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Abstract
Sepsis is a common cause of death, but outcomes in individual patients are difficult to predict.
Elucidating the molecular processes that differ between sepsis patients who survive and those who
die may permit more appropriate treatments to be deployed. We examined the clinical features,
and the plasma metabolome and proteome of patients with and without community-acquired
sepsis, upon their arrival at hospital emergency departments and 24 hours later. The metabolomes
and proteomes of patients at hospital admittance who would die differed markedly from those who
would survive. The different profiles of proteins and metabolites clustered into fatty acid transport
and β-oxidation, gluconeogenesis and the citric acid cycle. They differed consistently among
several sets of patients, and diverged more as death approached. In contrast, the metabolomes and
proteomes of surviving patients with mild sepsis did not differ from survivors with severe sepsis
or septic shock. An algorithm derived from clinical features together with measurements of seven
metabolites predicted patient survival. This algorithm may help to guide the treatment of
individual patients with sepsis.

Introduction
Sepsis is defined as infection resulting in systemic inflammatory response syndrome (SIRS,
a combination of non-specific clinical features of inflammation). Sepsis is the tenth leading
cause of death in the United States (1, 2). Sepsis mortality has decreased over the past
decade as a result of improved treatment protocols, such as potent anti-microbial drugs and
early goal directed therapy (EGDT) (3–6). Choice of treatment is based upon the traditional
concept of stepwise sepsis progression and corresponding clinical assessments, such as
organ hypoperfusion (1, 7). Therapies that are optimized for individual patients and that
target specific sepsis mechanisms have been hard to implement due to non-specific clinical
presentations, delayed diagnosis, cryptic severity, and a heterogeneous clinical course (8, 9).
Patients may arrive at an emergency department with mild clinical manifestations yet
rapidly progress to critical illness. Others have benign courses, despite a similar onset of
symptoms, suggesting that host factors play an important role in sepsis development and
outcome. Given that infections account for over 10 million emergency department visits per
year, and sepsis treatment costs $16.7 billion in the United States (1), there exists an urgent
need for more timely sepsis diagnosis, characterization, and prognosis, to inform
personalized sepsis treatment of the appropriate intensity. Such information could include a
choice of oral or intravenous antibiotics and whether to admit the patient to hospital or start
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EGDT (3–10). In addition to better sepsis outcomes, these decisions may decrease
unnecessary patient stress and improve the efficiency of resource utilization.

Decades of clinical and molecular studies have identified numerous microbial and host
perturbations associated with sepsis outcome. Age and co-morbidity, as codified in the
Acute Physiology and Chronic Health Evaluation II (APACHE II) score, for example, are
determinants of sepsis outcome (11). Others include the severity of clinical signs at
presentation, and after initial therapy. Such clinical signs include the number of SIRS
criteria met, lactic acid concentrations in the blood, and early development of shock (failure
to maintain blood pressure despite adequate hydration) (12–15). Clinical indices, such as
APACHE II and the Sequential Organ Failure Assessment (SOFA), combine multiple
clinical measurements in an attempt to aggregate the evidence of the heterogeneous organ
dysfunctions that can precede poor outcomes (11, 16). A wide variety of host response
biomarkers or biomarker panels have also been examined for utility in sepsis diagnosis and
prognostic determination but to date, have lacked the sensitivity and specificity to
discriminate individual patient prognoses and outcomes (17–22). This is believed to be due,
in part, to the underlying heterogeneity of sepsis. In particular, mortality has been difficult to
predict as there are many processes that are associated with death from sepsis, such as
uncontrolled inflammation, oxidative stress, immune dysfunction, hemodynamic
dysfunction, coagulopathy, metabolic dysfunction and genetic predisposition (23).

Comprehensive, integrated analysis of molecular measurements (24) may allow unbiased
identification and prioritization of sepsis outcome signals that may be obscured by false
discovery cutoffs or over-interpreted by targeted hypothesis testing. In contrast, analyses of
multiple clinico-pathologic data sets should reveal multi-dimensional perturbations of causal
networks and pathways. Here, we report the results of a prospective, integrated analysis of
outcomes in community-acquired sepsis.

Results
Study Design and Clinical Synopsis

1,152 individuals with suspected, community-acquired sepsis (acute infection and ≥2 SIRS
criteria) (15) were enrolled prospectively in the emergency departments at three urban,
tertiary-care hospitals in the United States between 2005 and 2009 [Community Acquired
Pneumonia and Sepsis Outcome Diagnostics (CAPSOD) study, ClinicalTrials.gov
NCT00258869] (12, 17, 25). Patients with SIRS criteria but obvious non-infectious diseases
were not enrolled (12). Medical history, physical examination, and acute illness scores
(APACHE II and SOFA) (11, 16) were recorded at enrollment (t0) and 24 hours later (t24),
and corresponding blood samples were obtained (Fig. 1A). t0 was the earliest sampling time
available for community-acquired sepsis. Sampling at t0 and t24 allowed evaluation of the
trajectory of changes after enrollment. Infection status and outcome through day 28 were
independently adjudicated by a board-certified clinician, as described (12, 17, 25) (Table
S1). Survival/death was the primary outcome. Standard diagnostic tests were supplemented
by tests for capillary lactic acid, urinary pneumococcal antigen and, for a subset of patients,
PCR of blood for bacterial and fungal DNA (12, 17, 25). Sixty-three percent of the patients
included in this analysis were African American. 28-day mortality was low (4.9%) (12). As
CAPSOD was an observational study, clinical care was not standardized and was
determined by individual providers.

The discovery set of 150 patients (13% of the total CAPSOD cohort) had five groups that
reflected conventional concepts of sepsis progression as a pyramid (1,4). The number of
subjects was governed by power to test associations with survival/death. Infection status and
infectious agent were adjudicated by a study physician prior to the generation of test data
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(12). Standard definitions of organ dysfunction and shock were used (12, 26). The five
groups were: day 28 sepsis survivors with uncomplicated courses (n=27), sepsis survivors
who developed severe sepsis or septic shock by day 3 (n=25 and n=38, respectively), sepsis
nonsurvivors (by day 28; n=31), and non-infected patients who exhibited SIRS criteria
(SIRS-positive, “ill” controls, presumed septic at enrollment but later determined to have
non-infectious reasons for SIRS; n=29) (12). Due to the few deaths from sepsis in the
CAPSOD study, that group defined the attributes of the patients selected for the other four
groups (Table 1). The non-infected SIRS group had similar rates of clinical progression as
did the sepsis groups (day 3 organ dysfunction and shock, and 28-day death), allowing
distinction between the disease progression of sepsis and other SIRS-associated acute
illnesses (Table 1). Patients within the sepsis groups were also chosen for infections with
Streptococcus pneumoniae (n=31), Escherichia coli (n=16) and Staphylococcus aureus
(n=27), three common causes of community-acquired sepsis that often differ in the site of
infection and rates of progression.

The experimental design included two validation patient sets (Fig. 1A). Firstly, a separate
CAPSOD subset of 18 sepsis nonsurvivors and 34 matched sepsis survivors (at t0 [Vt0] and
t24 [Vt24]). Few patients in the sepsis nonsurvivor group were available after selection of the
discovery set because of a low death rate due to sepsis or phlebotomy refusal at t24.
Therefore, the sepsis survivors chosen for inclusion in the validation set were matched to
those of the available sepsis nonsurvivors based on age, race, sex, and enrollment site. The
second validation set was from an independent sepsis study (the Brigham and Women’s
Hospital Registry of Critical Illness cohort [RoCI], approved by the Partners Human
Research Committee, protocol # 2008-P-000495) (27). This set had 29 non-infected patients
with SIRS, 36 sepsis survivors and 25 sepsis nonsurvivors.

Plasma Metabolomics
Biochemicals in plasma with a mass-to-charge ratio of 100–1000 Da were measured using
label-free, liquid and gas chromatography, and mass spectrometry (MS) (28) (Fig. 1B). Of
~4,400 metabolites potentially detectable in human tissues (29), 439 were measured either at
t0 or t24, and 332 were detected both at t0 and t24. 214 of the biochemicals detected at t0 and
224 detected at t24 were annotated metabolites (Fig. 2A, B). The median relative standard
deviation (SD) of repeated MS measurements of standards was 10% after signal intensity
normalization to batch medians. Clinical assays of serum creatinine, capillary lactate and
serum glucose correlated well with log-transformed normalized plasma MS values (Fig. 2C,
D, E), indicating that the MS assays of metabolite levels were semi-quantitative.

