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Rapid developments in molecular technology have yielded a large amount of high
throughput genetic data to understand the mechanism for complex traits. The increase
of genetic variants requires hundreds and thousands of statistical tests to be performed
simultaneously in analysis, which poses a challenge to control the overall Type I error
rate. Combining p-values from multiple hypothesis testing has shown promise for
aggregating effects in high-dimensional genetic data analysis. Several p-value combining
methods have been developed and applied to genetic data; see Dai et al. (2012b) for a
comprehensive review. However, there is a lack of investigations conducted for dependent
genetic data, especially for weighted p-value combining methods. Single nucleotide
polymorphisms (SNPs) are often correlated due to linkage disequilibrium (LD). Other
genetic data, including variants from next generation sequencing, gene expression levels
measured by microarray, protein and DNA methylation data, etc. also contain complex
correlation structures. Ignoring correlation structures among genetic variants may lead
to severe inflation of Type I error rates for omnibus testing of p-values. In this work,
we propose modifications to the Lancaster procedure by taking the correlation structure
among p-values into account. The weight function in the Lancaster procedure allows
meaningful biological information to be incorporated into the statistical analysis, which
can increase the power of the statistical testing and/or remove the bias in the process.
Extensive empirical assessments demonstrate that the modified Lancaster procedure
largely reduces the Type I error rates due to correlation among p-values, and retains
considerable power to detect signals among p-values. We applied our method to reassess
published renal transplant data, and identified a novel association between B cell pathways
and allograft tolerance.

Keywords: generalized Fisher method (Lancaster procedure), weight function, correlated p-values, multiple

hypothesis testing, high dimensional genetic data

INTRODUCTION
Rapid developments in molecular technology have created high
throughput data in search of genetic variants associated with
complex traits. As the cost of experiments goes down, the amount
of data that can be generated, and the resulting complexity of
statistical analysis required to interpret the data goes up. The
increase of genetic variants requires more statistical testing to
be performed simultaneously, which poses a challenge to control
the genome wide Type I error rate. False discovery rate (FDR)
and its extended methods have been proposed to adjust p-values
in multiple tests in order to control the genome wide Type I
error (Benjamini and Hochberg, 1995; Cheng and Pounds, 2007).
However, in large-scale hypothesis testing, these methods often
require very a large sample size to maintain power of detecting
risk factors.

The global test (also named omnibus test) of p-values can com-
bine evidence and turn dimensionality from a curse into rich
information. From a systems biology perspective, genes, cells,

tissues, and organs function as a system through metabolic net-
works and cell signaling networks. In non-Mendelian inheritance
patterns, such as complex disorders, a subset of genetic vari-
ants may jointly confer moderate effects in mediating molecular
activities. As a result, signals may not be significant in single
marker-single trait analysis, but many such values from related
genes might provide valuable information on gene function and
regulation. For instance, in pathway analysis (Khatri et al., 2012)
and gene set enrichment analysis (Subramanian et al., 2005), mul-
tiple genes that work together to serve a particular biological
function are often analyzed jointly as a gene set. Several path-
way repositories, such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa et al., 2004), PANTHER classifi-
cation system for protein sequence data (Nikolsky and Bryant,
2009), and Reactome pathways in humans (Matthews et al., 2009)
have been established, and are continually being updated. For
non-Mendelian diseases and complex traits, identification of iso-
lated genetic variants is insufficient to summarize the complex
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association with disease. The “most-significant SNPs/genes”
approach often detects variants with small effect sizes and odds
ratios ranging between 1.3 and 2 (Wacholder et al., 2004).
Therefore, integrating information from pathways, gene sets, and
networks will provide useful information in understanding the
gene regulation mechanism. Furthermore, filtration techniques
can be integrated with global testing of p-values to remove sets of
genetic variants that are not related to traits, and thereby reduce
the dimensionality of the data (Dai and Charnigo, 2008; Dai et al.,
2012a).

The global test of p-values evaluates the pattern (distribution)
of p-values instead of selecting p-values less than an arbitrary
threshold. Therefore, this method has the potential to identify
multiple genes with small effects. If we assume that all individ-
ual tests are independent and arise from genetic variants with
no effects, then p-values are identically and independently dis-
tributed as Uniform (0, 1). Taking this as a null hypothesis for
the pattern of p-values in the global test, one can assess whether
p-values, especially small p-values, are generated by chance. The
global test of p-values is robust and can be applied to p-values
from varying statistical models including t-tests, analysis of vari-
ance (ANOVA), linear mixed models, and so forth. Multiple
simulation studies and case studies have demonstrated that this
approach usually has sufficient power to detect signals of genetic
association from a group of genes. For instance, Peng et al. (2010)
has assessed Fisher’s combination test and Sidak’s combination
test, Sime’s combination test and the FDR method using 13 pub-
lished genome wide association studies (GWAS), and the results
indicate that combined p-value approaches can identify biologi-
cally meaningful pathways associated with the disease susceptibil-
ity. A review of methods of global test of p-values, developmental
trends and their application to genetic data analysis has been
presented by (Dai et al., 2012b).

