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Abstract

Hyperfiltration is a well-known risk factor in progressive loss of renal function in chronic kidney 

disease (CKD) secondary to various diseases. A reduced number of functional nephrons due to 

congenital or acquired cause(s) results in hyperfiltration in the remnant kidney. Hyperfiltration-

associated increase in biomechanical forces namely pressure-induced tensile stress and fluid flow-

induced shear stress (FFSS) determine cellular injury and response. We believe the current 

treatment of CKD yields limited success because it largely attenuates pressure-induced tensile 

stress changes but not the effect of FFSS on podocytes. Studies on glomerular podocytes, tubular 

epithelial cells and bone osteocytes provide evidence for a significant role of COX-2 generated 

PGE2 and its receptors in response to tensile stress and FFSS. Preliminary observations show 

increased urinary PGE2 in children born with a solitary kidney. FFSS-induced COX2-PGE2-EP2 

signaling provides an opportunity to identify targets and, for developing novel agents to 

complement currently available treatment.
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1. Introduction

Glomerular hyperfiltration is considered to be a major risk factor in progressive loss of renal 

function in chronic kidney disease (CKD) patients. Despite decades of familiarity with the 

concept [1], the mechanical and rheological aspects of glomerular hyperfiltration remain 

unclear. Specifically, the role of hyperfiltration-associated increase in biomechanical forces 

needs to be explored in the context of glomerular intra-capillary space and extra-capillary 

Bowman’s space. Cells of these two compartments namely capillary endothelial cells and 

podocytes in Bowman’s space and the glomerular basement membrane constitute the 

glomerular filtration barrier. The glomerular filtration barrier is a complex structure that 

facilitates a close interaction between endothelial cells in the glomerular capillary lumen and 

podocytes in Bowman’s space. The GBM with its porous structure provides a spatial 

separation and functional connectivity between the endothelial cells and podocytes [2,3]. 

Scanning electron micrographs show segments of capillary lumen with sieve-like 

arrangement of endothelial cells (Figure 1A) and interdigitated foot processes of podocytes 

that cover the capillary (Figure 1B). Such multicomponent architecture (Figure 1) of the 

filtration barrier generates the ultrafiltrate under physiological conditions withstanding much 

higher capillary pressures compared to non-glomerular capillaries. However, the changes in 

biomechanical forces under physiological or pathological conditions are not well-

understood. Each component of the filtration barrier is important to maintain barrier 

function. Mesangial cells for their close interaction with their close interaction with 

endothelial cells and podocytes [4,5] and the GBM for its role as a matrix for endothelial 

cells and podocytes as well as a barrier [6–8]. The significance of capillary endothelial cells 

in glomerular function is also discussed in excellent reviews [9–11].

Effect of hyperfiltration-associated increase in fluid flow on non-endothelial cells such as 

podocyte may also have significant consequences on cellular integrity and in onset of 

glomerular dysfunction. While defects and/or damage to any component of the filtration 

barrier may compromise its function, podocytes are especially highly vulnerable to 

hyperfiltration as outlined here [12]. Hyperfiltration causes damage to podocyte structure 

and function indirectly through increase in capillary stretch as well as directly through 

elevated fluid flow shear stress (FFSS).

Of the two biomechanical forces associated with hyperfiltration, effects of pressure-induced 

tensile stress are more familiar and better understood because of extensive work in the past 

on renal blood flow, glomerular capillary pressure and systemic blood pressure to address 

the gradual loss of glomerular function. Indeed, the significance of glomerular capillary 

pressure and glomerular hypertension defined the role for renin angiotensin aldosterone 

system (RAAS) [1,13]. Renin, a product of the cells of the juxtaglomerular apparatus, 

activates the RAAS by converting angiotensinogen to angiotensin II (ANG II) in response to 

sympathetic activity and low blood pressure or sodium. Juxtaglomerular structures and their 

function continue to remain significant for ongoing research evidenced by recent reviews on 

the subject [14–16]. Previous work related to the RAAS resulted in the development of 

mainstream drugs such as angiotensin receptor blockers (ARBs) and angiotensin converting 

enzyme inhibitors (ACEI) for treating hypertension that are also used to control pressure-

related hyperfiltration-mediated renal dysfunction. These drugs are effective in delaying the 
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progression of CKD in some but not all kidney diseases. On the other hand, changes in 

glomerular cells (podocytes) caused by hyperfiltration-mediated increase in ultrafiltrate flow 

have not been targeted to treat renal dysfunction. Technical advances for studying 

biomechanical forces and a better understanding of podocyte biology have encouraged 

investigations into additional mechanisms to further improve the outcomes in patients with 

CKD.

