dynes/cm2 for 2 h with
and without pretreatment with indomethacin.
Control groups were maintained identically in the
medium without FFSS. Total RNA was extracted
from podocytes at 2 (post-2hr) and 24 h after
FFSS (post-24hr). Total RNA was analyzed for
COX-1, COX-2, EP2, and EP4 gene expression
using real-time quantitative PCR (RT-qPCR).
Top: FFSS resulted in increased COX-2 gene
expression at post-2hr (P � 0.001 vs. control)
that was attenuated by pretreatment with indo-
methacin. Bottom: FFSS resulted in increased
EP2 gene expression at post-24hr (P � 0.02 vs.
control) that was attenuated by pretreatment with
indomethacin. Pretreatment with indomethacin
caused a significant increase in EP4 gene expres-
sion at post-2hr (P � 0.007). Values are means 

SD of 5–6 replicate experiments. *P � 0.05.
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groups were used to determine effect of FFSS on albumin permea-
bility (Palb) in vitro using the assay described

In vitro glomerular Palb assay following FFSS. Control and FFSS-
treated rat glomeruli were used to study the changes in glomerular
filtration barrier characteristics using an in vitro assay established in
our laboratory. Details of the assay to measure volume response of
glomerular capillaries to an oncotic gradient generated by defined
concentrations of albumin have been described previously (35, 38).
Briefly, kidneys were removed from anesthetized male Sprague-
Dawley rats (200–250 g) and decapsulated. The renal cortex was cut
into fine fragments and consecutively passed through 80- and 120-
mesh stainless screens. Glomeruli were recovered from atop the
200-mesh screen. Glomeruli were isolated at room temperature in a
physiological buffer solution (pH 7.4). BSA (5 g/dl) was included in
the medium as an oncotic agent (isolation/incubation buffer). Oncotic
gradient was induced by changing BSA concentration in the bath
medium to 1%. Oncotic pressure was measured using a membrane
colloid osmometer (model 4100, Wescor, Logan, UT).

Following experimental treatments, glomeruli were incubated in
5% BSA medium for 15 min at 37°C, transferred to glass coverslips
coated with poly-L-lysine, and observed using video microscopy.
Measurements of glomerular volume were made before and 1 min
after the initial incubation medium containing 5 gm/dl BSA was
replaced by medium containing 1 g/dl BSA. Change of the medium
produces an oncotic gradient across the glomerular capillary wall (5
g/dl BSA in the lumen vs. 1 g/dl BSA in the bathing medium) and
results in net fluid influx and an increase in glomerular volume.
Glomerular volume was calculated from the average of four diameters
of the video image and the change in volume (�V) of each glomerulus
in response to the oncotic gradient: �V � (Vfinal � Vinitial)/Vinitial �
100%. The increase in glomerular volume (�V) is directly related to
the oncotic gradient (�
) applied across the capillary wall. We use
this principle to calculate the reflection coefficient (�alb) using the
ratio of �V of experimental to �V of control glomeruli in response to
identical oncotic gradients: �alb� �Vexperimental/�Vcontrol. Convec-
tional Palb is defined as (1 � �alb) and describes the movement of
albumin consequent to water flow on a unitless scale of 0 to 1. When
�alb is zero, albumin moves at the same rate as water and Palb is 1.0.
When �alb is 1.0, albumin cannot cross the membrane with water and
Palb is zero.

Unilateral nephrectomy in sv129 mice. Five 13- to 14-wk-old
sv129 mice underwent surgical removal of the right kidney. Another
set of five 13- to 14-wk-old sv129 mice underwent a sham operation
for experimental control. Four weeks later, the left kidney was
harvested from all animals for analysis. The day before harvesting of
kidneys, urine was collected for urine albumin and creatinine mea-
surement. Urine albumin and creatinine were measured at the Mouse
Metabolic Phenotyping Center, Vanderbilt University Medical Center
(Nashville, TN). Kidneys were fixed in 10% formalin, embedded in
paraffin, sectioned at 3–5 �m, and stained using Jones silver stain.
Images were obtained using an Olympus BX60 (Hamburg, Germany)
for light microscopy, and morphological measurements were made
using computerized image-analysis software (Analysis) as described
earlier (40, 41).

