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Abstract
Purpose Poor adherence to dietary/behaviour modifications as interventions for hypercholesterolemia in paediatric patients often
necessitates the initiation of statin therapy. The aim of this study was to develop a joint population pharmacokinetic model for
simvastatin and four metabolites in children and adolescents to investigate sources of variability in simvastatin acid exposure in
this patient population, in addition to SLCO1B1 genotype status.
Methods Plasma concentrations of simvastatin and its four metabolites, demographic and polymorphism data for OATP1B1 and
CYP3A5 were analysed utilising a population pharmacokinetic modelling approach from an existing single oral dose (10 mg <
17 years and 20 mg ≥ 18 years) pharmacokinetic dataset of 32 children and adolescents.
Results The population PK model included a one compartment disposition model for simvastatin with irregular oral absorption
described by two parallel absorption processes each consisting of sequential zero and first-order processes. The data for each
metabolite were described by a one-compartment disposition model with the formation and elimination apparent parameters
estimated. Themodel confirmed the statistically significant effect of c.521T>C (rs4149056) on the pharmacokinetics of the active
metabolite simvastatin acid in children/adolescents, consistent with adult data. In addition, age was identified as a covariate
affecting elimination clearances of 6-hydroxymethyl simvastatin acid and 3, 5 dihydrodiol simvastatin metabolites.
Conclusion The model developed describes the pharmacokinetics of simvastatin and its metabolites in children/adolescents
capturing the effects of both c.521T>C and age on variability in exposure in this patient population. This joint simvastatin
metabolite model is envisaged to facilitate optimisation of simvastatin dosing in children/adolescents.

Keywords Simvastatin . Population pharmacokinetics . Children and adolescents . Metabolites .Modelling

Introduction

Simvastatin (SV) is a 3-hydroxy-3methyl-glutaryl coenzyme
A (HMG-CoA) reductase inhibitor licensed for the treatment
of lipid disorders including hypercholesterolemia [1].
Worldwide, statins are commonly prescribed and have proven
to be effective in global reduction of risk factors related to
major cardiovascular events [2, 3]. Simvastatin is considered
to be safe and well tolerated; however, skeletal muscle toxic-
ity, ranging from myalgia to rhabdomyolysis, can lead to sig-
nificant morbidity and mortality [4].

SV pharmacokinetics (PK) is complex; it is administered as
an inactive lactone prodrug that is converted to the active form
simvastatin acid (SVA) by hydrolysis or enzymatically by
carboxylesterases (in the liver and small intestine) and by
paraoxonases in plasma [5, 6]. SVA can also be converted
back to SV via an acyl-glucuronide intermediate. In adults,
both SVand SVA are extensively metabolised by CYP3A4/5
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to form 6-hydroxymethyl SV (HMSV) and 6-hydroxymethyl
SVA (HMSVA), respectively [6, 7]. While HMSV can be
further metabolised to form HMSVA, HMSVA can also be
back-converted to HMSV [6]. In addition to SVA, other acid
metabolites (such as HMSVA) have been reported to possess
pharmacological HMG-CoA reductase activity [8].

The genetic polymorphisms in a non-synonymous single-
nucleotide (SNP), rs4149056 (SLCO1B1 c.521T>C), coding
for hepatic uptake organic anion transporting polypeptide,
OATP1B1, has been reported to markedly increase systemic
exposure of SVA in adults and is therefore a risk factor for
muscle toxicity [9–11]. Consequently, a guideline for dosing
SV when c.521T>C genotype is available has been proposed,
with the recommendation of a reduction in dose or an alterna-
tive statin for variant allele patients [10].

Tsamandouras et al. [5] developed a joint population PK
model for SV and SVA in adults that incorporated multiple
genetic polymorphisms and clinical/demographic factors as
covariates. This model confirmed clinically known effects of
genetic variants (c.521T>C) and established associations be-
tween other genetic variants such as rs776746 (CYP3A5),
rs12422149 (SLCO2B1), rs2231142 (ABCG2), rs4148162
(ABCG2), rs4253728 (PPARA), and rs35599367 (CYP3A4)
and SV and SVA pharmacokinetic parameters. It also
highlighted combinations of risk factors important for the
PK of either SV and/or SVA that can explain the myopathy
risk beyond c.521CC genotype.

