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Statistics and Its Interface Volume 7 (2014) 187–200

D CDF test of negative log transformed p-values
with application to genetic pathway analysis

Hongying Dai
∗
and Richard Charnigo

In genetic pathway analysis and other high dimensional
data analysis, thousands and millions of tests could be per-
formed simultaneously. p-values from multiple tests are of-
ten presented in a negative log-transformed format. We
construct a contaminated exponential mixture model for
− ln(P ) and propose a D CDF test to determine whether
some − ln(P ) are from tests with underlying effects. By
comparing the cumulative distribution functions (CDF) of
− ln(P ) under mixture models, the proposed method can
detect the cumulative effect from a number of variants with
small effect sizes. Weight functions and truncations can be
incorporated to the D CDF test to improve power and better
control the correlation among data. By using the modified
maximum likelihood estimators (MMLE), the D CDF tests
have very tractable limiting distributions under H0. A cop-
ula based procedure is proposed to address the correlation
issue among p-values. We also develop power and sample
size calculation for the D CDF test. The extensive empiri-
cal assessments on the correlated data demonstrate that the
(weighted and/or c-level truncated) D CDF tests have well
controlled Type I error rates and high power for small ef-
fect sizes. We applied our method to gene expression data in
mice and identified significant pathways related the mouse
body weight.

Keywords and phrases: D CDF test, Negative log trans-
formed p-values, Weight function, c-level truncated test,
Mixture model, Modified maximum likelihood estimator
(MMLE).

1. INTRODUCTION

Pathway analysis (PA), as part of system biology, has
been widely applied to detect molecular entities which reg-
ulate specific cell functions, metabolic processes, biosynthe-
sis and embryo developments. Bioinformatic repositories,
such as the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [1], PANTHER classification system for protein
sequence data [2], Reactome pathways in human [3], which
provides a comprehensive listing of pathways and vocabu-
laries for specific biological domains, have been established
and are continually being updated. For non-Mendelian

∗Corresponding author.

diseases and complex traits, multiple genetic risk factors
may function together in a pathway basis. Therefore, in-
tegrating information from pathways will provide useful
information in understanding the gene regulation mecha-
nism [4].

As in many other large scale studies, the tremendous size
of multiple testing remains a challenge to extract meaningful
signals out of high throughput pathway data. Some tradi-
tional pathway analyses utilize a bottom-up strategy using
cutoffs of fold changes/p-values to select individual genes.
Then construct contingency tables and perform statistical
tests (such as modified Fisher’s test [5]) to determine sig-
nificant pathways. However, the bias and random error in
selecting individual genes using cutoffs will severely impact
subsequent PA, causing inflation of genome-wide false dis-
covery rates. Alternatively, we suggest a top-down strategy
by first mapping genes to pathways and then integrating
information for all genes in pathways. Global testing will
be performed on each pathway to assess whether multiple
genes from a pathway are jointly associated with disease
susceptibility.

Global testing of p-values from numerous individual tests
may combine evidence and turn dimensionality from a curse
into rich information. From a systems biology perspec-
tive, genes, cells, tissues and organs function as a system
through metabolic networks and cell signal networks. In
non-Mendelian inheritance such as complex disorders, a sub-
set of variants may jointly confer moderate effects in medi-
ating molecular activities. As a result, signals may not be
significant in single marker-single trait analysis, but many
such values from related genes might provide valuable infor-
mation on gene function and regulation.

The global test is designed to evaluate the pattern (dis-
tribution) of p-values instead of choosing p-values less than
an arbitrary threshold. Therefore, this method has the po-
tential to identify multiple genes with small effects. Assum-
ing that all individual tests are independent and arise from
genes with no effects, p-values are identically and indepen-
dently distributed as Uniform(0, 1). Taking this as a null
hypothesis for the pattern of p-values in the global test, one
can assess whether p-values, especially small p-values, are
generated by chance. The global test of p-values is robust
and can be applied to p-values from a t-test, an ANOVA, a
linear mixed model, and so forth. Multiple simulation stud-
ies and case studies have demonstrated that the approach
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usually has sufficient power to detect signals of genetic as-
sociation from a group of genes.