Typically, metabolomics measurements in healthy populations exhibit a normal distribution
of Z-scores. However, the distribution of Z-scores in the uninfected SIRS group was right-
skewed (log-normal) (Fig. 2F). Patients with severe sepsis and those who died had larger Z-
scores that were more skewed than the uninfected SIRS control group (Fig. 2F), indicative
of greater metabolomic variance. Principal component analysis (PCA) and Bayesian factor
analysis (with normalized factor score plots) were utilized to determine the main sources of
inter-individual variation in the plasma metabolome. The Bayesian factor analysis [cj = Byj
+ A(sj ∘ zj) + εj] correlated metabolite values (yj) to clinical parameters (cj) to define their
relevance [where B was the relationship between MS data (yj) and a clinical parameter (cj),
A was random or undefined effects and ε was random noise]. Clinical parameters (cj) were
normalized with zero-mean and standard deviation and plotted on B-matrices. The strength
of clinical parameter-metabolite associations increased from t0 to t24 (by PCA and Bayesian
factor analysis, Fig. S1), indicating that metabolomic perturbations were increasing at the
time of enrollment. Furthermore, in sepsis nonsurvivors, the variance in the plasma
metabolome that was explicable on the basis of sepsis outcomes increased as death
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approached (Fig. 2G), consistent with a causal association of metabolome changes with
death from sepsis. Remaining variance in the plasma metabolome was largely explained by
renal function (semi-quantitative; four groups), liver function (binary) and
immunosuppressants (binary) (Fig. S1–S2). Overlaid kernel densities and Mahalanobis
distances of metabolome values revealed one septic shock patient to be an outlier, and this
patient was therefore removed from subsequent metabolomics analyses.

Plasma metabolites that differed between groups were identified by analysis of variance
(ANOVA) at t0 and t24. Variance unrelated to sepsis was controlled by inclusion of renal
function and liver disease as fixed effects. Since acute renal dysfunction showed an
association with sepsis nonsurvival, this may have resulted in underestimation of differences
due to sepsis outcome (Table S2). Remarkably, no metabolite differed significantly between
sepsis survivor subgroups (uncomplicated sepsis, day 3 severe sepsis, day 3 septic shock) or
between infectious etiologies (S. pneumoniae, S. aureus or E. coli; Fig. S3) at either t0 or t24.
In contrast, plasma concentrations of 49 metabolites differed between the sepsis survivor
groups and the uninfected SIRS-positive group at t0, whereas 42 metabolites differed at t24
(Fig. 3A; ANOVA with inclusion of renal and liver function as fixed effects and false
discovery rate (FDR) 5%; sepsis survivor subgroups collapsed; Table S3). In all, 63
metabolites differed between sepsis survivors and uninfected patients at either time point. Of
these, 60 had concordant direction of change at both time points, indicating a consistent
early metabolic response in sepsis survivors (rather than multiphasic; Fig. S4, and Table S3).
Sepsis survivors had lower plasma concentrations of citrate, malate, glycerol, glycerol 3-
phosphate, phosphate, 21 amino acids and their catabolites, 12 glycerophosphocholine and
glycerophosphoethanolamine esters, and 6 carnitine esters compared to uninfected patients
(Fig. 3A, Fig. S5–S6, and Table S3). Six acetaminophen catabolites and two androgenic
steroids were increased. Notably, lactate, ketone bodies and carnitine were relatively
unchanged between sepsis survivors and uninfected patients.

Next, metabolite values in the collapsed sepsis survivor groups were compared with those in
the sepsis nonsurvivor group. Seventy six metabolites differed between the sepsis survivor
and death groups at t0, and 128 metabolites at t24 (FDR 5%; Fig. 3A; Fig. S5–S6; and Tables
S3). The metabolic differences between the sepsis survivor and death groups were also
temporally consistent. Thus, 84 metabolites at one time point that were significantly
different between those who survived and those who died,, and detected at the other time
point, showed a concordant direction of change. However, inter-individual variability in
individual metabolite values was high. Nevertheless, the validity of the differences between
survivors and nonsurvivors was supported by the finding that many members of biochemical
families had the same direction of change: 17 amino acid catabolites, 16 carnitine esters, 11
nucleic acid catabolites, 5 glycolysis and citric acid cycle components (citrate and malate,
pyruvate, dihydroxyacetone, phosphate) and 4 free fatty acids were significantly increased in
the sepsis nonsurvivor group (by ANOVA; Fig. S5, and Table S3). Seven glycerophospho -
choline and -ethanolamine esters were decreased in the sepsis nonsurvivor group, in
agreement with previous studies (23, 30–32). Lactate, an established sepsis severity marker,
was elevated in the sepsis nonsurvivor group. Carnitine and ketones were unchanged. Given
the regulation of metabolism by steroids, it was notable that anabolic steroids were
decreased in the sepsis nonsurvivor group whereas cortisone was increased. These changes
were consistent with increased exergonic metabolism in sepsis survivors. A clinical correlate
of this conclusion was elevated core temperature in sepsis survivors (38.1°C), but not in the
sepsis nonsurvivor group (37.4°C) (Table 1), as previously described (12).

Carnitine esters with medium- or short-chain fatty acids and branched-chain amino acids
were the most pronounced biochemical groups that differed between the sepsis nonsurvivor
group and survivors. It was possible that these accumulated in blood due to renal
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dysfunction and not sepsis itself. To explore this hypothesis, we performed a Bayesian factor
analysis with stratification by renal function at t0 (normal estimated glomerular filtration
rate, eGFR ≥ 75 mL/min, n = 44; 32–74 mL/min, n = 56) and binary primary groupings
(non-infected, uncomplicated sepsis, severe sepsis, septic shock and sepsis nonsurvivor),
etiologic agents (S. aureus, S. pneumoniae, E. coli), gender, race, liver disease, hepatitis,
alcohol abuse and neoplastic disease). Metabolite factor scores ≥ 0.1 or ≤ −0.1 were
considered significant. Liver disease, hepatitis and alcohol abuse had substantial overlap,
which may reflect unity. Reassuringly, sepsis nonsurvival and liver disease remained the
major contributors of metabolome variance (Fig. S7). The metabolic changes associated
with the sepsis nonsurvival factor also remained increased with time (Fig. S7). Moreover the
association of carnitine esters with sepsis outcomes remained significant (Table S4 and S5).
Thus, the changes in carnitine esters were not explained by renal function.

Validation of Metabolomic Findings
Confirmation of the veracity of differences was sought by metabolome profiling of a first
validation set [all remaining sepsis nonsurvivors (validation t0, Vt0, n=17; Vt24, n=16) and
matched sepsis survivors (Vt0, n=34; Vt24, n=33) (Fig. 1A)]. Samples from two sepsis
nonsurvivors and one sepsis survivor were not available at t24; a sample was obtained from
one sepsis nonsurvivor who had refused t0 phlebotomy. It should be noted that the median
time-to-death of the validation group was greater than the discovery group (18.5 days vs.
10.7 days, respectively), because insufficient sepsis nonsurvivor samples were available for
precise matching of discovery and validation sets. Not surprisingly, the metabolic variance
attributable to sepsis outcome at Vt0 was less pronounced than in the t0 set (Fig. S2).
Consequently, less stringent FDRs were applied in ANOVAs for Vt0 (25%) and Vt24 (15%).
There were fewer differences and of smaller magnitude between sepsis survivors and
nonsurvivors in the validation cohort (18 differences at t0 and 20 at t24; Fig. 3A, Fig. S5–S6,
and Table S3). Nevertheless, the major metabolite differences were recapitulated (elevated
amino acid and RNA catabolites, citrate, malate and fatty acids, decreased anabolic steroids
and glycerophospho -choline and -ethanolamine esters). The most consistently altered
biochemical class in the validation set remained the carnitine esters, with significant
increases in 19 of 21 compounds in the sepsis nonsurvivor group for at least one time point.