As with adults, statins represent the mainstay of hypercho-
lesterolemia treatment when lifestyle modifications fail in
children [12]. With enhanced screening of hypercholesterol-
emia during childhood, and the known challenges with adher-
ence to behavioural/dietary modifications, paediatric statin
use is increasing [13]. Despite generally recognised differ-
ences in drug disposition in the growing child relative to adult,
current paediatric SV dosage recommendations are extrapo-
lated from existing adult data [14]. In a recent clinical study in
children/adolescent [15], non-compartmental analysis of the
data showed that each copy of the SLCO1B1 c.521C allele
was associated with a 2.5-fold increase in SVA systemic ex-
posure, an effect that was more pronounced than reported in
adult studies. More importantly, the 9- to 10-fold range of
AUC values noted within the c.521TT and c.521TC
SLCO1B1 genotype groups exceeded the between-group var-
iability, implying that additional factors may contribute to
inter-individual variability in SVA systemic exposure in chil-
dren and adolescents. In addition, 25% of the participants in
the cohort were reported to have negligible SVA exposure.
Using the data from Wagner et al. [15], the current work ex-
tends the analysis to the development of a population PK
model to allow more comprehensive characterisation of SV
and its four metabolites in children and adolescents.
Simultaneous modelling of SV, SVA, and additional two hy-
droxymethyl and one dihydrodiol metabolites aimed to

investigate sources of variability contributing to systemic ex-
posure of both parent drug and metabolites in children and
adolescents and, in particular, to provide insights into the ob-
served high variability in the dose-exposure relationship with-
in c.521TC genotype groups and low/undetectable concentra-
tions of SVA in some patients.

Methods

Data description

The data for this analysis were obtained from a clinical study
conducted at Children’sMercy Hospital, Kansas City [15]. All
patients gave written informed consent. The protocol for the
study was approved by the Children’s Mercy Hospital
Institutional Review Board, in accordance with appropriate
regulatory and Good Clinical Practice guidelines and follow-
ing ethical principles as described in the Declaration of
Helsinki. Details of the study design and demographic details
of the study participants were provided in the original publi-
cation [15]. The study was a single-centre, open-label, single-
dose (oral) genotype-stratified study of SV (10mg 8–17 years;
20 mg ≥ 18 years) in 32 hyperlipidemic children and adoles-
cents including reference c.521TT genotype individuals (n =
15) as well as one (n = 15) or two (n = 2) c.521T>C variant
allele individuals. Serial venous blood samples were obtained
from participants at the following time points: 0, 0.5, 1, 1.5, 2,
3, 4, 6, and 8 h. Plasma concentrations of SV and four other
metabolites, i.e. SVA, HMSV, HMSVA, and 3, 5 dihydrodiol
simvastatin (DHSV), were measured using a validated ultra-
high-pressure liquid chromatography–tandem mass spectro-
metric method [15]. The lower limit of quantification
(LLOQ) for SV and the metabolites was 0.5 nM. Individual
deoxyribonucleic acid (DNA) samples were also genotyped
for SNPs for SLCO1B1 (11187 G>A – rs4149015, c.388A>G
– rs2306283, and c.521T>C – rs4149056) and CYP3A5
(CYP3A5*1D – rs15524, CYP3A5*3 – rs776746, and
CYP3A5*6 – rs10264272) genes. Summary of the data, the
total number of samples, and the fraction below the LLOQ for
each analyte are in the Online Resource.