Immunohistochemistry to determine expression of COX enzymes
and prostanoid receptors in sv129 mouse kidneys. Immunohistochem-
istry for COX and EP proteins was performed as described earlier
(42). Primary antibodies used included a rabbit polyclonal COX-1
antibody (sc-7950, Santa Cruz Biotechnology, Dallas, TX) at 1:100
dilution, COX-2 antibody (ab6665, Abcam) at 1:150 dilution, EP2
antibody (sc-20675, Santa Cruz Biotechnology) at 1:25 dilution, and
EP4 antibody (ab93486, Abcam) at 1:100 dilution. Tissue sections
were mounted in 9:1 (glycerol:PBS) � 5% N-propyl gallate, and
photomicrographed as described. We performed image analysis using
the National Institutes of Health Image J software suite by quantifying
the mean integrated density (average grey value � area) of 3,3-
diaminobenzidine (DAB) staining within the glomerulus for COX and

EP proteins to obtain the net protein expression/glomerulus. Endothe-
lial cells are localized on the intraluminal aspect of the glomerular
capillary, while podocytes surround and cover the extraluminal aspect
of the capillary wall. We also performed additional semiquantitative
analysis using a scale of 0–4. Each glomerulus examined was as-
signed a score based upon the percentage of total podocytes that
showed positive staining (above background to brown-black); 0 (no
staining), 1 (�10% of podocytes), 2 (10–25% of podocytes), 3
(25–50% of podocytes), or 4 (�50% of podocytes staining).

Statistics. Data were analyzed with repeated measures ANOVA
analyses for three-group comparisons and Student’s t-test for two-
group comparisons using SPSS 20 statistical software. A P value
�0.05 was considered significant.

RESULTS

FFSS increases gene expression of COX-2, but not COX-1,
in podocytes. Figure 2 (top) shows results of RT-PCR (RT-
qPCR) quantification of COX-1 and COX-2 gene expression at
2 (post-2hr) or 24 h (post-24hr) after FFSS with or without
pretreatment with indomethacin. COX-2 gene fold-expression
increased significantly at post-2hr (15.7 
 3.9, P � 0.001) and
returned to near control levels by post-24hr (2.7 
 1.6, P �
0.51). Indomethacin markedly attenuated the effect of FFSS,
and the fold-increase in COX-2 gene expression was only
4.1 
 2.7, P � 0.06 at post-2hr that returned to the control
level (1.5 
 0.8, P � 0.89) at post-24hr. In contrast, FFSS did
not alter COX-1 expression (Fig. 2, top).

FFSS increases protein expression of COX-2, but not
COX-1, in podocytes. Figure 3 shows results of Western
blotting using antibodies to detect COX-1 and COX-2 proteins
at post-2hr and post-24hr after FFSS with or without pretreat-
ment with indomethacin. As with gene expression, on density
analysis protein expression of COX-2/�-actin compared with
control (2.67 
 1.37) was increase at post-2hr (4.56 
 0.55,
P � 0.035) and post-24hr (4.06 
 1.16, P � 0.10) and is
shown as a fold-change in Fig. 3. Indomethacin attenuated the

Fig. 3. FFSS upregulates COX-2 protein expression. Cultured podocytes were
exposed to FFSS at 2 dynes/cm2 for 2 h with and without pretreatment with
indomethacin. Control groups were maintained identically in the medium
without FFSS. Total protein lysates at post-2hr or post-24hr were analyzed by
SDS-PAGE and Western blotting. �-Actin was used as the loading control to
normalize density measurements. Bar graphs show fold-change (experimental/
control) in density ratios (protein/�-actin). Top: images of representative
immunoblots. Left: FFSS did not alter COX-1 protein expression. Right: FFSS
resulted in increased COX-2 protein expression at 2hr post-FFSS (P � 0.035
vs. control) which was attenuated by indomethacin. COX-2 protein at post-
24hr FFSS was not different from the control group. Values are means 
 SD
of 3–5 replicate experiments. *P � 0.05.
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increase in COX-2. COX-1 protein expression did not change
following FFSS with or without indomethacin.

FFSS stimulates PGE2 synthesis in podocytes. Figure 4
shows the enzyme immunoassay results on the levels of PGE2

in the medium at the onset (0 min), during FFSS (30 min), and
at the end of FFSS (120 min) and the effect of FFSS on
podocytes pretreated with indomethacin. PGE2 was not detect-
able in the medium before applying FFSS (�15 pg/ml). FFSS
caused an increase in PGE2 levels in the medium by 30 (63.2 

13.6, P � 0.57) and 120 min (179.0 
 149.1, P � 0.04).
However, FFSS application for 30 or 120 min following
pretreatment with indomethacin attenuated the increase in
PGE2 at 30 (33.6 
 11.4, P � 0.03) and 120 min (17.4 
 17.5,
P � 0.81) (Fig. 4, left).