One category of global tests of p-values involves combining
p-values in the form of

∑
i H(pi), where p-values might first be

transformed by a function H. So far, several statistical methods
have been developed to combine p-values. Let pi(i = 1, 2, . . . , n)

be independent p-values obtained from n hypothesis tests.
Under the null hypothesis (H0) that p-values follow a Uniform
(0, 1) distribution, Fisher (1932) shows that −2

∑n
i = 1 ln(pi)

follows a chi-square distribution with 2n degrees of freedom.
For a one sided test with a nominal error rate of α, one can
reject the null hypothesis when the test statistics exceeds the
(1 − α)∗100% percentile of χ2

2n. Stouffer (Stouffer et al., 1949)
proposed a z-test by transforming p-values to standard nor-

mal variables, i.e.,
∑n

i = 1
�−1(1 − pi)√

n
, where �−1 is the inverse

Cumulative Distribution Function (CDF) for N(0, 1). Under the
null hypothesis, the z-test statistic follows N(0, 1).

Although there is no consensus regarding the most powerful
method of combining p-values, Littell and Folks (1971, 1973)
demonstrated that the Fisher’s method of combining indepen-
dent tests is asymptotically Bahadur efficient (Bahadur, 1967).
Subsequently, weighting schemes have been incorporated into
the Fisher’s method and the z-test. Lancaster (1961) gener-
alized the Fisher method by converting independent p-values
to chi-square variables with wi degrees of freedom and he

showed that
∑m

i = 1 γ−1
(wi/2,2)(1 − pi) ∼ χ2

d, d = ∑
i wi under H0,

where γ−1
(wi/2,2) is the inverse CDF of Gamma distribution.

Mosteller and Bush (1954) proposed a weighted z-test,
∑

i wi�
−1

(1 − pi)/

√∑
i w2

i , which follows N(0, 1) under H0.

In a separate paper, we have proved that the Lancaster
procedure achieves the optimal Bahadur efficiency. We further
demonstrated that the Lancaster procedure yields higher Bahadur
efficiency than the weighted z-test. The Bahadur efficiency ratio
gives the limiting ratio of sample sizes required by two statistics
to attain an equally small significance level. Thus, Bahadur effi-
ciency is an important method to compare test statistics. From
the perspective of Bahadur efficiency, the Lancaster procedure
asymptotically requires a relatively smaller sample size than other
weighted p-value combining methods. This prompted us to focus
on modification of the Lancaster procedure for correlated genetic
data in this work.

Although the Fisher’s method and Lancaster procedure both
achieve the optimal Bahadur efficiency, the Lancaster procedure is
more general and can be viewed as a generalized Fisher’s method
with weighting functions. There are three advantages to care-
fully select appropriate weight functions in genetic data analysis.
Firstly, weight functions allow incorporation of prior biological
information. Genetic data are complex and can be measured from
different sources. Thus, weight functions can be used as a tool
to incorporate meaningful information from different sources
in order to interpret and derive biological insight from gene
expression profiles. (Wu and Lin, 2009) provides a review of
statistical methods for analysis of microarray data by incorpo-
rating prior biological knowledge using gene sets and biological
pathways, which consist of groups of biologically similar genes.
They show that the use of prior knowledge has led to a better
understanding of the biological mechanisms underlying pheno-
typic responses. Secondly, weight functions can be used to remove
bias. For instance, larger genes may contain more probes and/or
SNPs. Therefore, larger genes will exert a stronger influence on the
p-value combining methods as compared to smaller genes (Wang
et al., 2007). To avoid this bias, one can consider a weight function
to adjust for gene size when combining p-values. We will illus-
trate this approach in sections Empirical Assessments and Case
Study: Renal Transplant Tolerance Data. Thirdly, as suggested by
Benjamini and Hochberg (1997), Genovese et al. (2006), proce-
dures that assign weights positively associated with the underlying
alternative hypotheses will usually improve power. Therefore,
one needs to carefully choose an appropriate weight func-
tion, either based on the biological knowledge, or by statistical
hypotheses. An arbitrary weight is inappropriate for the Lancaster
procedure.

In this work, we will provide modifications to the Lancaster
procedure to accommodate correlation structures among
p-values. The proposed method provides a generalization to
the Fisher’s method with a weight function and can be used
in pathway analysis and gene sets enrichment analysis for a
variety of genetic data including microarray gene expression data,
GWAS data, and next generation sequencing data. In essence,
investigators first dissect genetic variants by biological functions
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or prior knowledge, then combine the p-values from these gene
sets to identify whether a proportion of genetic variants are
associated with traits.