Several approaches have been proposed to combine p-
values from pathways. See [6] for a comprehensive review.
[7] evaluated 13 published genome wide association (GWA)
studies and suggested that combined p-value approaches can
identify biologically meaningful pathways associated with
the disease susceptibility.

Most recently, a nonparametric method called higher crit-
icism (HC) has gained substantial popularity in global test
of p-values. Higher criticism was first proposed by [8] us-

ing the test statistic HCn = max1≤i≤n
√
n

i/n−p(i)√
p(i)(1−p(i))

,

where p(i) is the p-value in an ascending order. They pro-
pose to reject H0 if HCn >

√
2 log logn. Further, [9] pro-

posed a modified higher criticism (MHC) by rejecting H0 if

MHCn = max1≤i≤n |
√
n

i/n−p(i)√
p(i)(1−p(i))

| >
√
2(1 + δ) log logn

for any δ > 0. By constructing a two-component normal
mixture model, the authors derived the detection bound-
aries for sparse signals.

Inspired by HC using normal mixtures, we will construct
a contaminated exponential mixture model for negative log-
transformed p-values and develop a method to determine
whether some negative log-transformed p-values are from
tests with underlying effects. Our goal is to construct om-
nibus tests for negative log-transformed p-values with a re-
fined hypothesis

(1) H0 : Pr(P ≤ p) = p vs. Ha : Pr(P ≤ p) > p

for p ∈ (0, 1).
We propose an innovative approach, D CDF test for hy-

pothesis (1) by comparing the discrepancy between the
fitted CDF under a full model and the fitted CDF un-
der H0. The D CDF test is very versatile, allowing many
different ways to compare CDFs. For instance, in om-
nibus tests of − ln(P ), researchers might be particularly
interested in the region where P < 0.05. Therefore, in-
stead of comparing CDF over the entire support, we
can develop a c-level truncated D CDF test to evalu-
ate the difference between the fitted CDFs in the upper
tail of negative log-transformed p-value distribution where
− ln(P ) > − ln(c). For generality, the D CDF test also
allows a weight function to adjust the distance between
the fitted CDF under H0 and Ha. The D CDF test has
a very tractable limiting distribution under H0, which is
critical in saving the computing time in high throughput
data analysis. The details of the D CDF test are in Sec-
tion 2.1.

There are two major advantages by switching from HC
to D CDF for pathway analysis: (1) Pathways may con-
tain a substantial amount of variants with small effect sizes.
Therefore, D CDF can test the tail part of a p-value dis-
tribution while HC will only consider the maximum of√
n

i/n−p(i)√
p(i)(1−p(i))

. (2) Pathway data are often correlated. We

propose a copula based transformation to address correla-
tion issue in Section 2.4.

2. METHODS

Let Pi, i = 1, 2, . . . , n be p-values and Xi = − ln(Pi), i =
1, 2, . . . , n be negative natural log-transformed p-values from
n simultaneously performed statistical tests. In the rest of
paper, the subscript i is sometimes omitted for succinct for-
mulation. We interchangeably use X and − ln(P ) to denote
the negative log-transformed p-values, which are assumed
to be independent in Sections 2.1–2.3. We will further dis-
cuss the testing procedure for correlated p-values in Sec-
tion 2.4.

We introduce a dichotomous latent variable Zi. Let Zi =
0 if H0 : Pr(Pi ≤ p) = p is true and let Zi = 1 if
Pr(Pi ≤ p) > p or Pr(Pi ≤ p) < p is true. The hypoth-
esis test (1) with Ha : Pr(P ≤ p) > p can be consid-
ered as a one-sided hypothesis test. We propose to model
− ln(P )|Z = 0 ∼ exp(1) and − ln(P )|Z = 1 ∼ exp(λ) for
λ ∈ (0, 1) ∪ (1,∞), noting that − ln(P )|Z = 0 ∼ exp(1) ⇔
Pr(P ≤ p|Z = 0) = p and that − ln(P )|Z = 1 ∼ exp(λ)
for λ ∈ (0, 1) ∪ (1,∞) implies Pr(P ≤ p|Z = 1) > p or
Pr(P ≤ p|Z = 1) < p.