A second validation study was performed on an independently derived cohort from another
institution with a different enrollment protocol (RoCI study). This validation set contained
29 non-infected subjects with SIRS, 36 sepsis survivors, and 25 sepsis nonsurvivors (Table
1). The demographics of RoCI differed from those of the CAPSOD study. A prominent
difference was that the principal ethnicity in the RoCI study was Caucasian (78%).
Neoplastic disease (75% RoCI vs. ~23% CAPSOD) and administration of
immunosuppressants (36% RoCI vs.6.5–15% CAPSOD) were much higher in the RoCI
sepsis nonsurvivor category than found in the sepsis nonsurvivor category for CAPSOD.
The metabolome was profiled with identical methods in both studies. ANOVA of the
metabolomic results from the RoCI cohort with a 5% FDR recapitulated the CAPSOD study
results with regard to alterations in carnitine esters, glycerophospho -choline and -
ethanolamine esters, amino acid derivatives, nucleic acid catabolites, glycolysis and citric
acid cycle components (representative results presented in Fig. S8; full results to be
published by the RoCI group). Furthermore, the direction of change of these analytes
recapitulated those of the CAPSOD cohorts, providing strong evidence that these differences
reflected sepsis outcomes rather than bias intrinsic to a single study or limited to a single
ethnic group.

Further recapitulation of the major findings was sought for eleven representative metabolites
by retesting 382 of the CAPSOD discovery and validation samples with targeted,
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quantitative assays (Fig. S9–S10, Tables S6, and S7); four samples were not re-assayed for
4-methyl-2-oxopentanoate, 1-linoleoylglycerophosphocholine, 1-
archidonoylglycerophosphocholine, 3-(4-hydroxyphenyl) lactate (HPLA), 3-
methoxytyrosine, n-acetylthreonine, and pseudouridine because further aliquots were
unavailable. The quantitative results correlated with the semi-quantitative MS screening data
(correlation coefficients ranging from +0.57 to +0.99) (Fig. S11). While inter-individual
variability of the concentrations of the 11 metabolites among subjects was considerable, the
previously described differences between sepsis survivors, sepsis nonsurvivors and
uninfected SIRS patients were confirmed (Fig. 3B–E and Fig. S12). The average differences
in metabolite values between sepsis survivors and nonsurvivors using the quantitative assays
were also examined as a function of time to death. The death-survivor differences increased
inversely with time-to-death, suggesting temporal correlations of the 11 metabolites with
sepsis nonsurvival (Fig. S13).

Plasma Proteomics
A complementary survey of host response in sepsis survival and death was performed by
proteome profiling of the 150 subjects in the CAPSOD discovery group (Fig. 1). Plasma
proteins identified by MS with high confidence were quantified using two methods: log-
transformed quantile-normalized areas-under-the-curve (AUC) of aligned chromatograms
after background noise removal (33), and spectral counting. We note that the sensitivity of
MS is too low to detect most changes in cytokines and confidence in identities is low as
typically only one peptide is detected (34).

Following immunodepletion of abundant plasma proteins (33), 195 and 117 proteins
identified with high confidence were measured by the two methods described above,
respectively, of which 101 were detected by both methods (Table S8). For proteins with
spectral counts >10, measurements derived from the two methods correlated well (Table
S8). Clinical assays of serum C reactive protein (CRP) and albumin correlated with log-
transformed MS values in plasma (Fig. S14), indicating MS to be at least semi-quantitative.
As observed for the metabolome, sepsis group membership explained part of the variation in
the plasma proteome (Fig. S15). Other categorical traits that explained variance were liver
disease, immunosuppressant agents, and malignancy (Fig. S15). As with the metabolome,
only a single significant protein difference was found among sepsis survivor subgroups or
between infectious etiologies (Fig. S16). The concentrations of 16 plasma proteins differed
between sepsis survivors and uninfected SIRS patients at t0, and 40 proteins differed at t24
(ANOVA with FDR of 5% and with control of non-sepsis-related effects by inclusion of
liver disease, immunosuppressants and malignancy as fixed effects) (Table S8). In
agreement with previous reports, many inflammatory markers were elevated in sepsis (e.g.,
CRP, lipopolysaccharide binding protein, leucine-rich α2 glycoprotein, serpin peptidase
inhibitor 3, serum amyloid A1 and A3, and selenoprotein P (Table S8) (35, 36). Serpin
peptidase inhibitor 1, which inhibits plasmin and thrombin, was increased in sepsis,
consistent with previous reports (37, 38). Notably, several thrombolytic proteins (factor XII,
plasminogen, kininogen 1 and fibronectin 1) were decreased in sepsis.

Like the metabolome, the plasma proteome disclosed a markedly different host response in
sepsis survivors and nonsurvivors (with 56 and 27 significant protein differences at t0 and
t24, respectively; Table S9). There was strong concordance in protein differences at both
time points: 44 of 59 plasma proteins with significant survivor-death differences had
congruent changes at the other time point. Notable protein families exhibiting differences
were complement components (22 of which were increased in the sepsis nonsurvivor group),
thrombolytic proteins (8 of which were decreased and 3 increased in the sepsis nonsurvivor
group), and fatty acid transport proteins (9 of which were increased in the sepsis nonsurvivor
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group; apolipoproteins AI, AII, AIV, L1, CIV, transthyretin, hemopexin, afamin and α -2-
HS-glycoprotein; Fig. 4A and Table S9).

Integration of Proteomic and Metabolomic Datasets
We reasoned that true positive changes in the metabolome should be reflected by analogous
changes in the proteome. In particular, this should be true for plasma proteomic and
metabolomic measurements in the same biochemical pathway. For example, they should
recapitulate known substrate-enzyme-product reaction models and members of known
biochemical families should co-cluster. Further, we reasoned that it may be possible to
impute the class membership of unknown metabolites, familial enzyme pathways, and novel
enzymatic reaction models by integration of the proteomic and metabolomic datasets. To
explore this, we performed a global cross-correlation and hierarchal clustering of matched
metabolites (e.g., t0 metabolome vs. t24 metabolome), or proteins (e.g., t0 proteome vs. t24
proteome) for the 150 discovery subjects. Further, to assess recapitulation of known
metabolome-proteome reaction models, we performed cross-correlation and clustering of
metabolites with proteins at each time point (e.g., t0 proteins vs. t0 metabolites) in the same
samples.

The metabolome-metabolome cross-correlation and hierarchal clustering did largely
recapitulate known metabolite/biochemical class membership (Fig. 4B): For example, 7
carnitines esters were nearest neighbors at t0, as were 5 androgenic steroids, 11
glycerophospho -choline and -ethanolamine esters, 5 bile acids, 16 fatty acids, and 12 amino
acid metabolites and energy metabolic derivatives (lactate, citrate, glycerol, pyruvate,
oxaloacetate) (Fig. 4B, Fig. S17). Furthermore, co-clustering suggested class membership
for several unannotated biochemicals. Several of these were confirmed by subsequent
structural determination: Unannotated biochemicals X-11302, X-11245 and X-11445, which
co-clustered with DHEAS, androsterone sulfate and epiandrosterone sulfate, were
determined to be sulfated pregnenolone-related steroids (pregnen-steroid monosulfate,
pregnen-diol disulfate and 5α-pregnan-3β, 20α-diol disulfate, respectively); unannotated
biochemical X-11421 co-clustered with 8 medium chain acyl-carnitines and was determined
to be 4-cis-decenoylcarnitine; X-12465 co-clustered with acetyl- and propionyl-carnitine and
was determined to be 3-hydroxybutyrylcarnitine (Fig 4B, Fig. S17). Likewise, many
functionally or structurally related proteins co-clustered, such as 4 hemoglobin isoforms, 9
complement components, and 10 apolipoproteins (Fig. 4C).