CORRELATED LANCASTER PROCEDURES
In this section, we allow p-values to be correlated. Consider a
Lancaster test statistic T = ∑n

i = 1 γ−1
(wi/2,2)(1 − pi) where γ−1

(wi/2,2)

is the inverse CDF of Gamma distribution with a shape param-
eter wi/2 and a scale parameter 2. This transformation converts
pi ∼ Uniform(0, 1) to a chi-square distribution, i.e., γ−1

(wi/2,2)

(1 − pi) ∼ χ2
wi

where χ2
wi

is a chi-square distribution with wi > 0
degree(s) of freedom. The parameter wi serves as a weight func-
tion to adjust the individual p-values. When p-values are inde-
pendent, T has an exact chi-square distribution with

∑n
i = 1 wi

degrees of freedom.
For correlated p-values, T = ∑n

i = 1 γ−1
(wi/2,2)(1 − pi) does not

follow χ2∑n
i = 1 wi

. The distribution of T does not have an explicit

analytical form. To address this issue, we consider a Satterthwaite
approximation by approximating a scaled T statistic with a new
chi-square distribution (Li et al., 2011). Let cT ≈ χ2

v where c > 0
is a scalar and v > 0 is the degree of freedom for the approximated
chi-square distribution. Note that

E(T) = E

(
n∑

i = 1

γ−1
(wi/2,2)

(
1 − pi

)) =
n∑

i = 1

wi and

Var(T) = var

(
n∑

i = 1

γ−1
(wi/2,2)

(
1 − pi

))

=
n∑

i = 1

var
(
γ−1

(wi/2,2)

(
1 − pi

))

+ 2
∑
i < j

cov
(
γ−1

(wi/2,2)

(
1 − pi

)
, γ−1

(wi/2,2)

(
1 − pj

))

= 2
n∑

i = 1

wi + 2
∑
i < j

ρij,

where ρij = cov
(
γ−1

(wi/2,2)(1 − pi), γ
−1
(wi/2,2)

(
1 − pj

))
takes the

correlations among p-values into account.
We propose the following five approaches to approximate the

distribution of T. In approximation (A), we use the Satterthwaite
method to match the mean and variance of cT and χ2

v , and then
solve the equations to derive c and v. Koziol (1996) have pro-
posed multiple methods to approximate the Lancaster procedure,
but these approximations require the assumption of indepen-
dence. In approximation (B)–(E), we extend the work of Koziol
(1996) to correlated data by first approximating cT with χ2

v then
approximating χ2

v using varying methods.

• TA approximation.
Correlation among p-values is taken into consideration, and
then Satterthwaite’s approximation is used (Patnaik, 1949) to
derive new degrees of freedom:

TA = cT ≈ χ2
v, where c = v

E(T)
and v = 2

[E(T)]2

var(T)
.

• TB approximation.
cT is first approximated by χ2

v , followed by Fisher’s approxima-
tion (Fisher, 1922) to χ2

v :

TB =
√

2
vT

E(T)
≈ N(

√
2v − 1, 1).

• Tc approximation.
After approximating cT by χ2

v , the Wilson–Hilferty approx-
imation is performed (Wilson and Hilferty, 1931) to derive
χ2

v .

Let Tc = 3

√
T

E(T)
, then Tc ≈ N

(
1 − 2/(9v),

√
2/(9v)

)
.

• TD approximation.
Approximate cT by χ2

v , followed by the Cornish–Fisher expan-
sion (Fisher and Cornish, 1960) to χ2

v . Let xα denote the
α-percentage point of the standard normal distribution, that is,
�(xα) = α. It follows that the corresponding percentage point
for TD = vT

E(T)
is given by

v + √
2vxα + 2

3
(x2

α − 1) + x3
α − 7xα

9
√

2v
− 6x4

α + 14x2
α − 32

405v

+ 9x5
α + 256x2

α − 433xα

4860v
√

2v
.

• TE approximation.
Approximate cT by χ2

v then perform saddle point
approximation (Lugannani and Rice, 1980) to χ2

v . Let

TE = T
E(T)

. Then Pr(YE ≤ y) = �(ay) − φ(b−1
y − a−1

y )

for y �= 1 and Pr(YE ≤ 1) = 0.5 − (3
√

πv)−1, where

ay = √
2v(yty − K(ty))sign(ty), by = ty

√
vK ′′

(tx) and

K(t) = −0.5 log(1 − 2t), and ty = (y − 1)/2y.

When the covariance ρij is unknown, one can use the permuta-
tion approach to estimate ρij by shuffling the phenotype variable
among subjects. For the kth permutation (k = 1, 2, . . . , m), we
keep the genetic variants within the subject to preserve the cor-
relation structure, then randomly assign the phenotype variable
to subjects. Individual hypothesis testing can be done on all n
genetic variants separately to generate the p-value vector pk =
(pk

1, pk
2, . . . pk

n)
t . The permutation is repeated m = 1000 times,

and ρij is estimated from (p1, p2, . . . pm).
The accuracy of the five approximate distributions to the

correlated Lancaster procedure is then assessed using p-values
with varying correlation structures. We consider six different
types of correlation structures, including fixed and random com-
pound symmetric as well as random positive definite variance-
covariance structures for �. Let I be an identity matrix, 	1 be
a vector of 1 s, ⊗ be the Kronecker product, and superscript t
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be the transposition. In Cases I–V, let � = Block ⊗ I20 be com-
pound symmetric variance matrices with 20 blocks of size 5 where
Block = 	15	1t

5ρ + (1 − ρ)I5. We vary ρ over two fixed values with
ρ = 0.3 for moderate dependence and ρ = 0.6 for strong depen-
dence. In addition, we simulate random correlation coefficients
from beta and uniform distributions, i.e., ρ ∼ β(0.3, 1.5) and
ρ ∼ uniform(−0.2, 0.2), which ensures that 20 variance blocks
have distinct correlation coefficients ρ within �. More generally,
we consider random positive definite correlation matrices � that
vary across samples and simulation runs.