Figure 4 also shows that FFSS caused an approximately
threefold increase in intracellular PGE2. Pre-FFSS levels were
0.57 
 0.16 pg PGE2/�g DNA and post-2hr (1.56 
 0.71 pg
PGE2/�g DNA, P � 0.02). Intracellular PGE2 levels returned
close to baseline by post-24hr FFSS (0.81 
 0.11 pg PGE2/�g
DNA, P � 0.69). In contrast, pretreatment of podocytes with
indomethacin caused a significant (P � 0.001) decrease in
intracellular PGE2 (control 0.53 
 0.11, post-2hr 0.30 
 0.07
and post-24hr 0.18 
 0.03 pg PGE2/�g DNA) (Fig. 4, right).

Table 1 summarizes the pattern of PGE2 secretion up to 24 h
after cessation of FFSS. PGE2 levels were determined using

ELISA in aliquots of medium collected at 2 and 24 h following
FFSS treatment. FFSS caused a significant increase in PGE2

concentration at post-2hr and post-24hr compared with control
(Table 1). Pretreatment with indomethacin followed by FFSS
blocked the increase in PGE2 at both time points (Table 1).

FFSS increases gene expression of prostanoid receptor EP2
but not EP4. PGE2 mediates its effect through four prostanoid
receptors, EP1–EP4. Podocytes express EP1, EP2, and EP4 but
not EP3 (42). Figure 2 (bottom) shows results of RT-qPCR
measuring the gene expression of EP2 and EP4 at 2 (post-2hr)
and 24 h (post-24hr) following FFSS with or without indo-
methacin pretreatment. FFSS significantly increased the gene
expression of the EP2 receptor by post-24hr (2.7 
 1.4, P �
0.02) but not at post-2hr (1.7 
 0.5, P � 0.4). However,
indomethacin did not alter EP2 gene expression significantly
(post-2hr 0.5 
 0.7, P � 0.55; post-24hr 1.4 
 0.9, P � 0.73).
In contrast, as shown in Fig. 2 (bottom), FFSS did not affect
EP4 expression (post-2hr was 0.9 
 0.2, P � 0.86; post-24hr
0.9 
 0.3, P � 0.76). Interestingly, indomethacin caused a
significant increase in EP4 gene expression at post-2hr 1.8 

0.4 (P � 0.007) but not at post-24hr 0.8 
 0.2 (P � 0.53)
following FFSS (Fig. 2, Lower panel).

FFSS increases protein expression of prostanoid receptor
EP2 but not EP4. Figure 5 shows the effect of FFSS on
podocyte EP2 and EP4 protein expression at post-2hr or

µ

Fig. 4. FFSS increases secreted and intracellular PGE2. Cultured podocytes were exposed to FFSS at 2 dynes/cm2 for 2 h with and without pretreatment with
indomethacin. The ELISA method was used to determine levels of PGE2 in samples from 5–6 replicate experiments. Values are means 
 SD. Left: PGE2 levels
(pg/ml) were elevated in aliquots of the medium collected at 30 and 120 min (P � 0.04) during FFSS application. The FFSS-induced increase in the levels of
secreted PGE2 was attenuated by indomethacin. Right: intracellular PGE2 was normalized using DNA in each sample and expressed as PGE2/DNA (pg/�g). FFSS
caused an increase in the PGE2/DNA ratio at post-2hr (P � 0.02 vs. control) and post-24hr (P � NS vs. control) following FFSS. Pretreatment with indomethacin
caused a decrease in intracellular PGE2 at post-2hr (P � 0.001 vs. control) and post-24hr (P � 0.001 vs. control). *P � 0.05.

Table 1. FFSS results in persistently elevated levels of secreted PGE2

PGE2 in Supernatant Medium During Recovery Period After FFSS

FFSS without indomethacin FFSS with indomethacin

Control Experimental P Control Experimental P

Pre-FFSS 3,911 
 1,567 4,847 
 2,361 0.48 3,589 
 2,002 4,077 
 1,284 0.63
Post-2-h FFSS 3,767 
 1,056 6,340 
 2,078 0.04 3,450 
 1,565 3,248 
 1,010 0.79
Post-24-h FFSS 2,756 
 820 6,980 
 2,606 0.01 2,606 
 1,121 2,313 
 851 0.22

Values are means 
 SD; n � 5–6 replicate experiments. Cultured podocytes were exposed to fluid flow shear stress (FFSS) at 2 dynes/cm2 for 2 h with and
without pretreatment with indomethacin. Control podocytes were maintained identically in the medium without FFSS. PGE2 in the medium (pg) from podocytes
exposed to FFSS was measured before FFSS and during recovery at post-2 h and post-24 h after FFSS. Control consisted of aliquots obtained from culture
medium of untreated podocytes (i.e., no FFSS) at the same time points. PGE2 levels in the medium at post-2-h and post-24-h time points were significantly
increased compared with control in podocytes after FFSS, which were attenuated by pretreatment with indomethacin.
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post-24hr using Western blotting. FFSS caused a gradual
change in the (EP2/�-actin) density that increased from
(0.29 
 0.12, P � 0.72) at post-2hr to (0.50 
 0.13, P � 0.06)
by post-24hr compared with control (0.25 
 0.16) and is
shown as a fold-change in Fig. 5. Indomethacin attenuated the
effect of FFSS on EP2 protein expression. However, FFSS,
with or without indomethacin, did not alter the expression of
EP4 protein.