In addition, plasma proteome-metabolome correlations recapitulated a number of known
metabolic reaction models. 4,105 of 53,784 plasma protein–metabolite correlations were
concordant at t0 and t24 and statistically significant (Bonferroni-corrected log10 p-
value<-6.03; Table S10). These included known mass action kinetic models of catalysis or
physicochemical complex assembly: Ribonuclease A1 correlated with 12 downstream
products of its action (N6-carbamoylthreonyladenosine, N2,N2-dimethylguanosine,
pseudouridine, arabitol, arabinose, erythritol, erythronate, gulono-1,4-lactone, allantoin,
phosphate, xylonate and xylose). Hemoglobin subunits α1, β, δ and ζ correlated with the
component heme, allosteric effector adenosine-5-monophosphate and degradation product
xanthine. Subunit D of succinate dehydrogenase (a high confidence protein identification
supported by a single peptide) correlated with 3 downstream citric acid cycle intermediates
(L-malate, oxaloacetate and citrate; Fig. 4D and Table S11). Several carnitine esters and
fatty acids correlated with plasma transporter fatty acid binding proteins (FABP1 and
FABP4, Fig. S18 and Table S11). Two fatty acid substrates correlated inversely with Acyl-
CoA Synthetase Mitochondrial-like 6 (ACSM6, another high confidence protein
identification supported by a single peptide), which catalyzes attachment of fatty acids to
CoA for β-oxidation (Fig. S19 and Table S11).
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We reasoned that co-cluster hierarchies and correlations might suggest novel enzymatic
reaction models. Thus, for example, subunit D of succinate dehydrogenase correlated with
pyruvate, lactate and acetyl-carnitine, and may suggest novel regulation of the citric acid
cycle (Fig. 4D), which has animal model support (39). Another plausible model was
suggested by correlations of ACSM6 with 9 carnitine esters (Fig. S18). ACSM6 acts
upstream of carnitine esterification, and mediates mitochondrial fatty acid import. Overall,
these analyses served to validate the accuracy of the metabolomic and proteomic
measurements.

Derivation and Testing of Outcome Predictive Biomarker Panels
In light of the consistency of the metabolome and proteome changes between sepsis
survivors and nonsurvivors, a biomarker panel was developed and assessed for utility in
prediction of sepsis outcomes upon arrival at the emergency room (t0). Four clinical factors
(age, mean arterial pressure, hematocrit and temperature) and 12 metabolites (2-
methylbutyroylcarnitine, 4-cis-decenoylcarnitine, butyroylcarnitine, hexanoylcarnitine, 4-
methyl-2-oxopentanoate, 1-arachidonoylglycerophosphocholine, 1-
linoleoylglycerophosphocholine, HPLA, 3-methoxytyrosine, n-acetylthreonine,
pseudouridine and lactate) were nominated either by prior clinical analyses (12), or by
selection of the most significantly different metabolomic differences in sepsis survivors and
deaths by ANOVA and Bayesian factor analysis. These biomarkers were also selected for
relevance to the molecular mechanisms suggested for sepsis survival and death. Proteomic
biomarkers were not utilized in this analysis. These biomarkers were used to develop a
sparse panel for prediction of sepsis outcomes with logistic regression. The number of
biomarkers in the panel was reduced to seven by penalized predictor reduction (a statistical
method that applies a penalty to the sum of squares of the coefficients to reduce the number
of factors; we utilized a maximum of 10 effects, a log10 regularization parameter and a
maximum of 5 categories). These were 4-cis-decenoylcarnitine, 2-methylbutyroylcarnitine,
butyroylcarnitine, hexanoylcarnitine, lactate, age, and hematocrit. The resultant logistic
regression model performed very well for prediction of sepsis outcomes at t0 in the
discovery cohort (AUC 0.847 and accuracy 85.1%). The prognostic utility of the model was
also good in the discovery t24 dataset, and the validation Vt0, and Vt24 datasets (Table 2).
Indeed, the model predicted sepsis nonsurvival or survival better than widely used clinical
scores, such as SOFA (score ≥ 7), APACHE II (score ≥ 25), and capillary lactate (≥ 4.0 mg/
dL) (Table 2). Since the discovery and validation studies utilized cohorts from the CAPSOD
study, it was possible that the model was over-fitted. Therefore, utility of the model was
examined in an independently derived sepsis cohort from another institution and with
separate metabolic measurements (RoCI) (27). ANOVA showed nine of the 12 biomarker
metabolites to have a statistically significant change in sepsis survivors versus nonsurvivors
in the RoCI cohort, and all 12 followed the same trends as in the CAPSOD samples (FDR
5%, Fig. S8). The biomarker panel also had strong predictive discrimination between sepsis
survival and death in the RoCI cohort (Table 2).

The data generated in the global metabolomics studies were semi-quantitative. To further
examine the prognostic utility of the logistic regression model, specific, quantitative MS
assays were developed for four of the biomarker metabolites (4-cis-decenoylcarnitine, 2-
methylbutyroylcarnitine, butyroylcarnitine and hexanoylcarnitine). The prognostic utility of
the biomarker panel was then retested with quantitative clinical values (age, lactic acid and
hematocrit) and values from the specific metabolite assays in all samples from the CAPSOD
discovery and validation cohorts (93 sepsis nonsurvivors and 235 sepsis survivors). Missing
clinical measurements of lactate were imputed from the values obtained from semi-
quantitative metabolome methods. Predictive performance was similar to that with the semi-

Langley et al. Page 9

Sci Transl Med. Author manuscript; available in PMC 2014 February 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



quantitative assays (Table 2). Such recapitulation was important because quantitative,
homogeneous assays would be used for a clinical prognostic test using these biomarkers.

Support vector machine (SVM) learning performs two-group classification that allows
expansion of the solution vector on support vectors, extends the solution surfaces from
linear to non-linear and allows for errors in the training set (40). SVM learning typically
yields biomarker panels with superior performance to other methods. SVM was used to
develop a weighted model for prediction of sepsis survival and death using quantitative
measurements of the seven biomarkers. Data from 173 unique sepsis survivors and
nonsurvivors were used. When values from the same person were available at both t0 and
t24, one sample was randomly selected. This yielded 87 subjects for training and 86 for
testing. Values were normalized by subtracting means and dividing by standard deviations.
100 random partitions were performed for training and test data for each setting. The AUC
of the SVM model in the test subjects was 0.74 and accuracy was 74.6% (55% for 28-day
sepsis nonsurvival and 83.6% for sepsis survival; Table 2).

Discussion
This study sought to characterize and integrate the metabolome, proteome and clinical
variables in sepsis survival and death. Somewhat unexpectedly, this analysis delineated
differences in host responses to sepsis in survivors and nonsurvivors that were robust and
reproducible. As a consequence, the analytes and pathways that differentiate sepsis survival
and death hold promise as potential prognostic biomarkers and may also be useful as targets
for the development of new therapies for patients at higher risk of death. Prognostic markers
of sepsis outcomes have been sought for decades. Prior candidate biomarker studies, while
valuable, have had limited clinical prognostic utility, perhaps because of the heterogeneity
and complexity of sepsis outcomes. The integrative approach described herein was based on
three assumptions. Firstly, a comprehensive, hypothesis-agnostic description of the
molecular antecedents to sepsis survival and death would yield new, unbiased insights.
Secondly, that integration of clinical, metabolomic and proteomic data might identify signals
that were undetected or obscured by false discovery cutoffs in one-dimensional datasets.
Thirdly, that analysis of the co-occurrence and correlations of molecular networks and
pathways in complementary datasets would further identify and prioritize likely causal
molecular mechanisms. Within the statistically significant group differences common to the
discovery and replication cohorts, findings were further prioritized by: 1) assembly into
networks, pathways or biochemical families; 2) temporal correlations with clinical status; 3)
corroboration of bona fide networks and pathways by occurrence in complementary
datasets; and 4) by cross correlations, hierarchical co-clustering and assembly of mass action
kinetic models of catalysis or physicochemical complexes. Finally, prognostic biomarker
candidates were chosen to reflect potential underlying molecular mechanisms, rather than
the ability to partition accurately.