The structural and statistical model

A population PK model was developed for SVand the metab-
olites using non-linear mixed-effects modelling technique in
NONMEM software (v7.4, ICON Development Solutions,
Ellicott City, MD, USA) with a first-order conditional estima-
tion method with interaction option [16]. Data exploration,
output analysis, and goodness-of-fit (GOF) plots were per-
formed inMATLAB software [17]. The available plasma con-
centration data for SV and four metabolites were log-
transformed for simultaneous analysis. Absorption of SV
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was modelled using two parallel absorption processes, sepa-
rated by a lag time, each consisting of sequential zero- and
first-order processes. This approach was based on a previous
model developed for SV in the adults and to account for irreg-
ular peaks (due to absorption) observed in the profiles [18].
One, two, and three compartment disposition models were
investigated for SV. The structure of the final model for SV
and the metabolites is shown in Fig. 1. The parameters for
each of the analytes are as follows: SV—D1, F1, and ka1 are
the duration of zero-order, fraction of the dose, and first-order
rate constant, respectively, for the first absorption process.
ALAG, D2, F2, and ka2 are the lag time, duration of zero-
order, fraction of the dose, and the first-order rate constant,
respectively, for the second absorption process. VSL and
CLSLe are the volume of distribution and total elimination
parameters. SVA—CLLA, VSVA, and CLSVAe are the forma-
tion, volume of distribution, and total elimination parameters,
respectively. HMSV—CLLH, VHSV, CLEmax, CLEC50, and γ
are the formation, volume of distribution, maximum elimina-
tion, concentration of 50% metabolic rate, and sigmoidicity
parameters, respectively. HMSVA—CLAH and CLSHVSHVA,
VHSVA, and CLHSVAe are the formation from SVA, formation
from HMSV, volume of distribution, and total elimination
parameters, respectively. DHSV—CLLD, VDHSV, and
CLDHSe are the formation, volume of distribution, and total
elimination parameters, respectively.

Since the volumes of distribution of the metabolites are not
structurally identifiable, only apparent parameters were esti-
mated; estimated parameters were the ratio of the formation or
elimination parameters to the total volume of distribution of

the metabolites. This approach allows correct interpretation of
the effect of covariates on both formation/elimination and vol-
ume of distribution parameters during analysis. Random effect
parameters that describe between-subject variability (BSV) in
parameter estimates were modelled assuming exponential dis-
tribution; only variances of the variability were estimated and
correlations between parameters led to convergence and mod-
el instability problems. Residual variability models were used
to describe unexplained differences between log-transformed
data for the analytes and log-transformed model predictions.
The model used for the residual variabilities was the double
exponential error model; this model is equivalent to the com-
bined additive and proportional residual error model on the
normal scale [5, 19]. For some analytes, a time-dependent
model was used to describe their error model; different error
terms were estimated for the absorption phase (0–2 h) and the
elimination phase (2–8 h), detailed in Online Resources.

Due to a significant fraction of the data falling below the
LLOQ (40% for SVA, Online Resource), it was not possible to
treat these values as missing data and exclude the time points
from the analysis. These data points were retained in the anal-
ysis but treated as censored data, and the likelihood of the
model prediction to be indeed below LLOQ was maximised
(M3 method) [19].

The covariate model

The following covariates were explored for inclusion in the
model: age, body weight, gender, height, lean body weight,
body mass index, and six SNPs (three for SLCO1B1 and three

Fig. 1 Structure of the joint
model for simvastatin (SV),
simvastatin acid (SVA), 6
hydroxymethyl simvastatin
(HMSV), 6 hydroxymethyl
simvastatin acid (HMSVA), and
3, 5 dihydrodiol simvastatin
(DHSV)
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for CYP3A5). Initially, empirical Bayes estimates were used
to screen covariates (in the presence of high shrinkage (>
40%), covariates were tested directly); for continuous covari-
ates, a linear regression and for categorical covariates (includ-
ing the SNPs), the ANOVAwas performed to establish possi-
ble association between the covariates and the parameters.
Identified covariates were incorporated in the model for eval-
uation using forward inclusion (change in objective function
value,ΔOFV > 3.84, p ≤ 0.05, 1 degree of freedom) and back-
ward elimination (ΔOFV > 7.88, p ≤ 0.005, 1 degree of free-
dom) procedures. The effect of body size (body weight and
lean body weight) on formation/elimination and volume of
distribution parameters was investigated using an allometric
relationship centred on the median values, with fixed expo-
nents of 0.75 and 1, respectively, or the exponents estimated
from the data. Age was investigated as a covariate using rela-
tionships established by plotting age against empirical Bayes
estimates for parameters. The effect of body size on parame-
ters was retained in the final model only if its inclusion did not
make the model worse, even if it did not improve the model
based on ΔOFV. The effects of SNPs on parameters were
investigated using fractional change relationships [5]. For
each SNP, three different models were investigated: dominant,
recessive, and additive genetic models. With the dominant
model, individuals with two copies of the wild-type alleles
were considered Btypical^ individuals and the reference group
for the analysis, and individuals with at least one variant allele
have a fractional change in parameter estimated from the data.
For the recessive model, only individuals with two copies of
the variant allele were considered different from the rest of the
population, with fraction change in parameter estimated.
Finally, for the additive model, individuals with one or two
copies of the variant allele were considered distinct from each
other, and the fractional change in parameter estimated for
individuals with two variant copies is double the estimated
fractional change for individuals with only one copy of the
variant allele.