The quantile-quantile (Q-Q) plot assessing the accuracy of
the proposed methods when the correlation coefficient ρ = 0.3
is shown in Figure 1. For clarity, the Lancaster statistic T that
combines n p-values is renamed as TLancaster

n in Figure 1. For the
original Lancaster procedure under the independence assump-
tion, the general trend of the Q-Q plot is flatter than the reference
line y = x, indicating the limiting distribution for the test statistic
in the original Lancaster procedure is less dispersed than the
distribution of TLancaster

n under correlation structures. As a result,
the original Lancaster procedure will have severely inflated Type
I errors. In contrast, the five approximations (TA, . . . , TE) match
the underlying distribution of TLancaster

n . For data with stronger
internal correlation, TA, TD, and TE better approximate TLancaster

n .
The Q-Q plots under other correlation structures are similar to

Figure 1. To save space, these similar results are not shown, but
can be provided upon request.

EMPIRICAL ASSESSMENTS
We assess the Type I error rates and power for the proposed
correlated Lancaster procedures and compare them to the inde-
pendent Lancaster procedure (Lancaster, 1961). SNPs from a
pathway of haploid GWAS are simulated using linkage dise-
quilibrium (LD) (Li et al., 2011). Let q1 and q2 be the minor
allele frequencies (MAFs) at loci 1 and 2. Assuming Hardy–
Weinberg equilibrium, the genotype at locus 1 can be randomly
generated using a binomial distribution. Given the distribution
of SNP at locus 1, one can simulate the genotype at locus 2.
To do so, let D be a measure of LD. Then the conditional
probability for the genotype at locus 2 given the genotype at
locus 1 can be expressed as P(A|B) = [qAqB + D]/qB, P(a|B) =
[(1 − qA)qB − D]/qB, P(A|b) = [qA(1 − qB) − D]/(1 − qB), and
P(a|b) = [(1 − qA)(1 − qB) + D]/(1 − qB) where A and B rep-
resent the minor alleles at the two loci. For a diploid genome,
similar idea can be applied and the simulation details can be
found at Cui et al. (2008). We simulate a pathway with 5 genes
with varying numbers of SNPs in each gene listed in parenthesis
i.e., G1(12), G2(8), G3(5), G4(3), G5(2). The MAF of each SNP
was set to be 0.3. We simulate different levels of LD for SNPs from

FIGURE 1 | Q-Q plots for distributions of the Lancaster statistic when p-values are correlated with correlation coefficient ρ = 0.3.
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the same gene with D = 0, 1.5, 2, and uniform(0, maximum of
LD). The variable D = 0, 1.5, and 2 suggests no LD, moderate LD,
and very strong LD among SNPs with the corresponding correla-
tion R = 0, 0.71, and 0.95. Six scenarios for disease susceptibility
(p) are simulated

• Case I: ln(p/(1 − p)) = β1G1, 2 + β2G1, 5 + β3G1, 7 +
β4G1, 8 + β5G1, 12.

• Case II: ln(p/(1 − p)) = β1G2, 2 + β2G2, 4 + β3G2, 6 +
β4G3, 2 + β5G3, 3.

• Case III: ln(p/(1 − p)) = β1G3, 2 + β2G3, 4 + β3G4, 1 +
β4G4, 3 + β5G5, 1.

• Case IV: ln(p/(1 − p)) = β1G1, 1 + β2G1, 3 + β3G1, 7 +
β4G1, 8G1, 10G1, 11 + β5G1, 12.

• Case V: ln(p/(1 − p)) = β1G3, 1 + β2G3, 3 + β3G4, 2 +
β4G3, 2G3,4 + β5G4, 3G5, 1.

• Case VI: ln(p/(1 − p)) = β1G1, 2 + β2G2, 2 + β3G3, 3 +
β4G5, 2 + β5G1, 5G1,7 + β6G3, 3G5, 1.

Table 1 | Type I error and power for independent Lancaster Procedure

and five approximations to correlated Lancaster Procedures when

sample size = 200 and linkage disequilibrium D = 0.15.