This brief review outlines the significance of biomechanical forces in hyperfiltration with 

special reference to the increasing recognition of the effects of FFSS. We summarize results 

from studies on podocytes and other epithelial cells to distinguish effects of pressure-

induced tensile stress and flow-induced shear stress on PGE2, prostanoid receptors and key 

elements of their signaling pathway. Preliminary studies show that changes in urinary PGE2 

and other eicosanoids may be useful indicators to follow progression of CKD. Recent 

findings in renal tubular epithelial cells and bone osteocytes are provided as examples to 

demonstrate similarities in the mechanism(s) of the effect of biomechanical forces across 

different cell systems. The review summarizes the recent findings on the differential effects 

of biomechanical forces in glomerular dysfunction viewed through eicosanoid-mediated 

changes in podocytes. Considering the mechanism of hyperfiltration-induced injury of 

podocytes in terms of FFSS, hitherto unaddressed in the mainstream literature, will likely 

provide new directions for future investigations and drug development.

2. Single nephron glomerular filtration rate (SNGFR) and hyperfiltration

Approximately 1 million nephron units in each human kidney extract fluid from ~1500 liters 

of blood in 24 hours from glomerular capillary and generate ~180 liters ultrafiltrate into the 

Bowman’s compartment. The ultrafiltrate is then processed down to ~1.5 liters in the tubular 

compartment and excreted as urine. Thus, plasma filtration in each glomerulus i.e. single 

nephron glomerular filtration rate (SNGFR) is a key indicator of renal function. SNGFR is 

determined by ultrafiltration coefficient (Kf), a product of total filtration area and hydraulic 

permeability (Lp) as well as net ultrafiltration pressure (PUF). PUF represents the difference 

between the net integrated hydraulic pressure and net plasma oncotic pressure [17].

An adaptive increase in SNGFR is immediately observed after unilateral nephrectomy that 

decreases the number of functional nephrons by half and results in increased blood flow, 

increased glomerular capillary pressure (PGC) and filtration area [18] in the remnant 

functional kidney. Persistent adaptive hyperfiltration may become maladaptive and 

contribute to glomerular injury which, in turn, further propagates and exacerbates the 

magnitude of hyperfiltration. Hyperfiltration remains a loosely defined term but threshold 

levels of glomerular filtration rate (GFR) between 90.7 to 175 ml/min/1.73 m2 with a 

median value of 135 ml/min/1.73 m2 are reportedly indicate hyperfiltration [19,20]. 

Increased SNGFR entails greater ultrafiltrate flow through Bowman’s space. Consequently, 

both pressure and flow related mechanical forces are relevant for the present discussion.
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3. Biomechanical forces associated with hyperfiltration

Biomechanical forces generally connote musculoskeletal structure-function. Forces 

associated with fluid mechanics have been largely studied in terms of blood/gas flow-related 

pressure and shear. Plasma filtration in renal glomeruli exemplifies a unique interaction 

between blood flow in vasculature and ultrafiltrate flow in non-vascular space i.e. Bowman’s 

space. Here, blood flow in the capillary indirectly affects podocytes. Capillary pressure 

generates tensile stress on capillary wall while plasma fluid filters into Bowman’s space as 

the ultrafiltrate. Next, ultrafiltrate flow within Bowman’s space directly exerts FFSS on 

podocytes (a.k.a. visceral epithelial cells) localized in Bowman’s space (Figure 1C). Basal 

tensile stress and FFSS are integrated with physiological glomerular filtration but a decrease 

in the number of functional nephrons in CKD induces hyperfiltration in the remnant 

functional nephrons with a parallel rise in both tensile stress and FFSS. Glomerular 

hyperfiltration provides an interesting study of the temporal relationship between tensile 

stress and FFSS vis-a-vis their effects on podocytes.

(A) Tensile stress

Blood flow through capillary loops generates force radially at 90° to the direction of flow 

causing capillary wall stretch that radiates to podocyte foot processes attached to the GBM 

that covers the outer aspect of the capillary. To study the effect of experimental stretch, cells 

are cells grown on the flexible surface of specially designed petri dishes and subjected to 

computer-controlled application of vacuum generate uniaxial or biaxial stretch (Flexcell 

International Corporation, Burlington NC) [21], hydrostatic pressure [22], hypo-osmotic 

stretch [23], or magnetic pull to iron-coated cells [24].