Model evaluation

Structural and statistical components of the model were eval-
uated using GOF plots such as observation versus population
(DV vs PRED) and individual prediction (DV vs IPRED), as
well as conditional weighted residual versus population pre-
diction (CWRES vs PRED) and time (CWRES vs TIME).
Visual predictive check (VPC) was used to assess the predic-
tive performance of the final model by simulating plasma
concentration data for 1000 random individuals (for each
dose) using covariate information from the original dataset.
Combinations of covariates for individuals were sampled with
replacement in order to retain the correct covariance structure
of the covariates. A bootstrap (n = 500) analysis was per-
formed to assess the robustness of the parameter estimates

and to obtain the non-parametric confidence intervals on the
final population PK parameter estimates.

Results

In the current study, plasma concentrations of SVand its four
metabolites from 32 children/adolescents were analysed to-
gether with demographic and genotype data. The body
weights of individuals in this study were mostly outside of
the expected range for the age group (Online Resource), in
contrast to the heights. The population PK model that best
described the plasma concentrations of SV, SVA, HMSV,
HMSVA, and DHSV is presented in Fig. 1. Apparent param-
eters for the formation and elimination of SV and the metab-
olites were described by first-order processes using a one-
compartment model. However, elimination of HMSV was
described by a saturable non-linear process using the inhibi-
tory sigmoid Emax model (Imax model). The parameter esti-
mates (identifiable) for the final population PK model are
presented in Table 1, together with the results of the bootstrap
(95% non-parametric confidence intervals). BSVs were re-
moved for some parameters where the estimates were close
to the lower limit (zero) and caused instability during
estimation.

The unexplained variability was described by a double ex-
ponential error model with time dependency for SV, HMSV,
and DHSV (Table 1). Table 2 illustrates the important steps in
the covariate model development, including ΔOFV during
the backward deletion process and the associated p values
for the covariates. The combined effect of the covariates im-
proved the model fitting substantially, as the totalΔOFV was
267.58 compared with the base model. The final population
PK model included the additive effect of c.521T>C on CLLA/
VSVA (both on CLLA and VSVA), age on CLHSVAe and CLDHSe;
the covariate relationships are described by Eqs. 1–4:

CLLA
VSVA

¼ 0:043⋅
1þ rs56⋅0:93ð Þ
1þ rs56⋅−0:37ð Þ ð1Þ

CLSVAe
VSVA

¼ 0:13⋅
1

1þ rs56⋅−0:37
ð2Þ

CLHSVAe
VHSVA

¼ 4:91⋅ 1−
1⋅Age

5:34þ Age

� �
ð3Þ

CLDHSe
VDHSV

¼ 12:9⋅ 1−
0:90⋅Age
6:3þ Age

� �
ð4Þ

where rs56 is a dummy variable that takes the value of 0, 1,
and 2 for individuals that belong to the wild type (TT), het-
erozygous variant (TC), and homozygous variant (CC) geno-
types for SLCO1B1 c.521T>C, respectively.