The integrated, comprehensive analysis of host responses to sepsis revealed a complex,
heterogeneous and highly dynamic pathologic state and yielded new insights into molecular
mechanisms of sepsis survival or death that may enable outcome prediction and
individualized patient treatment. There were both negative and positive findings regarding
the pathophysiology of sepsis. A major negative finding was that the plasma metabolome
and proteome did not differ between sepsis survivors, severe sepsis survivors, and septic
shock survivors. Another negative finding was that there were no major differences between
patients with infections with S. pneumoniae, S. aureus or E. coli. These negative findings
may reflect heterogeneous patient responses, diverse co-morbidities, sites of infection, or
severity of infections within the 3-day window we focused on. It is also possible that
changes were overwhelmed by a generalized septic response, and therefore difficult to
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detect. Instead, sepsis survivors appeared to represent a molecular continuum, irrespective of
progression to severe sepsis or septic shock or class of infective agent. One caveat to this
conclusion is that MS-based proteome analysis was insensitive for measurement of low
abundance proteins (34), such as cytokines, which are known to differ between etiologic
agents (41). Importantly, our study did not support the popular concept that the clinical
stages of sepsis progression (uncomplicated sepsis, severe sepsis, and septic shock) reflect
host molecular progression (23). Instead, the homogeneity of the metabolome and proteome
in the uncomplicated sepsis, severe sepsis, and septic shock groups was remarkable,
challenging the traditional notion of a molecular pyramid of sepsis progression (16). While
surprising, the absence of substantive molecular differentiation of these clinical states does
not negate the importance of early achievement of effective compartmental concentrations
of appropriate antibiotics or the known differences in mortality between etiologic agents and
sites of infection (3, 4, 42).

The major positive finding in this study was that a majority of host molecular responses
were altered antithetically in sepsis survivors and nonsurvivors, when compared to
uninfected patients with SIRS criteria. This was evident at time of presentation, increased at
t24 and became more pronounced as time-to-death decreased. It was observed both in the
plasma metabolome and proteome. It was observed in comparisons of mean values of
individual analytes, after inclusion of renal and hepatic diseases as fixed effects, and
globally, as assessed by variance components and global cross-correlations. Divergent host
responses were highly conserved temporally at the level of individual analyte classes,
networks and pathways. Thus, there exists a reproducible dichotomy in host molecular
responses to sepsis, suggesting molecular allostasis in survivors, and maladaption in non-
survivors.

Alterations in fatty acid metabolism were prominent components of the disparate
metabolomic phenotype of sepsis survival and death. Plasma concentrations of 6 carnitine
esters were decreased in sepsis survivors, relative to controls. In addition, 16 carnitine esters
and 4 fatty acids were elevated in sepsis nonsurvivors, relative to controls. These findings
were not explicable on the basis of unchanged ratios of free to acylated carnitine or free to
protein-bound ratios of fatty acids. Thus, free carnitine concentrations were unchanged.
Nine fatty acid transport proteins were decreased in sepsis nonsurvivors, whereas plasma
concentrations of two fatty acid binding proteins were increased in sepsisnonsurvivors.
While some of these findings have been previously reported (43), together they suggest a
profound defect in fatty acid β-oxidation in sepsis nonsurvivors that was absent in sepsis
survivors. The rate limiting step in β-oxidation is fatty acid transport from the cytoplasm
into the mitochondrial matrix (44). Since the mitochondrial membrane is impermeable to
acyl-CoA, the carnitine palmitoyltransferase (CPT; EC 2.3.1.21) enzyme system, in
conjunction with acyl-CoA synthetase and carnitine/acylcarnitine translocase, is utilized to
shuttle long-chain fatty acids across the mitochondrial membrane, in the form of acyl-
carnitines. CPT I is located in the mitochondrial outer membrane, whereas CPT II is in the
inner mitochondrial membrane. Transport across the mitochondrial membrane is reversible.
Thus, acyl-carnitines that are not utilized for energy production in fatty acid β-oxidation may
be reverse transported from mitochondria to the cytoplasm and then into the plasma, where
they are excreted (44). Plasma values of acyl-carnitines of all fatty acid lengths were
elevated in sepsis nonsurvivors, and were not explained by differences in renal function,
suggesting that the metabolic defect in fatty acid β-oxidation occurs at the level of the
carnitine shuttle.

Mitochondrial fatty acid β-oxidation in the mitochondrion is accomplished by several acyl-
CoA dehydrogenases. Each acyl-CoA dehydrogenase acts on fatty acids of a particular chain
length and with a specific degree of branching (44). Acyl-CoA dehydrogenase deficiencies
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are characterized by accumulation of fatty acids of the corresponding range of chain lengths.
A potentially causal role for elevated carnitine esters in sepsis nonsurvival is suggested by
the finding that micromolar amounts cause ventricular dysfunction (45). Furthermore,
patients with mutations in medium-chain acyl-CoA dehydrogenase (MCAD) have high rates
of sudden death (46). Animal models have shown that MCAD and CPT I are decreased in
heart, liver and kidney in sepsis, and are regulated by decreased expression of peroxisome
proliferator-activated receptors (PPAR) α, β and δ (43, 47–49). Interestingly, sepsis survival
in mouse models improved with PPAR-agonist treatment (50, 51). In addition, PPARs
regulate expression of medium-chain acyl-CoA dehydrogenase (52) and fatty acid β-
oxidation (53). Furthermore, PPARα expression is decreased in septic shock and correlates
with severity (54). While clinically untested, these results suggest that treatment of selected
patients with PPAR agonists may improve sepsis outcomes through increased β-oxidation in
heart, liver and kidney tissues. As this study focused on patients with sepsis, it remains
unclear if elevations in carnitine esters are unique to sepsis nonsurvival or are a broad
prognostic biomarker in critical illness. Hypoxia can also lead to increased plasma acyl-
carnitines (55), suggesting they may be a non-specific signal of mitochondrial dysfunction.
A prospective metabolomic study of critical illness outcomes absent an infection as well as
animal/cell culture models of hypoxia and sepsis may provide a better understanding of the
specificity of these biomarkers in death.

In stark contrast to increased carnitine esters and free fatty acids in sepsis nonsurvivors was
a consistent decrease in glycerophospho -choline and -ethanolamine esters in sepsis
survivors and nonsurvivors compared to non-infected patients with SIRS. The changes were
consistent with published findings that glycerophospho -choline and -ethanolamine esters
were predictive of sepsis mortality (32). Further, it has been suggested that these changes in
lipid metabolism reflect decreases in PPARα (43, 49). Interestingly, exogenous
stearoylglycerophosphocholine improves outcomes in septic mice (56). Whereas free fatty
acid supplementation has not proven effective in a clinical trial of acute lung injury (57), it is
unknown if outcomes would be improved by stearoylglycerophosphocholine
supplementation.

Glycolysis, gluconeogenesis and the citric acid cycle differed prominently between sepsis
survivors and nonsurvivors. Plasma values of citrate, malate, glycerol, glycerol 3-phosphate,
phosphate and glucogenic and ketogenic amino acids were decreased in sepsis survivors,
relative to controls. In contrast, citrate, malate, pyruvate, dihydroxyacetone, lactate,
phosphate and gluconeogenic amino acids were increased in sepsis nonsurvivors. A
corroborating proteomic change was found for succinate dehydrogenase, whose
concentration correlated with downstream citric acid cycle metabolites malate, oxaloacetate
and citrate and with lactate, pyruvate and acetyl-carnitine. A parsimonious explanation of
these findings is that sepsis survivors mobilized various energetic substrates and utilized
these completely in aerobic catabolism resulting in decreased plasma concentrations,
whereas sepsis patients who would ultimately die failed to utilize these fully, displaying
elevated concentrations even at the earliest time points evaluated. Significantly lower core
temperature in sepsis nonsurvivors versus survivors may be a correlate of poor aerobic
catabolism in dying patients (12).

Several other lines of evidence support the hypothesis that mitochondrial function is a major
determinant of sepsis outcome. Structural studies show mitochondrial derangements,
decreased mitochondrial number and reduced substrate utilization in sepsis nonsurvival, and
a progressive drop in total body oxygen consumption occurs as sepsis severity increases
(58–65). Further, circulating mitochondrial damage-associated molecular patterns can
activate the innate immune response leading to neutrophil-mediated organ injury (66).
Recent evidence indicates that increased succinate, a TCA cycle intermediate metabolite, is
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an inflammatory signal that can induce IL-1β production in bone marrow derived
macrophages (67). Substantive literature demonstrates that an early indicator of sepsis
outcomes is mitochondrial biogenesis, (23, 30, 58, 59, 68–72), another PPAR-regulated
phenomenon (73). Finally, sepsis-induced multiple organ failure has been noted to occur
despite minimal cell death and patient recovery from organ failure is rapid in survivors,
indicating that mitochondrial damage in sepsis survivors is reversible (23, 30, 46, 71, 74).