(B) Fluid flow shear stress (FFSS)

Ultrafiltrate flow from capillary to the proximal tubule causes on major processes and cell 

bodies of podocytes in Bowman’s space. To study the effect of experimental FFSS, cells are 

grown on glass slides and subjected to a fluid column of defined viscosity and dimensions. 

Thus, under defined conditions, flow rate is the only determinant of FFSS. The nature of the 

fluid column can be designed to deliver laminar, pulsatile or oscillating shear stress. 

Commercially available equipment can be used for treating multiple slides simultaneously 

(Streamer System, Flexcell Corporation). We have developed a special flow chamber for 

studies using FFSS-treated isolated glomeruli [25].

4. Hyperfiltration and arachidonic acid metabolites

Arachidonic acid metabolites are key regulators of renal blood flow, GFR, salt and water 

absorption, and renin secretion from the juxtaglomerular apparatus in kidneys [26, 27, 

28,29]. Cyclooxygenases 1 and 2 (COX-1, COX-2), lipoxygenases (LOX) and cytochrome 

P450 (CYP2 epoxygenases and CYP4 ω-hydoxylases) generate prostaglandins, leukotrienes 

and epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs), 

respectively. Isoprostanes, prostaglandin-like eicosanoids, are formed by free radical-

catalyzed peroxidation of arachidonic acid. Among these, PGE2 has been found to have 

significant role in cellular response to hyperfiltration-mediated changes.

Sharma et al. Page 4

Prostaglandins Other Lipid Mediat. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PGE2 is generated from arachidonic acid by COX-1 and COX-2 activities. COX-1 is 

expressed constitutively whereas COX-2 is generally an inducible enzyme [30]. Podocytes 

express both COX-1 and COX-2 [31,32] and, we found that the COX2-PGE2-EP2 axis plays 

an important role in hyperfiltration-mediated glomerular injury in mouse models of solitary 

kidney as well as in cultured podocytes [25, 33]. PGE2 is the major prostanoid under 

physiological conditions and interacts with four E-prostanoid (EP) receptors that have been 

cloned and characterized in both human and mouse [34,35].

Figure 2 summarizes the expression and functions of PGE2 receptors EP1-EP4. EP1 mRNA 

is restricted to kidney, lung and stomach [36]; EP2, mainly found in vascular compartment of 

the kidney, and is induced in response to stimuli [34] while EP3 and EP4 are widely 

distributed [37,38]. In mouse kidneys, EP1 is localized to the collecting ducts from the 

cortex to the papilla, EP2 to glomeruli and arterioles, and EP3 to tubules of outer medulla 

and the cortex [38,39]. Renal cells such as podocytes simultaneously express several EP 

receptors, and their relative levels determine the overall cellular response. Mouse podocytes 

express three of the four receptors for PGE2 namely, EP1, EP2 and EP4 [25]. In podocytes, 

basal expression of EP4 is higher compared to that of EP2 [25, 40]. While EP4 expression 

was found to increase in response to tensile stress [10], we found that FFSS results in 

increased expression of EP2 not EP4 [25]. Previous studies identified expression of EP2 in 

mesangial cells and infiltrating cells [41,42].

Pharmacological and gene targeting techniques have been used for determining the role of 

PGE2 receptors [43]. Reported findings seem to vary. PGE2 receptors are G-protein coupled 

proteins. EP1 is coupled to calcium mobilization, EP2 and EP4 are linked to Gs protein, and 

EP3 to Gi protein [34, 39]. EP2 stimulates adenylate cyclase while both EP2 and EP4 cause 

vasodilatation of mouse afferent arteriole and buffer vasoconstrictor effects of EP1 and EP3 

[44]. In addition, EP4 mediates renin release [45]. EP2 knock-out (KO) mice develop salt 

sensitive hypertension [46]. An anti-apoptotic/pro-survival role of EP2 receptors have been 

implicated in renal cysts in ADPKD [47]. Glomerular size is reduced in EP4, EP2 or EP1 

deficient mice emphasizing the importance of PGE2 in early postnatal period [48]. On the 

other hand EP4 null mice were found protected from the injurious effects of 5/6 

nephrectomy [49]. Prostacyclin receptor KO mice have no phenotype [50] but prostacyclin 

synthase KO mice have elevated levels of PGE2 and a renal phenotype with cysts, sclerosis 

and vascular changes [51]. Although the foregoing section summarizes known changes 

potentially mediated by each receptor, the role of each receptor appears to be influenced by 

several factors including cell-type, study model and experimental conditions. These factors 

seem to result in overlapping and sometimes contradictory findings. Thus, assigning a 

definite role for each receptor would require validation in the context of specific disease 

model and experimental settings including gene deletion.