Let Z ∼ Bernoulli(π) with Pr(Z = 1) = π and Pr(Z =
0) = 1−π for π ∈ [0, 1]. The marginal distribution of − ln(P )
follows a mixture of exponential distributions,

(2) − ln(P ) ∼ (1− π) exp(1) + π exp(λ), λ ∈ (0,∞).

More generally, we can extend model (2) as

(3) X ∼ (1− π) exp(λ0) + π exp(λ), λ ∈ (0,∞)

for a known λ0 ∈ (0,∞). In this work, we develop a D CDF
test for

(4) H0 : π(λ− λ0) = 0 vs. Ha : π(λ− λ0) < 0.

Model (2) is a special case of model (3) when λ0 = 1.
For model (3) with λ0 = 1, a straightforward proof shows
that the hypotheses (1) and (4) are equivalent. Under H0,
model (3) reduces to

(5) X ∼ exp(λ0).

2.1 D CDF test, weighted D CDF test and
c-level truncated D CDF test

Let F (x|λ0) be the CDF of the exponential distribu-

tion (5) under H0 and F̃ (x|π̂, λ0, λ̂) be the fitted CDF of

the exponential mixture model (3), where π̂ and λ̂ are some
estimators for the unknown parameters. We can define a
general D CDF test statistic as
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D CDFn = n−1/2
n∑

i=1

[
w(Xi)I{Xi∈S}(6)

×
(
F (Xi|λ0)− F̃ (Xi|π̂, λ0, λ̂)

)]
.

The D CDF statistic is formulated to compare the fitted
CDFs under the full and reduced models. For generality,
we allow a nonnegative weight function, w(x) ≥ 0, in the
D CDF test statistic to rescale/prioritize the discrepancy
between the fitted CDFs. We also incorporate an indicator
function I{X∈S} to allow the comparison of competing CDFs
in a certain region S of the variable. If we choose S to be
the entire support ofX, we have an un-truncated (weighted)
D CDF test statistic as

D CDFn = n−1/2
n∑

i=1

[
w(Xi)(7)

×
(
F (Xi|λ0)− F̃ (Xi|π̂, λ0, λ̂)

)]
.

Let c be a cutoff point. An omnibus test can be developed
to determine whether multiple tests have significantly more
p-values than by chance in the region P ∈ (0, c). Since P ∈
(0, c) ⇔ − ln(P ) ∈ (− ln(c),∞), we can develop a c-level
truncated D CDF test to evaluate the difference between
the fitted CDFs in the upper tail of − ln(P ) distribution.
Let S = {x;x > − ln(c)}, the c-level truncated (weighted)
D CDF test statistic is given by

D CDFn = n−1/2
n∑

i=1

[
w(Xi)I{Xi>− ln(c)}(8)

×
(
F (Xi|λ0)− F̃ (Xi|π̂, λ0, λ̂)

)]
.

Let
P→,

L→,
a.s.→ stand for convergence in probability, in

law and almost surely.
Under the following regularity conditions ([10] Theo-

rem 2), Property 1 will show the uniform consistency of
D CDF test statistics.

(A1) (π̂, λ̂) ∈ Θ and Θ is compact.

(A2) w(x)I{x∈S}(F (x|λ0)−F̃ (x|π̂, λ0, λ̂)) is a measurable

function of x for each (π̂, λ̂) ∈ Θ.
(A3) there exists a dominating function d(x) such that

|w(x)I{x∈S}(F (x|λ0) − F̃ (x|π̂, λ0, λ̂))| ≤ d(x) for all x ∈ S

and (π̂, λ̂) ∈ Θ.
(A4)

∫
x∈S

d(x)f(x)dx < ∞ where f(x) is the probability
density function (PDF) for X.

Property 1. Assume conditions A1–A4 are met. As
n → ∞,

sup
(π,λ)∈Θ

∣∣∣∣n−1/2D CDFn

−
∫
x∈S

w(x)
(
F (x|λ0)− F̃ (x|π̂, λ0, λ̂)

)
f(x)dx

∣∣∣∣ a.s.→ 0.