Independent TA TB TC TD TE

Lancaster

procedure

CASE I

β = 0 0.101 0.038 0.042 0.039 0.039 0.038

β = 0.4 0.999 0.995 0.995 0.995 0.995 0.995

β = 0.6 1 1.000 1 1 1 1

CASE II

β = 0 0.1 0.037 0.041 0.038 0.038 0.037

β = 0.4 0.947 0.863 0.875 0.864 0.865 0.863

β = 0.6 0.997 0.995 0.995 0.995 0.995 0.995

CASE III

β = 0 0.078 0.038 0.038 0.038 0.038 0.038

β = 0.4 0.735 0.506 0.522 0.508 0.507 0.506

β = 0.6 0.961 0.864 0.876 0.866 0.866 0.863

CASE IV

β = 0 0.107 0.046 0.051 0.046 0.047 0.046

β = 0.4 0.997 0.997 0.997 0.997 0.997 0.997

β = 0.6 1 1 1 1 1 1

CASE V

β = 0 0.084 0.036 0.038 0.037 0.037 0.036

β = 0.4 0.884 0.71 0.724 0.71 0.711 0.71

β = 0.6 0.989 0.952 0.957 0.953 0.953 0.952

CASE VI

β = 0 0.084 0.036 0.038 0.037 0.037 0.036

β = 0.4 0.741 0.57 0.585 0.572 0.572 0.568

β = 0.6 0.953 0.898 0.904 0.898 0.898 0.898

A weight function is applied to adjust for the gene size*.
*The nominal error rate is set to be 0.05. Type I error rates are listed when β = 0.

Power is listed when β > 0. Inflated Type I error rates are italicized.
*A weight function wi = 2/

√
ni is applied to each test to adjust for the size

of gene.

Weight functions can be used to remove potential bias when
combining p-values. Wang et al. (2007) and others have
noted that larger genes contain more probes and/or SNPs.
Therefore, larger genes may exert a stronger influence on the
p-value combining methods compared to smaller genes. To
avoid this bias, we set the weight function wi = 2/

√
ni where

ni is the number of SNPs in the ith gene. When ni = 1,
γ−1

(wi/2, 2)(1 − pi) transforms p-value into a variable with χ2
2

distribution.
We simulate data with sample sizes n = 200 (Tables 1, 4) and

n = 400 (Tables 2, 3), respectively. For simplicity, we assume the
same effect size for all of the regression coefficients. For each set of
data, we perform the original and modified Lancaster procedures
to assess the pathway data by combining p-values from individ-
ual tests. We set nominal error rate to be 0.05. The simulation is
repeated 1000 times.

Due to LD, SNPs from the same gene are correlated. We first
assess the Type I error rate of the test statistics by testing H0 :

Table 2 | Type I error and power for independent Lancaster Procedure

and five approximations to correlated Lancaster Procedures when

sample size = 400 and linkage disequilibrium D = 0.20.

Independent TA TB TC TD TE

Lancaster

procedure

CASE I

β = 0 0.13 0.051 0.052 0.051 0.051 0.051

β = 0.4 1 1 1 1 1 1

β = 0.6 1 1 1 1 1 1

CASE II

β = 0 0.134 0.05 0.051 0.05 0.05 0.05

β = 0.4 0.999 0.997 0.998 0.998 0.998 0.997

β = 0.6 1 1 1 1 1 1

CASE III

β = 0 0.116 0.045 0.048 0.045 0.045 0.045

β = 0.4 0.986 0.908 0.915 0.908 0.908 0.908

β = 0.6 1 0.998 0.998 0.998 0.998 0.998

CASE IV

β = 0 0.109 0.046 0.047 0.046 0.046 0.046

β = 0.4 1 1 1 1 1 1

β = 0.6 1 1 1 1 1 1

CASE V

β = 0 0.135 0.04 0.043 0.041 0.041 0.041

β = 0.4 0.994 0.971 0.974 0.971 0.971 0.971

β = 0.6 1 1 1 1 1 1

CASE VI

β = 0 0.135 0.04 0.043 0.041 0.041 0.041

β = 0.4 0.986 0.939 0.948 0.939 0.939 0.939

β = 0.6 1 0.999 0.999 0.999 0.999 0.999

A Weight function is applied to adjust for the gene size*.
*The nominal error rate is set to be 0.05. Type I error rates are listed when β = 0.

Power is listed when β > 0. Inflated Type I error rates are italicized.
*A weight function wi = 2/

√
ni is applied to each test to adjust for the size

of gene.
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β1 = . . . = β6 = 0. As shown in Tables 1, 2, the Type I error
rate for the original Lancaster procedure is inflated (>0.05) for
all of the six cases. In contrast, five modified Lancaster procedures
(TA − TE) have well controlled Type I error rates (<0.05).

The power of all test statistics was compared for regression
coefficient values set at β = 0.4 and β = 0.6, respectively. The
results in Tables 1, 2 suggest strong and comparable power among
the modified Lancaster procedures. In most simulated cases, the
proposed methods have more than 80% power to detect β = 0.4.
When the effect size increases to β = 0.6, the power of proposed
methods increases to 90% or above. Also the power of these tests
improves as sample size increases from n = 200 to n = 400.

We simulate different levels of LD for SNPs with D = 0, 1.5,
2, and uniform(0, maximum of LD). To save the space, we only
show the results for D = 1.5 (Table 3) and D = 2 (Tables 1, 2).
Our findings show that the inflation of Type I error rate for
the original Lancaster procedure gets severe when LD is strong
(Tables 1, 2). The modified Lancaster procedures (TA − TE) have

Table 3 | Type I error and power for independent Lancaster Procedure

and five approximations to correlated Lancaster Procedures when

sample size = 400 and linkage disequilibrium D = 0.15.