The GOF plots of the final model are shown in Fig. 2, with
population and individual predictions plotted against observed
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Table 1 Parameter estimates of the final population PKmodel and bootstrap (95% non-parametric confidence interval) for SV, SVA, HMSV, HMSVA,
and DHSV

Drug Parameters Structural model Between subject variability (BSVb)

Estimatea Bootstrap Estimate [shrinkage(%)] Bootstrap

SV D1 (h
−1) 0.069 0.064–0.073 – –

D2 (h
−1) 0.39 0.34–0.42 2.07 [17] 1.75–2.27

ka1 (h
−1) 0.030 0.027–0.032 – –

ka2 (h
−1) 0.41 0.38–0.46 0.41 [0.5] 0.38–0.45

BA* 0.78 0.70 – 0.89 – –
ALAG (h) 0.18 0.17–0.21 1.70 [13] 1.40–2.09
CLSLe/F (L/h) 1300 1210–1450 0.63 [3] 0.53–0.71
VSL/F (L) 110 98.7–114 2.17 [27] 1.59–2.25

SVA CLLA/VSVA (h−1) 0.043 0.04–0.046 0.96 [9] 0.76–1.02
CLSVAe/VSVA (h−1) 0.13 0.11–0.14 0.79 [25] 0.60–0.81
θ561: c.521T>C on VSVA − 0.37 − 0.38 to − 0.35 – –
θ562: c.521T>C on CLLA 0.93 0.86–1.04 – –

HMSV CLLH/VHSV (h−1) 16.1 15–21.5 0.26 [32] 0.23–0.28
CLEmax/VHSV (nM/h) 660 637–967 – –
CLEC50 (nM) 20 17.8–22.8 0.67 [6] 0.58–0.74
γ 0.86 0.83–0.87 – –

HMSVA CLAH/VHSVA (h−1) 0.48 0.39–0.5 0.33 [60] 0.27–0.36
CLHSVAe/VHSVA (h−1) 4.91 4.6–5.1 0.18 [47] 0.12–0.19
CLHSVHSVA/VHSVA (h−1) 0.55 0.52–0.62 0.51 [4] 0.45–0.56
θAGE1: age (Fra) on CLHSVAe 1 (fixed) – – –
θAGE2: age (50%) on CLHSVAe (year) 5.34 4.9–5.5 – –

DHSV CLLD/VDHSV (h−1) 4.11 3.8–5.0 0.29 [34] 0.23–0.29
CLDHSe/VDHSV (h−1) 12.9 12.3–14.2 0.28 [42] 0.22–0.29
θAGE3: age (Fra) on CLDHSe 0.90 0.83–0.94 – –
θAGE4: age (50%) on CLDHSe (year) 6.3 5.9–6.6 – –

Residual Variabilityc

SV eps1SV – – 0.38 0.33–0.44
eps2SV 0.32 0.28–0.35
eps3SV 0.30 0.29–0.33
mSV 0.012 0.011–0.012

SVA eps1SVA 0.26 0.23–0.29
eps2SVA 0.16 0.13–0.16
mSVA 0.22 0.19–0.24

HMSV eps1HMSV 0.29 0.27–0.34
eps2HMSV 0.24 0.22–0.28
eps3HMSV 0.12 0.11–0.28
mHMSV 0.0001 (fixed) –

HMSVA eps1HMSVA 0.18 0.16–0.20
eps2HMSVA 0.1 0.095–0.11
mHMSVA 0.0001 (fixed) –

DHSV eps1DHSV 0.24 0.21–0.27
eps2 DHSV 0.21 0.19–0.23
eps3 DHSV 0.086 0.08–0.09
mDHSV 0.0001 (fixed) –

*F1 = 1/(1 + BA), F2 = BA/(1 + BA)
a Population parameter estimates for a typical individual in the study, 14 years old, 80 kg and homozygous variant CC genotype for the rs4149056
b BSV is expressed as CV (coefficient of variation) calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eω2−1ð Þ

p
c Residual error variability for the analytes were based on the double exponential error model for log-transformed data with time dependency for some
analytes. ln(y) = ln(f +m) + (f/(f +m)ε1 + (m/(m + f))ε2 where y is the observed concentration, f is the model prediction, m is a positively constrained
parameter, and ε1 and ε2 are random errors, assumed to be normally distributed with means of zero and variance of eps1 and eps2, respectively. m is
estimated or fixed to an estimate around or lower than the LLOQ in order to minimise bias