In summary, an integrated analysis revealed quite different host molecular responses to
sepsis in patients who would survive and those who would die. In contrast, we found no
metabolomic or proteomic differences between sepsis caused by Streptococcus pneumoniae,
Escherichia coli or Staphylococcus aureus. It will be interesting to ascertain whether the
sepsis nonsurvival profile is recapitulated in other sepsis etiologies or in other SIRS-
inducing conditions (60, 75, 76).

Finally, biomarker models were developed to aid in the prediction of sepsis outcomes that
were based on these molecular findings. For ease of assay development for clinical utility, a
homogeneous biomarker panel was developed, rather than heterogeneous combinations of
protein and metabolite markers. In general, previous sepsis biomarker panels have shown
disappointing external validation. Reasons may include data over-fitting, reliance on cross-
validation rather than independent validation, and recruitment at single sites. We sought to
reduce the impact of these limitations by developing sparse panels, recruitment at three sites,
selecting metabolites that had a high probability of representing molecular mechanisms, use
of two metabolite measurement techniques, and validation both in a separate CAPSOD test
set as well as in an independent cohort. A logistic regression model utilizing carnitine esters
and clinical variables consistently categorized survivors with greater than 85% accuracy,
while sepsis nonsurvivors were accurately predicted with 45 to 55% accuracy in most of the
test sets. This model performed better than capillary lactate, SOFA or APACHE II scores. It
should be noted that prognostic performance was evaluated in patients at time of
presentation at an emergency department. The differences between survivors and non-
survivors increased as time-to-death decreased. Thus, serial testing of sepsis patients may
better differentiate those with poor outcomes. Thus, as with many current disease severity
markers, this panel is likely to be especially useful when used serially in individual patients.
Ideally, the panel would be deployed on a device that performs at point-of-care or hospital-
based and with rapid time-to-result. The biomarkers presented here were the best performing
models but are by no means the only variables with such predictive utility. Independent
replication studies are needed, as are finalization of markers, normalized time-to-death
analysis, and additional assay development.

One concern for a model predicting survival or death is that subsequent clinical decision
making may be biased in a way that supports the prediction, resulting in considerable risk of
harm. However, results in animal models targeting glycerophosphocholine esters and PPAR
expression suggest that mechanisms can be reversed and outcomes improved by targeted
treatments that improve β-oxidation and/or neutrophil-mediated bacterial killing (50, 51, 53,
56). Additionally, preliminary findings were that sepsis survivors after EGDT had higher
levels of carnitine esters at presentation than sepsis survivors who did not receive EGDT,
further suggesting that metabolic and mitochondrial dysfunction can be mitigated.
Therapeutic targets that were nominated by this study include glycerophospho -choline and -
ethanolamine esters, acetylcarnitine supplementation, PPAR agonist treatment, inhibition of
the γ-aminobutyric shunt, or enhancement of mitochondrial biogenesis (10, 39, 50, 51, 56,
67). Upon additional development, a sepsis prognosis panel may aid in the immense need
for individualization of the intensity of sepsis treatment and, thereby, improvement in
outcomes. Ideally, future studies will examine muscle tissue as well as blood in order to
confirm the relevance of plasma changes.
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With any biomarker panel there remains the possibility of over-fitting. However, in the
present study, reproducibility in internal and external validation sets, replication with
targeted assays and SVM analysis suggest that the sparse (seven-feature) panel has validity
for prediction of sepsis-related mortality when applied at patient presentation in an
emergency department setting. This study has limitations. The biological sample chosen for
analysis was peripheral blood. As such, we cannot draw conclusions about the effects of
sepsis on other target tissues. Furthermore, blood samples were analyzed at only two time
points. Additional collections would have allowed a temporal analysis of sepsis changes
that, giving a more precise view of changes through sepsis convalescence or deterioration.
The number of non-survivors tested was relatively small, and confirmatory studies are
needed. The number of non-sepsis deaths was small. As a result, we do not know if the
outcome predictive signature is specific for sepsis or may also differentiate other acutely ill
patient groups.

Finally, global and temporal correlations of metabolome and proteome data from relevant
biological fluids in well-phenotyped patient groups appears suitable for expanding our
understanding of intermediary metabolism, particularly with respect to poorly annotated
analytes, and for characterization of homogeneous subgroups in complex traits.
Combinations of transcriptome, proteome, metabolome, and genetic data may establish
multi-dimensional molecular models of complex diseases that can provide insights into
network responses to perturbation.

MATERIALS AND METHODS
Study Design

Pre-defined study components—Metabolomic and proteomic analysis was predicted
to require 30 samples per group (non-infected controls, uncomplicated sepsis, severe sepsis,
septic shock, and sepsis nonsurvivors) for 80% power to detect differences. Enrollment was
performed during daytime hours through a convenience sampling and continued until this
goal was met. Inclusion criteria included adults in the emergency department with known or
suspected acute infection and the presence of at least two SIRS criteria. Exclusions were as
previously described (12, 17, 25). Outliers were identified using various techniques
including overlaid kernel density estimates, univariate distribution results, Mahalanobis
Distances, and correlation coefficients.

Rationale and Design—Sepsis is a leading cause of death in the United States and there
remain few therapeutic options. Understanding the pathobiology of sepsis outcomes can
enable personalized patient management protocols and improve survival. In this study,
clinical care was not standardized but rather was determined by individual providers. We
collected clinical data including infection likelihood, infection type, microbiological
etiologies, sepsis severity, and 28-day mortality. Serum of enrolled patients was taken at
presentation and 24h later. Metabolomics and proteomics were performed using mass-
spectroscopy techniques. Comprehensive, integrated analysis of serum metabolome and
proteome data was performed to prioritize sepsis outcome signals. Logistic regression and
support vector machine analysis was performed to predict patient outcomes.

Randomization—Patients were assigned to pre-defined clinical groups (non-infected
controls, uncomplicated sepsis, severe sepsis, septic shock, and sepsis nonsurvivors) after
retrospective clinical adjudications were performed. These assignments were made solely on
the basis of information available in the medical record and were blind to any metabolomic
or proteomic data, which had not yet been generated. Patients were matched for age, race,
sex, and enrollment site using the sepsis nonsurvivor group as the reference.

Langley et al. Page 14

Sci Transl Med. Author manuscript; available in PMC 2014 February 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Replication—The clinical, metabolomic and proteomic analyses were replicated in a
separate CAPSOD subset of 18 sepsis nonsurvivors and 34 matched sepsis survivors (at t0
[Vt0] and t24 [Vt24]). A second validation set was performed in an independent sepsis study
(the Brigham and Women’s Hospital Registry of Critical Illness cohort [RoCI], approved by
the Partners Human Research Committee, protocol # 2008-P-000495) (27). This validation
cohort had 29 non-infected patients with SIRS, 36 sepsis survivors and 25 sepsis
nonsurvivors. The study followed the Equator Network Library recommendation for
biospecimens and conforms to BRISQ Tier 1 reporting (77). Details are provided throughout
the text. In addition, samples were stabilized in standard serum collection tubes. They were
frozen for long-term preservation and then stored at −80°C until testing occurred, which was
within one to five years. When necessary, samples were shipped on dry ice.

Patient Enrollment
Patients presenting at EDs (Henry Ford Hospital, Duke University Hospital, and Durham
Veterans Affairs Medical Center) with suspected sepsis (≥2 SIRS criteria and infection)
were enrolled (12, 25). Approval was obtained by institutional ethics committees and filed at
(ClinicalTrials.gov (NCT00258869). Written informed consent was given by each patient or
legal designate. Physical examination was performed and venous plasma and whole blood
was collected at enrollment (t0) and 24 hrs later (t24); patients were followed for 28 days.
Demographic and clinical data was anonymized and stored in compliance with HIPAA
regulations (ProSanos Inc.). Following independent audit of infection status and outcomes,
150 subjects were chosen for derivation studies. Patients were classified as non-infected
SIRS, uncomplicated sepsis, severe sepsis, septic shock, or sepsis nonsurvivor. Fifty-two
sepsis survivors and deaths at t0 and t24 samples were also utilized as an internal validation
set. Recruitment for the BWH Registry of Critical Illness (RoCI) has been described in
detail elsewhere (27). Briefly, demographic, clinical information, and blood specimens were
collected from patients with critical illness in the medical intensive care unit (MICU) of the
Brigham and Women’s Hospital (BWH). Blood specimens were obtained within 2 days of
ICU admission (Day 1), and also at days 3 and 7. Informed consent was obtained directly
from patients, or, if not possible, their legal representatives. 400 subjects have been enrolled
in RoCI from 2008 to 2012. Serum samples from 90 subjects on Day 1 of enrollment were
selected for metabolomic profiling. RoCI is approved by the Partners Human Research
Committee under IRB protocol 2008-P-000495.