While tensile and shear stress involve distinct mechanisms, interactions between key 

molecules involved in pressure regulation and shear-induced add another level of 

complexity. Release of renin was found to be stimulated by COX-2 and PGE2 mediated by 

EP4 [45]. EETs and HETEs formed by the CYP450 enzymes interact with ANG II 

[52,53,54]. These findings suggest a significant cross-talk and modulatory interaction 

between eicosanoids and the RAAS in glomerular function. Likewise, similarities, 
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differences and cross-talk between EP receptors are also indicated by their effects on blood 

pressure and fertility. Although both EP2 and EP4 are Gs-coupled receptor proteins, they are 

differentially expressed in tissues, and their responses to stimuli are diverse. Additionally, 

genetic background, techniques used for gene deletion, sex hormones may influence the 

observed effects of PGE2 receptors [55].

5. Effect of biomechanical forces on podocytes and PGE2 as a mediator of 

fluid flow shear stress in podocytes

Podocytes provide the most structural resistance to the passage of plasma proteins from 

blood into urine. Podocytes are large terminally-differentiated epithelial cells localized in 

Bowman’s space. Podocytes are characterized by an elaborate actin cytoskeleton and 

associated proteins such as nephrin, podocin, synaptopodin and podoplanin. With the cell 

body lies freely exposed within the Bowman’s space, podocytes anchor on the GBM-

covered capillary loops through primary processes that branch into foot processes and form 

slit pore junctions by interdigitating with foot processes from adjacent podocytes. Slit pore 

junctions restrict the passage of plasma macromolecules into Bowman’s space (Figure 1C) 

[56]. The low/absent mitotic activity, large cell body, location in Bowman’s space and 

vulnerability to tensile stress and FFSS make intact podocytes a critical but fragile 

component of the glomerular barrier function [57,58].

Recent reports from others have emphasized the significance of podocyte vulnerability to 

persistent capillary stretch and FFSS. Kritz and Lemley observed that capillary stretch is 

largely experienced at slit junctions between foot processes. In parallel, the cell body and 

primary processes of podocytes provide large area for sensing and transmitting the effects of 

FFSS which causes structural and functional changes within the cells. Increased 

biomechanical forces associated with hyperfiltration may contribute to podocyte detachment 

[59].

(A) Potential temporal difference in tensile stress and FFSS

Based on results from cell culture and animal models we have proposed that shear stress on 

podocytes due to increased ultrafiltrate flow is an important component of hyperfiltration-

induced glomerular injury [4,25,33,60]. Thus, hyperfiltration can be visualized as a 

continuum with its early effects mediated by shear stress due to increased ultrafiltrate.

Persistent increase in tensile stress gradually overcomes impedance posed by the GBM and 

increasingly adds to the effects of hyperfiltration [Figure 3]. Other investigators have also 

emphasized the significance of shear stress in damage and loss of podocytes [59,61]. It is 

noteworthy that children born with a solitary kidney generally develop hypertension, 

albuminuria and/or decreased eGFR during late adolescence/young adulthood suggesting 

that FFSS drives the early loss of glomerular function in these children.

Such observations raise the possibility that early effects of hyperfiltration in some conditions 

may be largely due to effects of FFSS on podocytes. Endothelial fenestrae and GBM may, in 

part, dampen the transmission of capillary stretch before it reaches podocytes. Thus, 

capillary stretch during early hyperfiltration may cause insignificant tensile stress to 
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podocyte structures covering the capillary. This would imply that tensile stress makes a 

significant impact on podocytes only at later stages when capillary stretch overcomes the 

impedance posed by the GBM.