SV—eps1SV and eps2SV correspond to 0–2 h and 2–8 h for ε1 and eps3SV and mSV to ε2 and m, respectively. SVA—eps1SVA, eps2SVA, and mSVA

correspond to ε1, ε2, andm respectively. HMSV—eps1HMSVand eps2HMSV correspond to 0–2 h and 2–8 h for ε1 and eps3HMSVand mHMSV to ε2 andm,
respectively. HMSVA—eps1HMSVA, eps2HMSVA, and mHMSVA correspond to ε1, ε2, andm, respectively. DHSV—eps1DHSVand eps2DHSV correspond to
0–2 h and 2–8 h for ε1 and eps3DHSV and mDHSV to ε2 and m, respectively

Eur J Clin Pharmacol (2019) 75:1227–1235 1231



plasma concentrations. The VPC (1000 simulations) for indi-
viduals that received 10 mg in the original dataset is shown in
Fig. 3. These plots also include the fraction of samples below
LLOQ at each time point for SVand the metabolites. The VPC
for 10-mg dose was also stratified by c.521T>C genotype for
comparison of observed plasma concentrations and simulated
median profile for each of the genotypes (Online Resource).
Other GOF plots, CWRES vs PRED and CWRES vs TIME,
are presented in Online Resource, together with the VPC for
20-mg dose and individual plasma concentration-time data
with the fitted profiles (population and individual fits).
These plots showed that the developed population model for
SV and the metabolites adequately describes the observed
plasma concentrations in children and adolescents both in
terms of central tendency and variability in the data, as well
as fractions below the LLOQ. However, there is slight over-
prediction of variability for HMSV and HMSVA. Figure 4
illustrates empirical Bayes estimates of parameters that have

been significantly influenced by covariates in the final model
plotted against the covariates (CLLA/VSVA vs rs41496056,
CLHSVAe/VHSVA vs age, and CLDHSe/VDHSV vs age).

Based on the adult SV-SVA population PK model [5], the
effect of c.521T>C genotype was explored on the parameters
associated with both the formation and the elimination of
SVA, namely CLLA, VSVA, and CLSVAe. Since only apparent
parameters are estimated in the model, the effect of c.521T>C
can only be incorporated separately on two of the parameters.
In this analysis, the most significant combination was CLLA
and VSVA; the removal of the covariate led to ΔOFV
(increase) of 38.75 (p value < 0.001, 2 degrees of freedom).
This significant and pronounced effect of the covariate on
plasma concentrations of SVA is also illustrated in the VPC
plots (Online Resource), where observed and simulated medi-
an plasma concentration profiles resulted in up to 6.3-fold
higher exposure in c.521CC subjects compared with that in
c.521TT individuals.

The final model also included a significant effect of age on
CLHSVAe and CLDHSe elimination parameters for the HMSVA
and DHSV metabolites. The removal of this covariate led to
substantial ΔOFV (increase) of 127.33 and 101.50 for
CLHSVAe (p value < 0.001, 2 degrees of freedom) and
CLDHSe (p value < 0.001, 2 degrees of freedom), respectively.
The covariate model suggests that for both HMSVA and
DHSV, elimination clearance parameters decreased with age:
60% and 49% as age increased from 4 to 18 years for CLHSVAe
and CLDHSe, respectively. These reductions followed a sig-
moid Imax function with the fraction of maximum reduction

Table 2 Summary of important steps in the SV metabolite covariate
model development

Model OFV ΔOFV df p value

Final model − 802.89 – – –

Age on CLDHSe − 701.39 101.50 2 < 0.001

Age on CLHSVAe − 674.56 127.33 2 < 0.001

c.521T>C on CLLA − 785.04 17.85 1 < 0.001

c.521T>C on VSVA − 781.99 20.90 1 < 0.001

Fig. 2 Goodness-of-fit (GOF) plots for the final population PK model. Population prediction (PRED) vs observed data (DV) and individual prediction
(IPRED) vs observed data (DV) for SV, SVA, HMSV, HMSVA, and DHSV. The dark continuous lines are the line of unity
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possible fixed at 1 for CLHSVAe and estimated to be 0.90 for
CLDHSe; a 50% decrease occurred at 5.3 years for CLHSVAe
and 6.3 years for CLDHSe.