Semi-quantitative metabolomic analysis
Non-targeted UPLC-MS/MS and GC-MS analyses were performed at Metabolon, Inc. as
described (78–80). The UPLC-MS/MS platform utilized a Waters Acquity UPLC with
Waters UPLC BEH C18-2.1×100 mm, 1.7 μm columns and a ThermoFisher LTQ mass
spectrometer. GC-MS was performed on a Thermo-Finnigan Trace DSQ fast-scanning
single-quadrupole MS. Metabolites were identified by automated comparison of the ion
features in the experimental samples to a reference library of chemical standard entries that
included retention time, molecular weight (m/z), preferred adducts, and in-source fragments
as well as associated MS spectra and curated by visual inspection for quality control using
software developed at Metabolon (81). Peaks were quantified using area-under-the-curve.
Raw area counts for each metabolite in each sample were normalized to correct for variation
resulting from instrument inter-day tuning differences by the median value for each run-day,
therefore, setting the medians to 1.0 for each run. Missing values were imputed with the
observed minimum after normalization. However, metabolites with missing values in >50%
of the samples were excluded from analysis.
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Quantitative metabolomics analysis
50μL of 382 human EDTA plasma samples, 48 quality control plasma aliquots, 6 calibration
standards and a blank internal standard (H2O) were treated (see supplemental materials and
methods) and injected onto a Waters Acquity UPLC/Thermo Quantum Ultra triple
quadrupole LC/MS/MS with HESI source equipped with a reversed phase chromatographic
column system to determine quantitative changes for methylbutyroylcarnitine, 4-cis-
decenoylcarnitine, butyroylcarnitine, hexanoylcarnitine, 4-methyl-2-oxopentanoate, 1-
arachidonoylglycerophosphocholine, 1-linoleoylglycerophosphocholine, HPLA, 3-
methoxytyrosine, n-acetylthreonine, and pseudouridine. The peak areas of the respective
product ions were measured against the peak areas of the corresponding internal standard
product ions (Fig. S9). Analyte concentrations are reported in the weight/volume format
(“ug/mL”) and not in molar concentrations; Quantitation was performed using weighted
linear least squares regression analysis generated from fortified calibration standards
prepared immediately prior to each run (Fig. S10). Correlation analysis of quantitative
results to semi-quantitative analysis was high (Fig. S11).

Proteomic analysis
Plasma proteomic analysis was performed by Monarch Life Sciences Inc. as previously
described (82). Briefly, tryptic digests (~20 μg) with the most abundant proteins removed
(see supplemental materials and methods) were analyzed using a Thermo-Fisher Scientific
LTQ linear ion-trap mass spectrometer coupled with a Surveyor HPLC system. Data were
collected and analyzed as described (83, 84). Database searches against the IPI
(International Protein Index) human database (v3.48) and the non-Redundant-Homo Sapiens
database (update July 2009) were carried out using both the X!Tandem and SEQUEST
algorithms (85, 86). The q-value represented peptide false identification rate and was
calculated by incorporating Sequest and X!Tandem results (83). Observed peptide MS/MS
spectrum and theoretically derived spectra were used to assign quality scores (Xcorr in
SEQUEST and e-Score in X!Tandem). Peptides with high confidence (>90%) and multiple
unique sequences were employed for analyses. Protein quantification was carried out using
as described.(84). Area-under-the-curve (AUC) for each individually aligned peak from
each sample was measured and compared for relative abundance and were log2 transformed
before quantile normalization (87). Raw LC-MS/MS data files were independently validated
by the Duke Proteomics Core using spectral counting in the form of number of identified
spectra per protein (see supplemental materials and methods).

Statistical analysis
Overlaid kernel density estimates, univariate distribution results, Mahalanobis Distances,
correlation coefficients of pair wise sample comparisons, unsupervised principal
components analysis (by Pearson product-moment correlation) and Ward hierarchal
clustering of Pearson product-moment correlations were performed using log2-transformed
data as described (88) with JMP Genomics 5.0 (SAS Institute). Decomposition of principal
components of variance, including patient demographics, past medical history, laboratory
and clinical values, was performed to maximize sepsis-group-related components of
variance and minimize residual variance (88). Guided by these analyses, ANOVA was
performed between sepsis groups, with 5 – 25% false discovery rate (FDR) correction (as
noted in the text) and inclusion of substantive non-hypothesis components of variance as
fixed effects (88). These included renal function, as determined by eGFR, hemodialysis
(HD), cirrhosis and liver disease, hepatitis, neoplastic disease, and administration of
exogenous immunosuppressants. Predictive modeling was performed with JMP Genomics
5.0 using logistic regression. Data is presented as average ± standard error of the mean
(SEM). Bayesian clinical factor analysis [cj = Byj + A(sj ∘ zj) + εj] was performed to
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distinguish the effects of clinical outcomes (uninfected SIRS group, sepsis survivors, and
sepsis nonsurvivors) and relevant clinical factors on the metabolome (see supplemental
materials). The significant features were then plotted on B-matrix as well as plotted as
normalized energy (referred to as factor scores within the manuscript) of each clinical
feature. Pairwise cross correlations were performed using JMP Genomics 5.0 software to
compare protein and metabolite values at t0 and t24 using Pearson moment-correlation.
Protein-metabolite correlations were considered significant if observed at t0 and t24 with p-
values <0.05 and <0.1, or at a single time point with Bonferroni correction. Support vector
machines (SVM), both linear and with RBF kernels, were used for binary classification of
sepsis survivors and deaths. Performance was evaluated by test data scores for AUC and
accuracy.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Editor’s Summary