Property 1 indicates the uniform almost surely conver-
gence of D CDFn to

∫
x∈S

w(x)(F (x|λ0) − F̃ (x|π̂, λ0, λ̂)) ×
f(x)dx at a rate of

√
n for all (π̂, λ̂) ∈ Θ. This uniform

almost surely convergence property also applies to MMLE
(see Section 2.2) or other estimators of π and λ. The regu-
larity conditions in Property 1 are easy to meet in practice.
Property 1 also indicates that the weight function w(x) and
the indicator function I{X∈S)} serve two different roles in
the D CDF test. The indicator function I{X∈S)} is used to
integrate the difference between the fitted CDF in the region
S while the weight function w(x) adjusts the difference be-
tween the fitted CDFs. Weight functions have been applied
in meta analysis and other global tests of p-values in high
dimensional data for prioritization of p-values by different
criteria [11, 12]. One can set w(x) = 1 to give an equiv-
alent weight for all samples. Or, choosing w(x) = f(x)−1

may simplify the null limiting distribution for the D CDF
statistic. Both weight functions and indicator functions may
impact the power of the D CDF test, which will be assessed
by the subsequent simulation studies.

It is challenging to test hypothesis (4) for mixture
model (3). The first part of obstacles comes from mixture
models which lack identifiability for parameters under the
null hypothesis H0 : π(λ − λ0) = 0 as one can set either
π = 0 or λ = λ0 and leave the other parameter free. Also,
the mixing weight π = 0 lies on the boundary of the param-
eter space. As a result, the maximum likelihood estimator
(MLE) for parameters and the likelihood ratio test (LRT)
statistic have very complex asymptotic properties [13]. The
second part of obstacles comes from the one-sided hypoth-
esis (4). The LRT [13] and its extended methods such as
Modified Likelihood Ratio Test (MLRT) [14, 15] and EM
test [16–18] are designed for two-sided tests. To perform a
one-sided test, one needs to restrict the parameter space for
LRT or MLRT as suggested by [19].

Due to these challenges, we develop the D CDF test,
which allows one-sided testing of hypothesis without re-
stricting the parameter space. The c-level truncated test and
weighted test bring more functionality to the D CDF and
these are not available in other tests. As shown in Theorem
1, the general D CDF test has a very tractable null limiting
distribution.

Theorem 1. Suppose Xi
i.i.d.∼ (1 − π) exp(λ0) + π exp(λ)

with λ ∈ (0,∞), π ∈ [0, 1] and a fixed λ0 ∈ (0,∞), for
i = 1, 2, . . . , n. Construct the general D CDF test statistic
using formula (6) and let λ̂ and π̂ be the modified max-
imum likelihood estimators (MMLE) of λ and π in the
mixture model (3) (See Section 2.2 for details of MM-
LEs). Assume that conditions A1–A4 are met and that
B =

∫
x∈S

w(x)(f(x|λ0))
2dx is a positive finite number. Un-

der H0,

D CDFn
L→ N

(
0, B2λ2

0

)
.
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For the one sided hypothesis test (4) of − ln(P ), reject H0

if (D CDFn/Bλ0) > z1−α where z1−α is the upper 1 − α
quantile of a standard normal distribution.

The proof of Theorem 1 is in Appendix.

Below we will develop a series of c-level truncated D CDF
tests where c ∈ (0, 1] is a pre-determined cutoff of p-
values to compare the fitted CDFs in the tail part where
− lnP ∈ (− ln(c),∞). Note that the un-truncated D CDF
test (7) with support S = (0,∞) is a special case of the
c-level truncated D CDF test (8) when c = 1. Thus the fol-
lowing corollaries also apply for the un-truncated tests. The
general D CDF test can be applied to other choices of S and
this part of the application is omitted for succinctness.

Corollary 1 (Un-weighted c-level truncated test). Set S =

(− ln(c),∞) and w(x) = 1, then D CDFn
L→ N(0,

λ4
0

4 c4λ0)
under H0.

Corollary 2 (Exponential kernel-weighted c-level trun-
cated test). Set S = (− ln(c),∞) and w(x) ∝ exp(−θx)

with a pre-determined θ ∈ (0,∞), then D CDFn
L→

N(0,
λ6
0

(θ+2λ0)2
c2θ+4λ0) under H0.