Thus an FFSS stimulus to cultured podocytes increased the
synthesis and secretion of PGE2 into the extracellular milieu
and upregulated the expression of the EP2 receptor, but not of
EP4. An �30% increase in secreted PGE2 by post-2hr and only
an �10% increase between 2 and 24 h post-FFSS suggest a
parallel rise in PGE2 secretion and COX-2 expression (Table 1
and Fig. 3). Indomethacin effectively attenuated the changes
induced by FFSS.

Control podocytes with no flow vs. low FFSS at 0.2
dynes/cm. Podocytes did not show a qualitative change in cell
morphology or the actin cytoskeleton at post-2hr and post-24hr
treated with low FFSS at 0.2 dynes/cm2 for 2 h compared with
the no-flow control (n � 3). In contrast, we have shown that
FFSS at 2 dynes/cm2 for 2 h causes significant changes in cell
morphology and the actin cytoskeleton (41). FFSS at 0.2
dynes/cm2 on podocytes did not increase the secreted PGE2.
PGE2 levels in the medium at 30 and 120 min during FFSS
were below the detection limit. Intracellular PGE2 at post-2hr
FFSS at 0.2 dynes/cm2 (0.79 
 0.20 pg/�g DNA) did not
increase compared with the no-flow control (0.71 
 0.14, P �
0.56). In contrast, both secreted and intracellular PGE2 levels
were increased after application of FFSS at 2 dynes/cm2 for 2
h (Fig. 4, Table 1). Thus the no-flow control used in our studies

and low FFSS at 0.2 dynes/cm2 approximating physiological
conditions did not alter cellular structure or PGE2 production.

Ex vivo application of FFSS to isolated decapsulated glom-
eruli results in increased Palb. Previously, we showed that the
PGE2-induced increase in Palb was blocked by indomethacin
(26). Following the observation that application of FFSS in-
creases PGE2 in podocytes (Fig. 4), we determined the effect of
FFSS on Palb in isolated decapsulated rat glomeruli.

Table 2 and Fig. 6 summarize the effect of FFSS on Palb,
with or without indomethacin. In the first set of experiments,
the effect of the duration of FFSS on the glomerular filtration
barrier was determined. Results show that FFSS application for
60 or 120 min resulted in increased Palb (P � 0.001). There
was no change in Palb in untreated control (T0) and time-
matched (Tfinal) controls (Table 2). In the second set of exper-
iments, results showed persistently elevated Palb at 2 h after
(post-2hr) FFSS (Fig. 6, Table 2). Figure 6 shows that pre-
treatment with indomethacin blocked the effect of FFSS on
Palb. In the third and fourth sets of experiments, the effect of
FFSS for 120 min on glomeruli pretreated with indomethacin
and after an additional 120 min (post-2hr) of recovery follow-
ing FFSS was studied. The FFSS-induced increase in Palb was
significantly blocked by indomethacin. The untreated control
(T0) and time-matched controls (Tfinal) showed no change in
Palb (Fig. 6).

Unilateral nephrectomy in sv129 mice is associated with
glomerular hypertrophy and increased expression of COX-2
and prostanoid receptor EP2.

Male sv129 mice were uninephrectomized by removing the
right kidney to induce hyperfiltration in the remnant solitary
kidney. The left kidney was harvested 4 wk later. Table 3
shows that uninephrectomy resulted in significant glomerular
hypertrophy by 4 wk as indicated by an increase in glomerular
area and volume compared with the left kidney from the
sham-operated mice (control). Urine albumin excretion was
significantly increased in nephrectomized mice (246.8 
 141.9
mg/g creatinine) compared with sham-operated mice (25.1 

11.4 mg/g creatinine, P � 0.001). The mean integrated density
(average grey value � area) performed using Image J software
for DAB staining for COX and EP proteins provides the net
protein expression/glomerulus. Immunohistochemistry showed