Independent TA TB TC TD TE

Lancaster

procedure

CASE I

β = 0 0.066 0.043 0.045 0.043 0.044 0.043

β = 0.4 0.991 0.978 0.978 0.978 0.978 0.978

β = 0.6 1 1 1 1 1 1

CASE II

β = 0 0.059 0.031 0.035 0.031 0.031 0.031

β = 0.4 0.978 0.964 0.967 0.964 0.964 0.964

β = 0.6 1 1 1 1 1 1

CASE III

β = 0 0.053 0.029 0.034 0.029 0.03 0.029

β = 0.4 0.898 0.836 0.844 0.837 0.837 0.836

β = 0.6 0.999 0.996 0.997 0.996 0.996 0.996

CASE IV

β = 0 0.072 0.041 0.045 0.041 0.041 0.041

β = 0.4 0.977 0.962 0.964 0.962 0.962 0.962

β = 0.6 1 1 1 1 1 1

CASE V

β = 0 0.072 0.041 0.045 0.041 0.041 0.041

β = 0.4 0.946 0.899 0.905 0.9 0.901 0.899

β = 0.6 0.999 0.996 0.996 0.996 0.996 0.996

CASE VI

β = 0 0.072 0.041 0.045 0.041 0.041 0.041

β = 0.4 0.807 0.732 0.045 0.733 0.733 0.732

β = 0.6 0.978 0.965 0.045 0.965 0.965 0.965

A weight function is applied to adjust for the gene size*.
*The nominal error rate is set to be 0.05. Type I error rates are listed when β = 0.

Power is listed when β > 0. Inflated Type I error rates are italicized.
*A weight function wi = 2/

√
ni is applied to each test to adjust for the size

of gene.

well-controlled Type I error rates and power for both moderate
and strong LD (Tables 1–3).

In Table 4, we assess the performance of all tests without
a weighting function. We then compare the results in Table 4
(without a weight function) vs. Table 1 (with a weight func-
tion). All other simulation parameters are held the same in
Tables 1, 4. We note that the original Lancaster procedure with-
out a weighting function (Table 4) tends to have higher Type I
error rates than the original Lancaster procedure with a weight-
ing function (Table 1). For modified tests (TA − TE), the power
is increased when a weighting function is used. This confirms
that an appropriate weight function is beneficial to the Lancaster
procedure.

CASE STUDY: RENAL TRANSPLANT TOLERANCE DATA
We revisited a kidney transplant data first collected and ana-
lyzed by Newell et al. (2010). Data were downloaded from the
GEO website with ID = GDS4266 (http://www.ncbi.nlm.nih.

Table 4 | Type I error and power for independent Lancaster Procedure

and five approximations to correlated Lancaster Procedures when

sample size = 200 and linkage disequilibrium D = 0.20.

Independent TA TB TC TD TE

Lancaster

procedure

CASE I

β = 0 0.106 0.027 0.03 0.027 0.027 0.027

β = 0.4 1 0.997 0.997 0.997 0.997 0.997

β = 0.6 1 1 1 1 1 1

CASE II

β = 0 0.1 0.029 0.03 0.029 0.029 0.029

β = 0.4 0.935 0.801 0.812 0.801 0.803 0.801

β = 0.6 0.998 0.976 0.98 0.976 0.977 0.976

CASE III

β = 0 0.118 0.041 0.042 0.041 0.041 0.041

β = 0.4 0.608 0.307 0.32 0.307 0.307 0.307

β = 0.6 0.881 0.663 0.679 0.665 0.666 0.663

CASE IV

β = 0 0.115 0.037 0.04 0.038 0.038 0.037

β = 0.4 1 0.994 0.994 0.994 0.994 0.994

β = 0.6 1 1 1 1 1 1

CASE V

β = 0 0.115 0.037 0.04 0.038 0.038 0.037

β = 0.4 0.78 0.487 0.5 0.488 0.489 0.487

β = 0.6 0.977 0.869 0.882 0.869 0.87 0.869

CASE VI

β = 0 0.115 0.037 0.04 0.038 0.038 0.037

β = 0.4 0.782 0.579 0.589 0.579 0.58 0.579

β = 0.6 0.964 0.885 0.888 0.885 0.885 0.885

No Weight function is applied to adjust for the gene size*.
*The nominal error rate is set to be 0.05. Type I error rates are listed when β = 0.