Corollary 3 (Inverse exponential kernel-weighted c-level
truncated test). Set S = (− ln(c),∞) and w(x) ∝ 1

exp(−θx)

with a pre-determined θ ∈ (0, 2λ0), then D CDFn
L→

N(0,
λ6
0

(2λ0−θ)2 c
4λ0−2θ) under H0.

Corollary 4 (Gamma kernel-weighted c-level trun-
cated D F test). Set S = (− ln(c),∞) and w(x) =
xk−1 exp(−θx) with a pre-determined θ ∈ (0,∞)

and Γ(k) =
∫∞
0

tk−1 exp(−t)dt, then D CDFn
L→

N(0, λ6
0(
∫∞
− ln(c)

xk−1 exp(−(θ + 2λ0)x)dx)
2) under H0.

2.2 Asymptotic properties of MMLEs

Due to the lack of identifiability for π and λ underH0, the
MLEs of mixture parameters have very complex asymptotic
properties. To address this issue, [14] introduced a modified
log-likelihood function

l∗n(π, λ;X) = ln(π, λ;X) + C log
(
4π(1− π)

)
, C > 0,

where ln(π, λ;X) =
∑n

i=1 log((1 − π)λ0 exp(λ0Xi) +
πλ exp(λXi)) is the log likelihood function for the expo-
nential mixture (3) and C log(4π(1−π)) serves as a penalty
term to the mixing weight. When the mixing weight π = 0.5,
the penalty term log(4π(1− π)) = 0. As the mixing weight
goes to the boundary, i.e. π → 0 or π → 1, the penalty term
C log(4π(1− π)) → −∞.

In this work, we will estimate (π, λ) in model (3) using
the MMLE defined as

(π̂, λ̂) = argmax
{(π,λ)|π∈[0,1],λ∈(0,∞)

in a compact parameter space}

l∗n(π, λ;X).

Thanks to the penalty term, the MMLEs have the following
asymptotic property when λ0 belongs to the interior of the
compact parameter space.

Lemma 1. Under H0, the MMLEs
√
nπ̂(λ̂ − λ0)

L→
N(0, λ2

0), π̂
P→ 0.5 and

√
n(λ̂− λ0)

L→ N(0, 4λ2
0).

Proof of Lemma 1. Write the PDF for the mixture
model (3) as fπ,λ(x) = (1 − π)f(x|λ0) + πf(x|λ). Inspired
by [20], we can introduce a new parameter v = π(λ−λ0) to
reparameterize the density function

(9)

fπ,λ(x) = gπ,v(x)

=

{
f(x|λ0)(1+ vφ(x|λ0 + v/π)), π ∈ (0, 1], v ∈ (−∞,∞)
f(x|λ0), π = 0

where

φ(x|λ) =
{ f(x|λ)−f(x|λ0)

(λ−λ0)f(x|λ0)
, λ �= λ0

∂ log fλ(x)
∂λ

∣∣
λ=λ0

, λ = λ0.

Note that gπ,v(x) is continuous in π and v. [20] showed that
the MLE of v converges to 0 in probability but the limit-
ing distributions for the MLEs of π and v are intractable.
[21] utilized the MMLEs to derive simple liming distribu-
tions for a broad family of contaminated mixture and mix-
ture regression models. The penalty term, C log(4π(1−π)),
in the modified log likelihood function bounds the MMLE π̂
away from 0 and 1 with probability approaching 1. As a re-
sult, Lemma 1 follows by applying Lemma B.3, Propositions
3.1 and 3.2 of [21].

2.3 Power and sample size calculations

In this section, we examine the asymptotic behavior of
the D CDF test under two types of fixed and contiguous
local alternatives:

Let

Ha,1 : π = πa, λ = λa,

Ha,2 : π = πa + hπ1n
−τ1 , λ = λ0 + hλn

−0.5,

where πa ∈ (0, 1), λa ∈ (0, λ0), hλ ∈ (−λ0, 0), hπ1 ∈
[−πa, 1− πa], and τ1 ∈ (0,∞).