Fig. 5. FFSS increases protein expression of prostanoid receptor EP2. Cultured
podocytes were exposed to FFSS at 2 dynes/cm2 for 2 h with and without
pretreatment with indomethacin. Control groups were maintained identically in
the medium without FFSS. Total protein lysates at post-2hr or post-24hr were
analyzed by SDS-PAGE and Western blotting. �-Actin was used as the loading
control to normalize density measurements. Bar graphs show fold-change
(experimental/control) in density ratios (protein/�-actin). Top: images of rep-
resentative immunoblots. Left: FFSS resulted in increased EP2 expression at
post-2hr (P � 0.72) and post-24hr (0.06) that was blocked by indomethacin.
Right: FFSS did not alter the expression of EP4 protein. Values are means 

SD of 3–5 replicate experiments. *P � 0.05.

Table 2. FFSS alters the filtration barrier within 1 h
indicated by increased glomerular albumin permeability

Palb at 60
min

Palb at 120
min

Untreated control (T0) 0.03 
 0.07 0.03 
 0.07
Time-matched control

(Tfinal) 0.02 
 0.06 0.03 
 0.07
FFSS 0.63 
 0.07 P � 0.001 0.77 
 0.06 P � 0.001
Time-matched control

(Tfinal) 0.00 
 0.07 0.05 
 0.09
FFSS�recovery for

120 min 0.87 
 0.10 P � 0.001 0.62 
 0.06 P � 0.001

Values as means 
 SD from 20 glomeruli/group; n � 4 rats, 5 glomeruli/rat.
Palb, albumin permeability. FFSS (0.3 dyne/cm2) was applied to isolated
decapsulated rat glomeruli for 60 and 120 min, and Palb was again determined
after an additional 120 min of recovery at 37°C. Untreated baseline and
time-matched glomeruli were used as controls. Changes in Palb in rat glomeruli
are shown.
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increased mean integrated density for podocyte expression of
COX-2 but not COX-1 and prostanoid receptor EP2 but not
EP4 (Fig. 7 and Table 4). We also performed a semiquantita-
tive analysis using a 0–4 scale. The mean 
 SD on the 0–4
scale for COX-2 staining in the glomeruli for sham and
nephrectomy sv129 mice was 1.06 
 0.40 and 2.45 
 0.40,
respectively (P � �0.001), and for COX-1 was 1.29 
 0.21
and 1.28 
 0.10, respectively (P � 0.91). The mean 
 SD
integrated density for EP2 staining in the glomeruli for sham
and nephrectomy sv129 mice was 0.96 
 0.34 and 2.45 

0.31, respectively (P � �0.001) and for EP4 was 3.22 
 0.34
(sham) vs. 2.83 
 0.34 (nephrectomy) P � 0.053. Thus
hyperfiltration resulting from renal mass ablation leads to
upregulation of COX-2 and EP2 expression in remnant kidneys
of uninephrectomized mice.

DISCUSSION

CAKUT including a solitary kidney is the most common
cause of childhood CKD progressing to ESRD. One in 500–

1,000 children born with a solitary kidney maintain their total
GFR through increased SNGFR and develop adaptive hyper-
filtration (34, 51–53). Continued hyperfiltration results in glo-
merulosclerosis, albuminuria/proteinuria, and progressive azotemia
(1, 31, 34, 51–53). The absence of the traditional risk factors of
hypertension and proteinuria in early childhood supports the
concept that persistent hyperfiltration contributes to kidney
injury (34, 52). Additionally, hyperfiltration is an important
risk factor in the progression of CKD in adults with diabetes,
obesity, and other kidney diseases (1, 8, 20, 31, 50). We
believe that hyperfiltration would alter the homeostasis of
biomechanical forces that regulates the rheological dynamics
within the glomerulus and maintains the filtration barrier.

Glomerular anatomy positions podocytes in Bowman’s
space, thus exposing these large cells with extensive foot
processes to biomechanical forces. Increased intracapillary
pressure causes tensile stress on foot processes covering the
outer aspect of capillaries, and bulk flow of the filtrate causes
FFSS on podocytes (10, 11, 17, 25, 40, 41). A direct measure-
ment of FFSS may be extremely difficult, if not impossible.
Mathematical models are heavily relied upon to explore com-
plicated biological problems. We found that the calculated
FFSS over podocytes increases 1.5–2-fold in animal models of
unilateral nephrectomy (40). We also showed that increased
SNGFR, not filtration fraction, is the basis of increased FFSS
over podocytes in a solitary kidney. We postulated that hyper-
filtration impacts podocyte homeostasis mainly through in-
creased FFSS.