Discussion

The population PKmodel of SVand its metabolites in children
and adolescents identified genetic polymorphism in
SLCO1B1 c.521T>C as an important covariate on SVA sys-
temic exposure, consistent with the results obtained in adults.
The model successfully captured the more pronounced effect
of this genotype in children and large variability in the dose-
exposure relationship within SLCO1B1 c.521T>C genotype
groups. The SV metabolite model has provided further under-
standing of possible metabolic elimination of SV and its me-
tabolites in children, especially the formation of HMSVA from

SVA which may contribute to low/undetectable plasma con-
centrations of SVA in some individuals. Such extensive clin-
ical data for multiple SVmetabolites or modelling efforts have
not been reported in the adults.

In contrast to adult SV models, a one-compartment model
was used to describe the PK of SV in children/adolescents due
to sampling restricted to 8 h in this study, as opposed to 24–
36 h in the adult studies; this may also have implications for
parameter estimates obtained from this analysis [5, 15, 18].
The effect of sampling time is evident in the median plasma
concentration-time profile for SV where a significant amount
of the drug is still in the body when sampling stopped at 8 h
(Fig. 3), making estimation of a second compartment from the
data challenging. A one-compartment disposition model and
first-order rates were also used to describe the PK of the me-
tabolites, except for the elimination of HMSV. The latter was
described by a saturable process, possibly due to either

Fig. 3 Visual predictive check (VPC) of the final model following a 10-
mg oral dose of SV. In the upper panels, open circles represent the ob-
served plasma concentration data, the grey areas are the areas between 5th
and 95th percentiles, the dark solid lines are the 50th percentiles, and the
horizontal dark dashed lines are the LLOQ for the analytes. In the lower

panels, the open circles represent the observed fraction of samples below
LLOQ, the grey areas are the simulated 90% confidence intervals of the
fraction below LLOQ, and the solid dark lines are the simulated median
fraction below LLOQ at each time points for the analytes

Fig. 4 Empirical Bayes estimates
versus covariates, showing
covariate effects in the final
population PK model; CLLA/
VSVAversus c.521T>C, CLHSVAe/
VHSVA versus age, and CLDHSe/
VDHSV versus age. For
continuous covariate (age), the
dark dashed line is a locally
weighted scatter plot smooth
(lowest) line for the data
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potential saturation of elimination or formation of the metab-
olites which is being estimated through the elimination of the
metabolite as the rate-limiting step.

The model incorporated the formation of HMSVA from
both SVA and HMSV via CYP3A4/5 metabolism and hydro-
lysis, respectively, based on in vitro evidence in adults [6].
These multiple routes of HMSVA formation implemented in
the model allowed adequate prediction of SVA concentra-
tions. The assumption that HMSVA is not formed solely from
SVA was also reinforced by the fact that the time at which
maximum concentration (Tmax) was observed for this metab-
olite was earlier than SVATmax, but later than HMSV Tmax.
Although the formation of the acid metabolites is not a one-
way process, back conversion via acyl-glucuronide was not
considered due to model identifiability problems. In addition,
back conversion of SVA to SV had no significant improve-
ment on objective function and diagnostic plots in the model
developed from adult studies [5].

In addition to VSVA, the model indicated that c.521T>C
significantly affects SVA formation parameter (CLLA) rather
than CLSVAe, as reported in adult population PK model [5].
This result is unexpected since SV uptake into the liver is a
predominantly passive process and the formation of SVA from
SV in the liver is therefore not expected to be affected by
c.521T>C genotype. This outcome of the modelling could
be due to the limitations imposed by the shorter sampling
duration in this study, thereby making it difficult to introduce
covariates on the parameters and estimate CLSVAe accurately.