The alternative Ha,1 assumes that both parameters are
fixed. The alternative Ha,2 assumes that either π is fixed or
π → πa at a rate of nτ1 and that λ → λ0 at a rate of

√
n.

The general D CDF test statistics (6) based on the MMLE
estimators have the following properties under alternatives.

Theorem 2. Assume conditions A1–A4 are met and let Φ
be the CDF of N(0, 1).

• Under Ha,1, n
−0.5D CDFn

P→
∫
x∈S

w(x)πa ×
(exp(−λax)− exp(−λ0x))f(x)dx > 0, and

(10) lim
n→∞

Pr
(
(D CDFn/Bλ0) > z1−α

)
= 1.
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• Under Ha,2, D CDFn
L→ N(−πahλB,B2λ2

0) and

lim
n→∞

Pr
(
(D CDFn/Bλ0) > z1−α

)
(11)

= Φ
(
−z1−α − πahλλ

−1
0

)
.

The proof of Theorem 2 is in the Appendix.
Statement (10) indicates consistency of D CDF test un-

der the fixed alternative. Statement (11) suggests that the
D CDF test is asymptotically locally unbiased.

To estimate the sample size regarding the fixed alter-
native, the asymptotic distribution of D CDF under Ha,1

needs to be derived first. The consistency of π̂ and λ̂ under
Ha,1 indicates that

D CDF = n−1/2
n∑

i=1

w(Xi)I{Xi∈S}

×
(
F (Xi|λ0)− (1− π̂)F (Xi|λ0)− π̂F (Xi|λ̂)

)
= n−1/2

n∑
i=1

w(Xi)I{Xi∈S}

×
(
π + op(1)

)(
F (Xi|λ0)− F (Xi|λ) + op(1)

)
.

Then Corollary 5 follows from the central limit theorem.

Corollary 5. Under Ha,1, (D CDF − √
nμ)/σ

L→
N(0, 1) where

μ = π

∫
x∈S

w(x)
(
exp(−λx)− exp(−λ0x)

)
×
(
(1− π)λ0 exp(−λ0x) + πλ exp(−λx)

)
dx, and

σ =

{
π2

∫
x∈S

w(x)2
(
exp(−λ0x)− exp(−λx)

)2

×
(
(1− π)λ0 exp(−λ0x) + πλ exp(−λx)

)
dx− μ2

} 1
2

.

When w(x) = 1 and s ∈ (− ln(c),∞) for c ∈ (0, 1], μ and
σ can be simplified as

μ = π

[
(π − 1)c2λ0 + πc2λ

2
+

[(1− π)λ0 − πλ]cλ+λ0

λ+ λ0

]
and

σ =

{
π2

[
[(1− π)λ0 − 2πλ]c(λ0+2λ)

λ0 + 2λ

+
[2(π − 1)λ0 + πλ]c(2λ0+λ)

2λ0 + λ

+
(1− π)c3λ0 + πc3λ

3

]
− μ2

} 1
2

.

Based on the asymptotic distributions of D CDF test
statistic under H0 and Ha from Theorems 1, 2 and Corol-
lary 5, one can estimate the sample size as follows.

Corollary 6. Given the type I error rate α ∈ (0, 1)
and power β ∈ (0, 1), the minimal sample size is n =

[
Bλ0z1−α+zβσ

μ ]2 for testing H0 vs. Ha,1; n = [
(z1−α+zβ)λ0

πa(λ0−λ) ]2

for testing H0 vs. Ha,2.

2.4 Testing procedure for correlated p-values

In pathway data analysis, p-values are often correlated.
Since the D CDF test procedure is based on the indepen-
dence assumption, here we introduce a copula-based method
to transform correlated p-values into independent p-values.
One can further analyze independent − ln(P ) based on the
theory derived in Section 2.1. The proposed transformation
is an extension of [22, 23].

Let ΣL
P and ΣR

P denote Pearson linear correlation and
Spearman rank correlation among Pi, i = 1, 2, . . . , n. The
Pearson linear correlation might not be invariant to transfor-
mation while the Spearman rank correlation is invariant to
any monotonically increasing transformation. Furthermore,
the Spearman rank correlation among p-values through the
inverse CDF transformation is equivalent to the Pearson lin-
ear correlation among original p-values, i.e., ΣR

F−1(P ) = ΣL
P .