Arachidonic acid metabolites are important mediators of
hemodynamic regulation in the kidney. PGE2 is a major prod-
uct of kidney arachidonic acid metabolism by cyclooxygenases
COX-1 and COX-2 (14). As shown in Figs. 2 and 2, COX-2
expression increased as a result of FFSS applied to podocytes,
but pretreatment of cells with indomethacin blocked the in-
crease in PGE2 levels and COX-2 expression (Fig. 4 and Table
1). Upregulation of PGE2 synthesis appears to be a specific
response to FFSS as neither Martineau et al. (25) nor we
(abstract EPAS2008:3803.1) (40a) detected increased PGE2 in
podocytes subjected to experimental stretch. A similar increase
in COX-2 expression and PGE2 synthesis in renal collecting
duct cells was recently demonstrated by Rohatgi and col-
leagues (15, 23). We did not see a significant change in PGE2

synthesis in control podocytes with no flow and FFSS at 0.2
dynes/cm2’ in contrast to increased PGE2 synthesis and secre-
tion seen with FFSS at 2 dynes/cm2. Similarly, it has been
shown that an increase in PGE2 is seen after a threshold of

Table 3. Unilateral nephrectomy results in increased
glomerular size

Sham Mice Uninephrectomy Mice
P

Value

Mean GD, �m 65.6 
 2.8 72.2 
 5.0 0.010
Maximum GD, �m 75.4 
 4.2 82.3 
 5.2 0.019
Glomerular area, �m2 3.6 
 0.3 x 103 4.4 
 0.6 x 103 0.006
Glomerular volume, �m3 297.5 
 31.1 x 103 393.4 
 74.3 x 103 0.008

Values are means 
 SD; n � 7/group. A solitary kidney was harvested at
4 wk after unilateral nephrectomy of male sv129 mice. Sham-operated mice
were used as a control. Morphometric data of measured mean and maximum
glomerular diameter (GD) are shown along with calculated glomerular area and
glomerular volume.

Fig. 6. FFSS application to isolated glomeruli increases albumin permeability
(Palb). Isolated rat glomeruli were exposed to FFSS at 0.3 dynes/cm2 for 120
min with and without pretreatment with indomethacin. Values are means 
 SE
of Palb determination in 20 glomeruli from 4 rats (5 glomeruli/rat � 4 rats).
Top: FFSS application for 120 min resulted in increased Palb (P � 0.001),
while pretreatment with indomethacin blocked the increase in Palb. Palb in
untreated control (T0) and time-matched (Tfinal) controls did not change.
Bottom: FFSS for 2hr followed by recovery for another 120 min at 37° C
showed persistently elevated Palb (P � 0.001), while pretreatment with
indomethacin blocked the increase in Palb. Palb in untreated control (T0) and
time-matched (Tfinal) controls did not change.
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Fig. 7. Unilateral nephrectomy of sv129 mice results in increased glomerular COX-2 and EP2 expression. Hyperfiltration was induced in male sv129 mice by removing
the right kidney. The left kidney was harvested 4 wk later. Renal cortical slices were processed for immunohistochemistry using specific antibodies. COX-1, COX-2,
EP2, and EP4 expression in podocytes was determined using light microscopy and image analysis. In each glomerulus, a few representative podocytes are marked that
show intense immunostaining for the COX and EP proteins. The difference in intensity is shown in the adjoining box plot. Images were observed and analyzed in a
masked manner. Top 2 rows: light microscopy images of glomerular COX-1 and COX-2 (left) with corresponding box plots (right). Increased FFSS after unilateral
nephrectomy resulted in increased COX-2 expression (P � �0.001). Bottom 2 rows: light microscopy images of glomerular EP2 and EP4 (left) with corresponding box
plots (right). Increased FFSS after unilateral nephrectomy resulted in increased EP2 expression (P � 0.039). oOutlier. ***P � 0.05.
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shear stress is reached in renal collecting duct cells (3, 24).
These observations also validate the use of cells with no flow
as an adequate although not perfect control for in vitro exper-
iments. A continuous treatment with low FFSS is not feasible
at the present time due to methodological limitations. Results
from in vivo studies also support these findings. For example,
in the classic 5⁄6 nephrectomy rat model, hyperfiltration-medi-
ated injury results in increased PGE2 synthesis and COX-2
expression (30, 43, 49). Since the 5⁄6 nephrectomy model is
confounded by uremia, we preferred the unilateral nephrec-
tomy model to induce hyperfiltration. The unilateral nephrec-
tomy resulted in increased glomerular COX-2 expression in
sv129 mice (Fig. 7). Additionally, several studies have shown
that chronic inhibition of COX attenuates the progression of
kidney injury in animal models and human disease (45–48).
Collectively, these findings from in vitro and in vivo studies
support our hypothesis that increased FFSS in hyperfiltration
induces COX-2 and increases PGE2 levels.