(B) Effects on podocyte morphology and proteins

Studies using cultured podocytes have begun to shed light on the differences between the 

mechanism(s) involved in the cellular effects of tensile stress and FFSS. Briefly, tensile 

stress decreases transverse actin fibers and increases radial fibers [57]. Tensile stress was 

shown to upregulate the expression of secreted protein acidic and rich in cysteine (SPARK 

i.e. Osteonectin) [62] and, of osteopontin [63,64]. Both proteins are mechanoprotective and 

decrease cell detachment caused by tensile stress. Cell stretch induces signaling by p38 

MAPK, ERK1/2 and JNK but not AKT and GSK3β [21,62, 64–68]. These observations 

require further investigation to confirm the role of and interaction(s) among signaling 

molecules.

In contrast, actin cytoskeleton forms a cortical ring structure in podocytes exposed to FFSS 

[33]. We also detected increased PGE2 in FFSS-treated podocytes that was blocked by 

indomethacin [33]. FFSS increased COX-2 expression without altering COX-1 expression. 

However, FFSS resulted in upregulated the expression of EP2 but not EP4 [60].

(C) Effect on glomerular protein permeability

Podocytes are key constituents of the filtration barrier and changes in cellular structure 

would be reflected in filtration barrier characteristics. We used an in vitro assay to assess the 

effect of FFSS on glomerular albumin permeability as an indicator of filtration barrier 

characteristics. Further work to determine a direct effect of FFSS on intact glomerular 

filtration barrier showed increased albumin permeability in isolated glomeruli following 

FFSS [25]. These findings are in accordance with previously reported increase in albumin 

permeability in glomeruli incubated with PGE2 [69]. Recent updates show that COX2-

PGE2-EP2 axis with the activation of AKT- GSK3β- β catenin and c-src-PLD-mTOR are 

considered mediators of the effects of FFSS [61].

(D) Effects on signaling mediators

Other investigators showed that tensile stress activates arachidonic acid metabolism through 

upregulation of COX-2 expression without changing COX-1 expression. Induction of 1–8% 

stretch caused a small increase in cAMP levels that was enhanced by exogenous PGE2. 

Parallel experiments showed that addition of PGE2 to cells immediately after stretch also 

increased cAMP production. Tensile stress increased the expression of EP4 receptor of PGE2 

[21,66,67]. Activation of Gq-coupled signaling was also found to result in podocyte injury 

[68]. These observations support the role of COX-2 and EP4 in tensile stress-induced 

cellular signaling without an increase in PGE2.

(E) Effects on mouse models

Observations on the role of COX2-PGE2-EP2 pathway using cultured cells and isolated 

glomeruli were confirmed in mouse models of hyperfiltration. We used two different models 

of reduced functional nephron mass namely, unilaterally nephrectomized mice and mice 
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born with low nephron number. Unilaterally nephrectomized sv129 mice as well as Os/+ 

mice born with low nephron number showed albuminuria and increased glomerular 

expression of COX-2 enzyme and PGE2 receptor EP2 proteins [25,60].

Thus, podocytes respond to tensile stress and FFSS using distinct receptors and signaling 

mechanisms involving PGE2. Biomechanical forces have been extensively studied in 

endothelial cells for their role in homeostasis, vascular remodeling and cardiovascular 

diseases. Effects of biomechanical forces on endothelial cells summarized in books [e.g. 70, 

71] are beyond the scope of this brief discussion. On the other hand, evidence for a role of 

PGE2-initiated signaling in mechanotransduction of shear stress in other epithelial cells such 

as osteocytes in the bone and tubular epithelial cells in the nephron is currently accumulating 

in parallel with our findings using podocytes.

6. PGE2 as a mediator of fluid flow shear stress in osteocytes

Osteocytes, epithelial cells derived from osteoblast lineage, are embedded in mineralized 

bone matrix and function as the major mechanosensory cells in bone tissue. Osteocytes, like 

podocytes, are terminally differentiated and express podoplanin. Cytoplasmic processes 

(dendrites) from osteocytes traverse within the canaliculi of mature bone and connect with 

other osteocytes and with cells on bone surface through adhesion molecules and gap 

junctions. Computational modeling suggests that FFSS causes greater deformation of 

intracellular structures compared to stretch in osteocytes [72].

Several molecules/pathways involving nitric oxide [73], ATP [74], intracellular calcium [75] 

and COX-2 [76] have been identified in osteocyte response to stress. One model outlines a 

release of PGE2 via calcium fluxes involving integrins and the cytoskeleton [77]. Another 

model describes FFSS-induced release of ATP that binds to P2Y and P2X7 purinoceptors 

resulting in Ca+2 mobilization and PGE2 release, respectively [78].