The effect of age on HMSVA and DHSV elimination clear-
ances (CLHSVAe and CLDHSe) is another important finding of the
current work; these present additional sources of variability in
SVA systemic exposure to c.521T>C in hypercholesterolemic
children and adolescents. Body weight and lean body weight
were both found to have no significant effect on any model
parameters both with the exponents on CL and V fixed or esti-
mated; in fact, they made the model worse by increasing the
objective function when included. It was to some extent unex-
pected to see a reduction in the parameter values (absolute) with
increasing age, since enzyme maturation and renal function are
generally expected to increase with age, reaching the adult level
at some point during development. The children in this study
were between 8 and 20 years old; therefore, clearance was ex-
pected to be fairly constant or increase with age. For most for-
mation and elimination parameters, this was the case, with the
exception of CLHSVAe andCLDHSe. The fact that most children in
this study were overweight (Online Resource) may rationalise
unexpected trends observed with age, as overweight and obese
children and adolescents have been reported to have higher ab-
solute clearance for midazolam and metformin compared with
adults with normal body weight and obese adults [20, 21].

Out of the six SNPs investigated in this work, only
c.521T>C showed a significant effect on the SVA plasma
concentration, analogous to the effect on SVA plasma

concentrations in adults [5]. None of the other SNPs for either
OATP1B1 or CYP3A5 showed a significant effect on the PK
of SVor any of its metabolites. One of the SNPs analysed in
this study (CYP3A5*3 – rs776746) was reported to be a sig-
nificant covariate for SV-SVA conversion in adults [5]; how-
ever, this was not the case here. This finding may be attributed
to the sample size and the proportion of subjects in different
CYP3A5 genotype groups (zero, four, and 28 individuals with
AA, AG, and GG, respectively; Online Resource) and there-
fore the lack of power to identify the effect of this SNP. During
the initial screening of the covariates with the empirical Bayes
estimates of the basic model, CYP3A5*3 showed a marginal-
ly significant effect on the conversion of SV to DHSV (for-
mation parameter for DHSV); however, this effect was not
evident once age was considered as a covariate. Age, body
weight, and lean body weight also showed initial significant
effects (marginal) on absorption parameters such as D2, ka2,
and ALAG; however, these effects were not apparent once
other covariates (e.g. c.521T>C and age) were introduced in
the model. In contrast to the adult population model [5], age
was not a significant covariate for SV bioavailability, which
may be due to the age range of this cohort and the sample size.
Ethnicity was another important covariate incorporated in the
adult SV-SVA population PK model [5]; Japanese and other
Asians have been reported to be associated with higher clear-
ance of SV and therefore higher exposure of SVA compared
with other individuals but this could not be investigated here
as majority (n = 30) of the children and adolescents were of
the Caucasian descent.

The population PK model developed in this study incorpo-
rates also information from data below LLOQwhich is higher
compared with most adult studies (0.25 nM) [5]. The use of
the M3 method to maximise the likelihood of the model to
predict plasma concentration below LLOQ allowed the model
to adequately describe the data (Fig. 3).

The population PK model developed in this work is ade-
quate for the intended purpose, i.e. to investigate the effect of
common SNPs and demographic covariates on the PK of SV
and four metabolites in children and adolescents for possible
dose optimisation. This model is entirely data-driven and
based on a compartmental model framework; the empirical
nature of this approach can be considered a limitation. The
short duration of sampling for this study which has implica-
tion for parameters estimated in the current analysis, also
means extrapolated of this model beyond concentration range
observed in the current analysis, has to be done with caution.
Important mechanistic information such as pre-systemic for-
mation of the metabolites as well as drug concentrations at the
site of efficacy (liver) and toxicity (muscle) could not be ade-
quately accounted for. A model with a physiologically based
structure is required to predict SVA tissue exposure and assess
consequences of the variability on the pharmacodynamics of
this drug in the children/adolescents.
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In summary, this study reports quantitatively the significant
effect of SLCO1B1 c.521T>C and age on the PK of SVand its
metabolites in children and adolescents. The population mod-
el described inter-individual variability in the exposure of par-
ent drug and all metabolites in the children. In particular, the
model captured cohort of the paediatric participants (25%)
where SVA systemic exposure was negligible. It is envisaged
that the model can be applied for Monte Carlo simulations
using identified covariate relationships to match plasma con-
centrations that have been linked to efficacy in adults. Despite
a relatively small sample size, the modelling work presented
here represents an important step towards optimisation of SV
dosing in the children and adolescents.
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