Previously, we reported that FFSS or PGE2 induced a
decrease in transversal F-actin stress filaments and the forma-
tion of a cortical actin network in podocytes (41). Hyperfiltra-
tion-mediated injury is associated with albuminuria/protein-
uria, implying glomerular dysfunction. Therefore, we surmised
that FFSS-induced changes in the podocyte cytoskeleton would
undermine the integrity of the filtration barrier, leading to
increased Palb. We have studied the effect of a variety of agents
and conditions on the filtration barrier using an in vitro assay
of glomerular Palb developed in our laboratory (see METHODS).
Our results demonstrate that an increase in Palb precedes the
onset of proteinuria in animal models of diabetes, hyperten-
sion, radiation nephropathy, puromycin-induced nephrosis, and

focal segmental glomerulosclerosis (9, 33, 36, 39). We have
reported that a dose-dependent increase in Palb induced by
exogenous PGE2 can be blocked by indomethacin (26, 37).
Presently, we designed and constructed a special apparatus for
applying FFSS to isolated decapsulated rat glomeruli. Podo-
cytes on the outer aspect of the glomerular tuft would experi-
ence similar FFSS as the height, width, and rate of fluid flow
are kept constant over the decapsulated glomeruli, but we
cannot predict the FFSS that would be experienced by the
podocytes present in the inner aspect of the glomerular tuft.
Glomeruli exposed to FFSS in this device showed increased
Palb at 2 h post-FFSS that was blocked by indomethacin (Table
2 and Fig. 6). In clinical practice, NSAIDs are used occasion-
ally to control proteinuria (45, 46). Vriesendorp et al. (46, 47)
found that indomethacin, diclofenac-sodium, or flurbiprofen,
NSAIDs that attenuate PGE2 synthesis, also decreased protein-
uria. In contrast, sulindac, which does not influence PGE2

synthesis, showed no effect on protein excretion. Thus PGE2

appears to significantly modulate glomerular filtration barrier
permselectivity. These results corroborate and complement our
findings, suggesting a role for COX-2 and PGE2 in the mech-
anism of FFSS-induced injury leading to albuminuria/protein-
uria.

PGE2 interacts with G protein-coupled receptors (GPCR), of
which four (EP1–EP4) have been characterized and cloned (2,
29). EP2, when present, is a low-abundance receptor and
believed to be inducible (2, 28, 29). We found that only EP1,
EP2, and EP4 are expressed in podocytes and that FFSS did not
affect EP1 or induce EP3 gene expression (42). In this study,
we focused on EP2 and EP4 because these receptors are
upregulated by FFSS (42) and stretch, respectively (12, 13, 25,
44). As shown in Figs. 2 and 5, FFSS upregulated the gene and

Table 5. Primer sequences used for qRT-PCR

Target
PCR Product

Size Sequence

COX-1 70 bp Forward 5=-CCTCTTTCCAGGAGCTCACA-3=
Reverse 5=-TCGATGTCACCGTACAGCTC-3=

COX-2 75 bp Forward 5=-GATGCTCTTCCGAGCTGTG-3=
Reverse 5=-GGATTGGAACAGCAAGGATTT-3=

EP2 73 bp Forward 5=-TGCTCCTTGCCTTTCACAAT-3=
Reverse 5=-CTCGGAGGTCCCACTTTTC-3=

EP4 92 bp Forward 5=-CGGTTCCGAGACAGCAAA-3=
Reverse 5=-CGGTTCGATCTAGGAATGG-3=

�-Actin 104 bp Forward 5=-CTAAGGCCAACCGTGAAAAG-3=
Reverse 5=-ACCAGAGGCATACAGGGACA-3=

Table 4. Unilateral nephrectomy results in increased
glomerular COX-2 and EP2 protein expression

Sham Mice Uninephrectomy Mice P Value

COX-1 810.7 
 90.1 � 103 638.7 
 136.3 � 103 0.07
COX-2 498.5 
 171.4 � 103 1,174.5 
 136.3 � 103 �0.001
EP2 274.5 
 95.9 � 103 431.0 
 46.6 � 103 0.039
EP4 381.1 
 266.8 � 103 464.9 
 133.7 � 103 0.47

Values are means 
 SD for cyclooxygenase (COX)-1, COX-2, EP2, and
EP4 staining in 20 consecutive glomeruli in the kidney sections from nephrec-
tomized mice and sham-treated control mice. Solitary kidney was harvested at
4 wk after unilateral nephrectomy of male sv129 mice. Immunohistochemical
analysis of COX-1, COX-2, EP2, and EP4 proteins for mean integrated density
by Image J analysis is shown. COX-2 protein and EP2 protein were increased
following unilateral nephrectomy.