As with podocytes, the effects of mechanical stretch and FFSS in osteocytes are mediated 

through distinct pathways [72]. FFSS on osteocytes results in increased production of PGE2, 

and increased expression of COX-2 and EP2 but not EP4 [79]. FFSS-induced release of 

PGE2 activates EP2 in osteocytes leading to activation of the AKT-GSK3β-β-catenin 

pathway and, to a lesser degree, of the cAMP-PKA pathway [80–83]. Thus, osteocytes sense 

mechanical strain and release PGE2 which acts in a paracrine/autocrine fashion to engage 

EP2 followed by GSK-3β phosphorylation and inactivation resulting in increased 

intracellular β-catenin that is translocated to the nucleus.

Similarities between podocytes and osteocytes in their responses to FFSS suggest that 

PGE2-EP2-Wnt/β-catenin signaling maybe a conserved mechanism for responding to 

mechanical stress in wider biological systems.

7. PGE2 as a mediator of flow-induced shear stress in renal tubular cells

As in podocytes, tensile stress and shear stress induce distinct effects on the tubular segment 

of the nephron. Biomechanical forces secondary to tubular flow regulate sodium and 

potassium transport in renal epithelial cells [84]. Increased tubular urine flow caused by 
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diuretics and extracellular isotonic volume expansion causes circumferential stretch and 

shear stress on tubular cells and induces segment-specific signaling changes. Increased flow 

in cortical collecting duct results in greater sodium reabsorption and potassium secretion 

into urine. Circumferential stretch applied to cortical collecting duct decreases PGE2 release 

while FFSS increases PGE2 [85,86]. FFSS but not stretch upregulates COX-2, neutral 

sphingomyelinase, endothelin, phospho-ERK and phospho-p38 in cortical collecting duct 

cells [85–89]. Cilia or microvilli act as mechanosensors of shear and alter intracellular 

calcium resulting in cPLA2 activation [88,90] in renal cortical collecting duct principal and 

intercalated cells [85,91]. In proximal tubular cells, cyclical stretch results in ERK-

dependent release of arachidonic acid [92] and FFSS promotes cytoskeletal re-organization 

by redistributing stress fibers from the basolateral membrane to apical surface and forming 

new apical junctional complexes [93,94].

These studies on tubular cells also support the differences in the mechanism of tensile stress 

and shear stress. Here again, PGE2 causes a significant change in cellular responses to shear 

stress. Thus, it is apparent that podocytes, osteocytes and tubular epithelial cells invoke 

COX2-PGE2 in response to biomechanical forces. While EP2-Wnt/β-catenin signaling seem 

to be critical in podocyte and osteocytes, p38 MAPK and ERK signaling seems to be utilized 

by tubular epithelial cells. These examples serve to support the occurrence of a common 

mechanism of cellular response to biomechanical forces in diverse epithelial cells.

8. Hyperfiltration and eicosanoids in kidney disease

Loss of functional nephrons due to developmental defects, hereditary disorders, surgical 

ablation, kidney donation, acute kidney injury and systemic diseases results in 

hyperfiltration leading to further damage to and loss of functional nephrons. Thus, adaptive 

hyperfiltration begets more hyperfiltration and eventually becomes maladaptive and leads to 

progression of CKD (Figure 4). Glomerular hyperfiltration is considered to be a major factor 

in renal injury from diabetes, hypertension and obesity, and a contributing factor in 

secondary focal segmental glomerulosclerosis [19]. The following paragraphs summarize 

the significance of hyperfiltration and eicosanoids in animal models and human diseases.