Power is listed when β > 0. Inflated Type I error rates are italicized.
*These are the un-weighted tests with wi = 2 for all genes. We do not adjust

the size of genes.
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gov/sites/GDSbrowser?acc=GDS4266). A group of tolerant renal
transplant recipients (Tolerant, n = 19), as defined by stable graft
function in the absence of immunosuppression for more than 1
year, were compared to subjects with stable graft function who
were receiving standard immunotherapy (SI, n = 27) as well as to
a group of healthy controls (Control, n = 12). Gene expression
profiles of whole-blood total RNA from all subjects were mea-
sured by microarray. The goal of the study was to identify genetic
variants associated with long-term allograft survival without the
requirement for continuous immunosuppression, a condition
known as allograft tolerance. Newell et al. (2010) performed sta-
tistical analysis to identify differentially expressed genes between
the SI group and the Tolerant group. The results revealed a crit-
ical role for B cells in regulating alloimmunity, and provided a
candidate set of genes for wider-scale screening of renal trans-
plant recipients. However, no comprehensive pathway analysis
was conducted by this group (Newell et al., 2010).

To further understand molecular mechanisms underlying
renal allograft tolerance, we have applied the modified Lancaster

procedure to this dataset to identify candidate cellular pathways.
Gene expression levels were normalized using Robust Multichip
Average (rma) preprocessing methodology, which included back-
ground subtraction, quantile normalization, and summarization
via median-polish.

Gene expression levels were summarized for a total of 54,675
probes from 21,049 genes. Expression levels were compared
among three groups using the Bioconductor “Limma” package.
Three pair wise comparisons were conducted, including: SI vs.
Control, SI vs. Tolerant, and Tolerant vs. Control. Then three
comparisons were combined into one F-test. This is equivalent to
a One-Way ANOVA for each gene except that the residual mean
squares have been moderated across genes. P-values from mul-
tiple hypothesis testing were adjusted by FDR (Benjamini and
Hochberg, 1995). Our results of differentially expressed genes are
consistent with the previous published work. See Newell et al.
(2010) for the gene analysis findings.

Although (Newell et al., 2010) identified a set of differentially
expressed genes, our analysis demonstrates that these significant

Table 5 | Top 10 significant pathways detected by the modified Lancaster procedure (TA).

GO accession Pathway name Gene ontology URL #Gene #Probe Adjusted

P-value

GO:0030183 B cell differentiation Biological process http://www.broadinstitute.org/
gsea/msigdb/cards/B_CELL_ DIFFERENTIATION

12 29 0.003541

GO:0042113 B cell activation Biological process http://www.broadinstitute.org/
gsea/msigdb/cards/B_CELL_ ACTIVATION

20 45 0.003541

GO:0003823 Antigen binding Molecular function http://www.broadinstitute.org/
gsea/msigdb/cards/ANTIGEN_ BINDING

23 51 0.003541

GO:0004709 Map kinase kinase
kinase activity

Molecular function http://www.broadinstitute.org/
gsea/msigdb/cards/MAP_KINASE_
KINASE_KINASE_ACTIVITY

10 32 0.003541

GO:0017148 Negative regulation
of translation

Biological process http://www.broadinstitute.org/
gsea/msigdb/cards/NEGATIVE_REGULATION_
OF_TRANSLATION

23 36 0.003541

GO:0042493 Response to drug Biological process http://www.broadinstitute.org/
gsea/msigdb/cards/RESPONSE_ TO_DRUG

20 35 0.004669

GO:0001772 Immunological
synapse

Cellular component http://www.broadinstitute.org/
gsea/msigdb/cards/IMMUNOLOGICAL_
SYNAPSE

10 18 0.006603

GO:0030098 Lymphocyte
differentiation

Biological process http://www.broadinstitute.org/
gsea/msigdb/cards/LYMPHOCYTE_
DIFFERENTIATION

26 53 0.007986

GO:0042036 Negative regulation
of cytokine
biosynthetic
process

Biological process http://www.broadinstitute.org/
gsea/msigdb/cards/NEGATIVE_REGULATION_
OF_CYTOKINE_BIOSYNTHETIC_PROCESS

12 21 0.008582

GO:0009890 Negative regulation
of biosynthetic
process

Biological process http://www.broadinstitute.org/
gsea/msigdb/cards/NEGATIVE_REGULATION_
OF_BIOSYNTHETIC_PROCESS

30 48 0.008582
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genes have small effect sizes with fold changes <1.5. Therefore, a
limited number of individual genes in the absence of a biologi-
cal context is inadequate to explain the total variation of allograft
tolerance among renal transplant patients.

To address this issue, we performed the modified Lancaster
procedure (TA) as described in Section Correlated Lancaster
Procedures to combine p-values from pathways. Combining
p-values allows us to integrate small effects in pathway and gain
the power of statistical testing. A total of 1454 Gene Ontology
human pathway gene sets were analyzed. The size of pathways
ranged from 9 genes to 2131 genes, with a median of 27 genes per
pathway. Also, the number of probes per gene was highly variable.
In order to map genes to pathways, we removed genes without
gene symbols from the analysis. Among 21,049 genes with gene
symbols, approximately 48% (n = 10161) of genes were interro-
gated with a single probe, 26% (n = 5389) of genes were queried
using 2 probes, 14% (n = 2842) of genes were assessed by 3
probes. There were 3 or more probes for each on the remaining
genes (range: 4–17). This finding indicates that larger genes would
have more p-values and a stronger impact to pathway analysis. To

prevent this bias, we set the weight function as wi = 2/
√

ni where
ni is the number of probes for the ith gene.