Fig. 8. Schematic summary of working hy-
pothesis. Left: several pathophysiological con-
ditions associated with progressive chronic
kidney disease (CKD) may share hyperfiltra-
tion as a common underlying mechanism. In-
creased FFSS observed with hyperfiltration is
responsible in part for the progression of
CKD in conditions such as congenital anom-
alies of the kidney and urinary tract (CA-
KUT), a solitary kidney, obesity, and diabe-
tes. Right: summary of current working hy-
pothesis that FFSS alters podocyte structure
and the actin cytoskeleton via the COX-2-
PGE2-EP2 axis and its downstream signal-
ing in pathophysiological conditions associ-
ated with hyperfiltration.
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protein expression of only EP2 and not EP4 in podocytes. Also,
unilateral nephrectomy resulted in the upregulation of glomer-
ular EP2 but not EP4 in sv129 mice (Fig. 7). We have also
shown that EP2 is upregulated in mice with low nephron
number. Mice with the gene for oligosyndactylism (Os/�) are
used as a model to study the effect of congenital deficiency in
nephron number. The Os/� mice are born with �50% fewer
nephrons and have increased SNGFR compared with their
wild-type controls (42). Thus in vitro and in vivo studies using
podocytes suggest a role for the EP2 receptor in hyperfiltra-
tion-induced injury.

EP2 and EP4 are membrane-localized GPCRs that share
30% homology and activate adenylate cyclase. However, these
receptors differ with regard to their response to stimuli, nature
of ligands, and regulatory mechanisms. For example, resting
peritoneal macrophages C3H/HeN express only EP4. While
stimulation of these cells by LPS alone induces EP2 and
downregulates EP4 expression (18, 19), LPS with indometha-
cin upregulates EP4. Additionally, EP2 and EP4 respond dif-
ferently to various ligands. For example, in Chinese hamster
ovary (CHO) cells, PGE2 causes only short-term desensitiza-
tion of EP4 without affecting EP2, and 15-keto-PGE2 causes
an immediate reduction in EP4 activity and a gradual but
greater loss of EP2 activity (32). Thus the increase in EP4 gene
expression by indomethacin observed in our experiments (Fig.
2) is intriguing and unexplained but not surprising.

Studies on EP receptors in osteocytes serve as a very
supportive parallel example for our observations (6, 7, 16, 21).
Osteocytes located within the bone canaliculi form a network
of cytoplasmic processes and respond to tensile and shear
stress (27). Both osteocytes and podocytes are terminally
differentiated cells that possess elaborate cytoplasmic exten-
sions and respond to FFSS (6, 7, 16, 21, 41, 42). A head-to-
head comparison of shear and tensile forces in osteocytes
shows that FFSS induces greater cellular deformity (27) and
upregulates COX-2 (6, 7, 16, 21). Furthermore, FFSS upregu-
lates EP2 in osteocytes without altering EP4 expression (6, 7,
16, 21). These studies have been useful in comprehending the
role of biomechanical forces in diverse cell types.

A comparison of mechanical forces shows that tensile stress
1) causes formation of actin-rich centers and radial stress
fibers, 2) upregulates COX-2 without increasing PGE2 synthe-
sis, and 3) upregulates EP4 but not EP2 in podocyte cultures
(12, 13, 25, 44). In contrast, FFSS 1) disrupts actin stress fibers
with the formation of a cortical actin ring, 2) upregulates
COX-2 with increased PGE2 levels, and 3) upregulates EP2 but
not EP4 in cultured podocytes (17, 41, 42). Based on these
considerations, we have developed a model (Fig. 8; see the
legend) to study the role of FFSS in hyperfiltration-mediated
injury in the progression of CKD. Although in vitro studies can
dissect the subtle differences between FFSS and stretch, these
forces are likely to exert their influence concurrently in vivo.
Future studies using specific receptor agonists/antagonists, an
idealized control, and animal models will further strengthen
our observations and delineate the cellular signaling events.

In summary, similarities in the effects of FFSS on podo-
cytes, osteocytes, and recently reported results on renal collet-
ing duct cells suggest a conserved cellular response involving
the COX2-PGE2-EP2 axis that warrants additional investiga-
tion for its role in hyperfiltration-mediated kidney injury. We

believe the COX2-PGE2-EP2 axis is a potential target for
developing new interventions to prevent CKD progression.
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