Animal models are commonly used to study the effect of hyperfiltration on glomerular 

function and renal disease. Several factors such as genetic characteristics, experimental gene 

manipulations, target cells and surgical manipulations need to be considered for selecting 

appropriate models to study expression and function of each receptor type [95–98]. Rat and 

mouse models have been used extensively to determine changes in arachidonic acid 

metabolism in models of acute and chronic kidney diseases. Synthesis of PGE2, prostacyclin 

(PGI2) and expression of COX-2 are increased in animal models of glomerular 

hyperfiltration, including subtotal nephrectomy [1,99–107], high protein intake [108,109], 

diabetes [110–116], hypertension [1,113,117] and obesity [109, 118–120]. A recent review 

suggests that microsomal prostaglandin E synthase (mPGES-1) contributes to reduction in 

renal function, urine concentrating ability and elevation in BP [121]. Renal function may 

also be affected by treating many of the conditions mentioned. For example, sodium glucose 

co-transporter 2 (SGL T2) inhibitors used for treating type 2 diabetes may benefit renal 

function through a slight reduction in blood pressure [122].
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(A) Congenital anomalies of the kidney and urinary tract (CAKUT)

Hyperfiltration appears to be the main reason of initial progression of CKD in children born 

with a solitary kidney or other CAKUT. Between 20% and 40% of children born with a 

solitary kidney develop ESRD as young adults, with manifestations of renal injury starting 

only at ~15 years of age [123,124]. Preliminary work in our laboratory using liquid 

chromatography-mass spectrometry analysis showed increased urinary PGE2 (p=0.14) and 

decreased PGI2 (p=0.04) in this small group of children with a solitary kidney (Table 1).

(B) Surgical resection resulting in solitary kidney

Fifteen healthy humans had a significant increase in GFR, effective renal plasma flow 

(ERPF), urine flow, sodium and potassium excretions, urinary excretion rate of PGE2 and 6-

keto prostaglandin F1 alpha (6-keto PGF1 alpha) in the remaining kidney (p<0.01) at 10 

days after unilateral nephrectomy. Indomethacin administered at 75 mg/day for 3 days 

abolished the increase in GFR, ERPF and sodium excretion with reduced urinary excretion 

rate of PGE2 and 6-keto PGF1 alpha but not the increase in urine flow and potassium 

excretion. These findings suggest that renal prostaglandins may play a role in renal 

functional adaptation following unilateral nephrectomy [125].

(C) Kidney donors

Approximately a third of all renal transplants are obtained from living donors [126]. 

Currently there are ~50,000 individuals who have donated one kidney and their number 

increases each year by ~5000 [127,128]. Kidney donors have increased risk of developing 

end stage renal disease (ESRD) with a median period of ~15 years after kidney donation 

[129]. This suggests that the conditions remain benign for a long time and that younger 

donors (<35 years) would be at a greater lifetime risk for ESRD [130,131]. Likewise, 

hyperfiltration would be a key determinant of long term outcome of renal function in 

transplant recipients who face additional risk due to potential adverse effects of post-

transplantation medications.

Examples from animal studies and observations in human subjects suggest that eicosanoids 

play a role in mediating the effects of biomechanical forces associated with hyperfiltration 

that remains a serious challenge in the management of kidney disease.

9. Amelioration of hyperfiltration-induced glomerular dysfunction

COX inhibitors, prostanoids or their analogs have been used for minimizing the effect of 

hyperfiltration in different settings including hypertension and diabetes.

(A) Treatments to modulate prostanoid levels

Nonsteroidal anti-inflammatory drugs (NSAIDs) reduce intractable proteinuria [132]. 

However, NSAIDs also cause loss of renal function. Therefore, these drugs are not popular 

as first or second line of treatment. Proteinuria is reduced by COX inhibition from NSAIDs 

drugs, and this improvement is associated with decreased PGE2 excretion [133,134]. 

NSAIDs that reduce renal PGE2 excretion also decrease proteinuria, whereas sulindac which 

does not influence PGE2 levels has no impact [135–137].
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Prostacyclin analog Beraprost-Na delayed the doubling of creatinine in 5/6 rat nephrectomy 

model [138], anti-GBM model [138,139] and has a possible effects in humans with chronic 

glomerulonephritis [140]. Urinary PGI2 showed no relationship with the development of 

hemolytic uremic syndrome and was not protective [141]. PGE1 infusion reduced 

albuminuria and proteinuria in diabetic nephropathy in six studies included in Cochrane 

Review [142]. PGE1 infusion was not helpful in 8 adults with CKD [143] or in 9 adults with 

GN [144] but PGE1 with ACEI was helpful in 52 adults with CKD [145].

(B) Treatments directed at the renin angiotensin aldosterone system (RAAS)

RAAS antagonists are the major class of drugs currently used to treat hyperfiltration-

mediated injury in progression of CKD. However, ACEI and ARBs were not effective in 

delaying the progression of disease in children with CAKUT in ItalKid study [146]. RAAS 

blockade is also not the standard of care in children with CAKUT as evident from the NIH 

CKiD study where fewer than 50% of children were on the treatment [147]. Thus, there is a 

need to further understand the basic mechanism of hyperfiltration that could complement the 

RAAS-mediated changes from early to late stages of the disease.