Heading: Understanding survival of the fittest in sepsis

Differentiating mild infections from life-threatening ones is a complex decision that is
made millions of times a year in US emergency rooms. Should a patient be sent home
with antibiotics and chicken soup? Or should he or she be hospitalized for intensive
treatment? Sepsis – infection that is associated with a generalized inflammatory response
– is one of the leading causes of death. In two prospective clinical studies, patients
arriving at four urban emergency departments with symptoms of sepsis were evaluated
clinically and by analysis of their plasma proteome and metabolome. Survivors and non-
survivors at 28-days were compared and a molecular signature was detected that
appeared to differentiate these outcomes – even as early as the time of hospital arrival.
The signature was part of a large set of differences between these groups showing that
better energy-producing fatty acid catabolism was associated with survival of the fittest
in sepsis. A test developed from the signature was able to predict sepsis survival and
nonsurvival reproducibly and better than current methods. This test could help to make
that all important decision in the emergency room a more accurate one.
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Figure 1. An integrative systems survey of sepsis survival and death
(A) CONSORT flow chart of patient enrollment and selection. Patients presenting to
emergency departments with suspected community-acquired sepsis (acute infection and ≥2
SIRS criteria) were grouped according to final adjudication (sepsis or SIRS, no infection),
day 3 clinical course (septic shock, severe sepsis, and uncomplicated sepsis) and outcome at
day 28 (survival or death). Groups were defined by the most severe stage of sepsis attained.
A subset of cases were chosen for the derivation study based upon planned number (n=30)
of patients per subgroup and enriched for etiologic agents and controlling for attributes
defined by the sepsis nonsurvivor group. The validation group had limited number of sepsis
nonsurvivors. 1 One sepsis nonsurvivor initially refused phlebotomy at t0, yet later agreed at
t24. The sample was utilized to maximize validation predictive modeling studies. No non-
infected SIRS validation samples were selected because predictive modeling was not
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successful during derivation. (B) Experimental design. MS-based metabolome and proteome
analysis was performed on plasma samples obtained at t0 and t24 from 150 matched
derivation subjects. Validation of metabolome findings was sought by semi-quantitative MS
in an independent cohort comprising all remaining sepsis nonsurvivors and a matched group
of sepsis survivors at t0 and t24 (n=52). Following molecular integration and analysis,
predictive models were developed that were representative of the clinical and molecular
findings. A top model utilizing semi-quantitative metabolomics clinical measures was
trained at t0, and then tested against the derivation t24 group, validation groups (Vt0, Vt24)
and an independent validation (RoCI) cohort. The utility of the predictive models was
further tested by clinical measures and targeted, quantitative assays of butyroylcarnitine, 2-
methylbytyroylcarnitine, hexanoylcarnitine, cis-4-decenoylcarnitine, 1-arachidonoyl-
glycerophosphocholine (GPC), 1-linoleoyl-GPC, pseudouridine, 3-(4-hydroxyphenyl)lactate
(HPLA), 4-methyl-2-oxopentanoate, 3-methoxytyrosine and N-acetylthreonine of 382
samples, four samples were not included in a subset of metabolites due to limited serum
volume. Tests included logistic regression of the top model derived by semi-quantitative
results and Support Vector Machine (SVM) analysis of the top model.
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Figure 2. Metabolomic profiling of plasma in sepsis
(A, B) Venn diagrams of overlap of biochemicals (A) and annotated metabolites (B)
measured by MS in discovery plasma samples at t0 (n=150) and t24 (n=132) and 52
Validation (V) patients at t0 and t24. 160 metabolites were removed from the analysis
because they were detected in ≥ 50% of the patients. (C–E) Comparison of Creatinine (C),
Lactate (D) and Glucose (E) concentrations as determined in serum by clinical chemical
analyzer and in plasma by MS in 149, 115 and 149 patients, respectively. Differences in n-
values were due to omissions in clinical values – a large group of patients did not require
blood lactate values as part of their clinical care. MS values are normalized, log-transformed
intensities. Clinical chemistry values (mg/dl) are log-transformed. (F) Z-score scatter plots
of plasma metabolites from non-infected SIRS, uncomplicated sepsis, severe sepsis, septic
shock or sepsis nonsurvivor patients. Zero on the X-axis represents the mean of the control
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group. Each data point is expressed as the number of standard deviations from the mean of
the controls. The Y-axis shows all values for each biochemical on the same horizontal line.
Z-score values are standard deviations from the control mean, revealing changes relative to
control. The boxed values are mScores, which are averages of the absolute values of Z-
scores for all metabolites, calculated using non-truncated, non-imputed values. (G) The
variance in plasma metabolite concentrations at the time of emergency department
enrollment (t0) that was attributable to sepsis outcome decreased with increasing days-to-
death (X-axis).
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Figure 3. Comparisons of the plasma metabolome in community-acquired sepsis survivors and
nonsurvivors
(A) Comparison of annotated plasma metabolite concentrations at t24 in 132 discovery
subjects (represented by columns). Individuals who died were ordered by days-to-death
(decreasing from left to right as indicated by the black triangle). Rows show 82 host
metabolites with statistically significant differences between groups (stratified ANOVA,
p<0.05). Colors indicate log-transformed standardized values. Highlighted are 13 acyl-
glycerophosphocholines (GPCs) and acyl-glycerophosphoethanolamines (GPEs), which
were decreased in sepsis survivors and further decreased in sepsis nonsurvivors (in
comparison with controls), 13 RNA catabolites and 14 acyl-carnitines, both of which were
decreased in sepsis survivors and increased in sepsis nonsurvivors (in comparison with
controls). Detailed images in supplementary materials (Fig. S5). (B–D) Three-dimensional
scatterplots showing plasma acyl-carnitine and acyl-GPC concentrations in 378 samples, as
measured by quantitative, targeted assays. (B, C) Acylcarnitine concentrations were
generally increased in day-28 sepsis nonsurvivors (green contour ellipsoid) and decreased in
sepsis survivors (blue ellipsoid) when compared with non-infected controls (red ellipsoid).
Samples obtained from patients who died with sepsis within the 28 day follow-up period are
indicated by green diamonds (n=93; 4-cis-decenoylcarnitine 1825±168 mg/dL;
hexanoylcarnitine 41.2±3.5 mg/dL; butyroylcarnitine 68.2±11.7 mg/dL [mean±S.E.M.]),
sepsis survivors by blue dots (n=235; 4-cis-decenoylcarnitine 932±50 mg/dL;
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hexanoylcarnitine 20.3±1.1 mg/dL; butyroylcarnitine 31.9±2.3 mg/dL) and non-infected
controls by red dots (n=54; 4-cis-decenoylcarnitine 1200±115 mg/dL; hexanoylcarnitine
24.6±2.9 mg/dL; butyroylcarnitine 35.0±3.7 mg/dL). (D) Three -dimensional scatterplot
showing similar trends in plasma values of two acyl-glycerophosphocholines (acyl-GPCs)
and an RNA catabolite in 378 samples. Acyl-GPCs generally were highest in non-infected
(red contour ellipsoid), lower in sepsis survivors (blue contour ellipsoid) and lowest in
day-28 sepsis nonsurvivors (green contour ellipsoid). Sepsis day 28-deaths are shown by
green diamonds (n=93; 1-arachidonoyl-GPC 1.10±0.09 mg/dL; 1-linoleoyl-GPC 2.23±0.21
mg/dL; pseudouridine 954±65 mg/dL [mean±S.E.M.]), sepsis survivors by blue dots
(n=235; 1-arachidonoyl-GPC 1.38±0.07 mg/dL; 1-linoleoyl-GPC 3.40±0.29 mg/dL;
pseudouridine 708±43 mg/dL) and non-infected controls by red dots (n=54; 1-arachidonoyl-
GPC 2.49±0.13mg/dL; 1-linoleoyl-GPC 6.15±0.52 mg/dL; pseudouridine 628±88 mg/dL).
Ellipsoids encompass 90% of sample values. (E). Box and whisker plots of MS lactate
values and targeted, quantitative values (red boxes) in 378 plasma samples. Sample values
are shown in black. Ranges are shown by black horizontal lines. Means are connected by
blue lines.
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Figure 4. Integration of metabolomic and proteomic differences in sepsis nonsurvival
(A) Changes in plasma proteins in the complement, coagulation and fibrinolytic cascades in
sepsis survivors and nonsurvivors. Adapted from KEGG. Red boxes indicate proteins that
are decreased in sepsis nonsurvivors compared to survivors; Green boxes are increased in
sepsis nonsurvivors. (B) Heatmap of hierarchical clustering of pairwise Pearson product-
moment correlations of 332 log-transformed, annotated plasma metabolites in 132 subjects
at t0 compared to matched subjects at t24. Positive correlations are red; inverse correlations
are blue. Unannotated gas chromatography–mass spectrometry identified biochemicals were
excluded from the analysis. A detailed list of the metabolite clusters are in the supplemental
materials (Fig. S17). (C) Heatmap of hierarchical clustering of pairwise Pearson product-
moment correlations of 162 log-transformed annotated plasma proteins and 332 metabolites
in 132 subjects at t0. 18 subjects at t0 were not included within this analysis because there
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was not a matched value at t24. Positive correlations are red; inverse correlations are blue.
Excluded were metabolites or proteins detected in <50% of patients or that did not have a
reported value at both t0 and t24. (D) Plasma metabolite correlations with Succinate
Dehydrogenase Complex, Subunit D (SDHD) was increased 2.44-fold in sepsis nonsurvival
compared with sepsis survival. Regulation of metabolite flow from the pyruvate
dehydrogenase complex through the citric acid cycle is shown, along with associated
reactions that replenish depleted cycle intermediates and entry into fatty acid β-oxidation.
Correlation coefficients of plasma metabolite with plasma SDHD values are indicated by
green integers. Plasma lactate, pyruvate, acetyl-carnitine, oxaloacetate and α-ketoglutarate
were higher in sepsis nonsurvivors than sepsis survivors. Global cross correlation analysis
results determined from all relevant t0 metabolites (336 biochemicals) correlated with t0
proteins (165 proteins) in 150 derivation patient samples. The analysis included lower
confidence protein acyl-coA synthetase M6 (ACSM6) and single time point high confidence
proteins SDHD, and fatty acid binding protein 4.
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