We performed pathway analysis for the One-Way ANOVA test
and three pair wise comparisons. The top 10 significant path-
ways based on the One-Way ANOVA test are listed in Table 5.
The top two pathways, B cell differentiation (GO:0030183) and
B cell activation (GO:0042113), confirm the signature of B cell
involvement described by Newell et al. (2010). Furthermore, we
identified other pathways related to B cell activation and func-
tion. These include antigen binding (GO:0003823), map kinase
kinase kinase activity (GO:0004709) and lymphocyte differenti-
ation (GO:0030098). These pathways are biologically consistent
with the proposed role of B-lymphocytes in renal transplant tol-
erance reported by Newell et al. In contrast, when we performed
the traditional Fisher’s method without considering correlation
structures (LD) within pathways or applying a weighting func-
tion to compensate for variability in the number of probes per
gene, the result was a list of larger pathways, some containing
>1000 genes, describing more general cellular processes and not
specifically related to immune functions (See Table 6, #gene and

Table 6 | Top 10 significant pathways detected by the traditional Fisher’s method.

GO accession Pathway name Gene ontology URL # Gene # Probes Adjusted

P-value

GO:0005737 Cytoplasm Cellular component http://www.broadinstitute.org/
gsea/msigdb/cards/CYTOPLASM

2078 4986 0.E+00

GO:0005634 Nucleus Cellular component http://www.broadinstitute.org/
gsea/msigdb/cards/NUCLEUS

1393 3588 0.E+00

GO:0043283 Biopolymer
metabolic process

Biological process http://www.broadinstitute.org/
gsea/msigdb/cards/BIOPOLYMER_
METABOLIC_PROCESS

1653 4240 0.E+00

GO:0016020 Membrane Cellular component http://www.broadinstitute.org/
gsea/msigdb/cards/MEMBRANE

1954 4395 3.E−307

GO:0006139 Nucleobase,
nucleoside,
nucleotide, and
nucleic acid
metabolic process

Biological process http://www.broadinstitute.org/gsea/msigdb/
cards/NUCLEOBASENUCLEOSIDENUCLEOTIDE_
AND_NUCLEIC_ACID_METABOLIC_PROCESS

1217 3112 6.E−305

GO:0007165 Signal transduction Biological process http://www.broadinstitute.org/gsea/
msigdb/cards/SIGNAL_TRANSDUCTION

1604 3826 1.E−296

GO:0044425 Membrane part Cellular component http://www.broadinstitute.org/
gsea/msigdb/cards/MEMBRANE_PART

1638 3670 4.E−251

GO:0019538 Protein metabolic
process

Biological process http://www.broadinstitute.org/gsea/
msigdb/cards/PROTEIN_METABOLIC_PROCESS

1205 3022 2.E−245

GO:0044422 Organelle part Cellular component http://www.broadinstitute.org/
gsea/msigdb/cards/ORGANELLE_PART

1173 2934 1.E−230

GO:0044446 Intracellular organelle
part

Cellular component http://www.broadinstitute.org/gsea/
msigdb/cards/INTRACELLULAR_ORGANELLE_
PART

1168 2923 4.E–230
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#probe). Furthermore, when comparing the SI group and the
Control group, the traditional method identified 1078 significant
pathways while our proposed method narrowed the list down to
64 significant pathways (adjusted p-value <0.05). The increase
in number of significant pathways identified by the traditional
approach is primarily due to false positive discovery, and is consis-
tent with the inflation of Type I error rate as presented in Section
Empirical Assessments. Thus, by accounting for correlation struc-
tures (LD) within pathways and the number of probes per gene,
our proposed method minimized identification of larger, non-
specific cellular processes pathways, and instead revealed more
focused and functionally relevant biological pathways implicat-
ing a role for a humoral immune response in immunotolerance
to renal transplants (See Table 5, #gene and #probe).

DISCUSSION AND CONCLUSIONS
Modifications to the Lancaster procedure are proposed to take
correlations among p-values into account. Extensive simula-
tion studies show that the original Lancaster procedure has
inflated Type I error rates due to correlation among p-values. By
using permutation approach to estimate the correlation among
p-values, the proposed methods have well-controlled Type I error
rates and maintain strong power to detect signals related to SNPs
in pathways.

Among five proposed approximation methods (TA, . . . , TE),
the Satterthwaite approximation (TA) is the most computation-
ally efficient. Other approximation methods (TB, . . . , TE) are
based on the Satterthwaite approximation. Therefore, we recom-
mend using the Satterthwaite approximation (TA) as the stan-
dard procedure to modify the Lancaster procedure. Among other
approximation methods, simulation results in Section Correlated
Lancaster Procedures show that, for data with stronger internal
correlation, TD and TE have better approximation than TB and
TC . Our simulation study and the case study further provide
evidence that TD tends to have slightly higher power than the
Satterthwaite approximation TA. The R code for five approxima-
tion is posted at http://d.web.umkc.edu/daih/.
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