10. Summary

Hyperfiltration is considered a common underlying mechanism for progression of CKD 

associated with a number of diseases. Tensile stress and fluid flow shear stress are 

biomechanical forces associated with hyperfiltration. The effect of these biomechanical 

forces on glomerular podocytes and cellular mediators their effects are not clear. ACE 

inhibitors and ARBs are commonly used as renoprotective drugs to delay progression of 

CKD. However, these drugs are not favored for treating progression of CKD in children with 

a solitary kidney or transplant donors where hyperfiltration is the dominant cause of renal 

dysfunction. Therefore, effects of tensile stress and shear stress on podocytes need to be 

addressed for a comprehensive approach to treat CKD. Several lines of evidence 

demonstrate that tensile stress and shear stress invoke distinct mechanisms in podocytes and 

other cells. In this regard, we have shown that fluid flow shear stress upregulates COX2-

PGE2-EP2 in podocytes. Similar signaling mechanisms appear to mediate the effect of 

biomechanical forces in other epithelial cells as well. Further research on tensile and shear 

stress-induced cellular pathways that address interaction between PGE2 receptors may lead 

to identification of additional targets for novel treatments that will complement the current 

RAAS therapy.
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Highlights

• Hyperfiltration is responsible for progression of CKD in several diseases.

• Tensile stress and fluid flow shear stress (FFSS) mediate the effects of 

hyperfiltration on podocytes.

• Tensile stress and FFSS induce distinct changes in podocytes via separate 

mechanisms.

• FFSS activates COX2-PGE2-EP2 axis in podocyte, osteocyte and tubular 

epithelial cell.

• Current therapy does not address podocyte injury that stems from FFSS in 

early hyperfiltration.
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Figure 1. 
(A) Luminal aspect of the glomerular capillary showing highly porous sieve-like structure. 

Capillary endothelial cell lining acts a highly fenestrated porous filter and plasma filtrate 

moves to podocyte slit junctions through the basement membrane. (B) Outer aspect of the 

glomerular capillary showing branches from podocyte processes. These branches then 

further branch into foot processes that interdigitate to form slit junctions that tightly cover 

the capillary surface and restrict the passage of plasma macromolecules into Bowman’s 

space. (C) Glomerular hyperfiltration damages podocytes in Bowman’s space. Podocytes 

cover capillary loops by interdigitating foot processes. Blood flow in the capillary causes 

tensile stress due to circumferential stretch at the capillary bends (biaxial) in the direction of 

blood flow and at 90° (uniaxial) to the direction of blood flow, while the resulting flow of 

ultrafiltrate causes fluid flow shear stress.
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Figure 2. 
Prostaglandin E2 (PGE2) functions in an autocrine/paracrine manner through the four G-

protein coupled receptors. Localization, expression and main signaling pathways of EP1, 

EP2, EP3 and EP4 are outlined.
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Figure 3. 
Hyperfiltration, a result as well as a cause of glomerular dysfunction, can be visualized as a 

continuum. Overtime, net glomerular filtration rate (GFR) decreases with increasing loss of 

renal function, but results in increasing single nephron GFR (SNGFR) and increasing injury 

to podocyte structure and function from increasing tensile and shear as indicated by vertical 

arrows. Early effects are likely due to increased ultrafiltrate flow which is joined by tensile 

stress caused by increasing capillary stretch.
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Figure 4. 
Reduction in the number of functional nephrons occurs in many conditions and results in 

hyperfiltration. Hyperfiltration is considered the underlying cause of CKD leading to 

secondary focal segmental glomerulosclerosis (FSGS) and end-stage renal disease (ESRD). 

A constellation of diseases result in decreased number of functional nephrons. Congenital 

anomalies of kidney and urinary tract (CAKUT) including solitary kidney and low nephron 

number endowment are the main reasons of CKD in children. Unilateral nephrectomy for 

removing malignant tumors or for kidney donation causes an immediate loss of 50% of 

nephrons. Diabetes, hypertension or obesity may gradually lead to loss of functional 

nephrons. AKI due to a variety of causes may result in loss of functional nephrons.
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