For normal distributions, an exact relationship between the
Pearson linear correlation and the Spearman rank correla-
tion holds, ΣL = 2 sin(π6Σ

R) [24].

Considering the inverse CDF for standard normal
Φ−1, the fact that ΣL

P = ΣR
Φ−1(P ) and ΣL

Φ−1(P ) =

2 sin(π6Σ
R
Φ−1(P )) implies that Φ−1((P1, P2, . . . , Pn)

t) ∼
MVNn(�0, 2 sin(

π
6Σ

L
P )). Then Property 2 follows immedi-

ately.

Property 2. For correlated p-values with the Pearson
linear correlation ΣL

P , the elements in the transformed

vector Φ((2 sin(π6Σ
L
P ))

−0.5Φ−1((P1, P2, . . . , Pn)
t))

i.i.d.∼
Uniform(0, 1).

Here we propose a procedure for D CDF test of corre-
lated p-values. To perform a transformation for correlated
p-values, we need an estimate for correlation among p-values
ΣL

P under H0.

Step 1: Permutation is performed by randomly assigning
phenotype among subjects. The phenotype variable can be a
categorical group variable or a continuous outcome variable.
The gene expressions from the same subject are kept the
same to measure the correlation among p-values. For the
kth (k = 1, 2, . . . ,K) permutation, generate p-values for n
genes P k = (P k

1 , P
k
2 , . . . , P

k
n )

t then estimate the Pearson
correlation coefficients among P k (k = 1, 2, . . . ,K) as Σ̂L

P .

Step 2: Transform correlated p-values by

Φ

((
2 sin

(
π

6
Σ̂L

P

))−0.5

Φ−1
(
(P1, P2, . . . , Pn)

t
))

.

Step 3: Perform D CDF tests on the transformed p-values
as generated from Step 2.
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Table 1. Type I error and power of c-level truncated D CDF tests with varying weight functions when nominal error
rate = 0.05 (When c = 1, the D CDF test has no truncation. For each case, type I error is presented in the first row with

d = 0 and power is presented in the remaining rows with effect sizes d = 0.6, 0.8 and 1. The winner model with the highest
power and Type I error < 0.05 is in bold)

Truncation Unweighted Exponential weighted Inverse exponential Gamma weighted
Threshold D CDF D CDF weighted D CDF D CDF

c = 1 0.9 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.8 0.7 0.6

Case I: Independent correlation matrix with rho= 0
d = 0 0 0 0.002 0 0.003 0.033 0 0.006 0.014 0 0 0.002
d = 0.6 0.31 0.551 0.765 0.345 0.704 0.867 0.651 0.807 0.908 0.002 0.21 0.613
d = 0.8 0.696 0.89 0.98 0.698 0.934 0.978 0.936 0.987 0.998 0.045 0.527 0.888
d = 1.0 0.871 0.972 0.994 0.855 0.985 0.994 0.99 0.996 0.999 0.081 0.721 0.957

Case II: compound symmetric correlation matrix with rho= 0.4
d = 0 0 0.009 0.018 0.005 0.023 0.047 0.015 0.025 0.057 0 0.001 0.014
d = 0.6 0.317 0.542 0.742 0.359 0.71 0.859 0.625 0.797 0.87 0.002 0.211 0.618
d = 0.8 0.696 0.879 0.96 0.717 0.91 0.979 0.925 0.974 0.986 0.044 0.527 0.872
d = 1.0 0.892 0.969 0.986 0.85 0.979 0.994 0.986 0.992 0.997 0.082 0.688 0.96

Case III: compound symmetric correlation matrix with rho= 0.8
d = 0 0.008 0.049 0.07 0.021 0.076 0.127 0.055 0.081 0.122 0 0.015 0.056
d = 0.6 0.375 0.528 0.696 0.368 0.668 0.783 0.585 0.744 0.794 0.008 0.254 0.592
d = 0.8 0.639 0.835 0.934 0.679 0.875 0.952 0.884 0.949 0.976 0.053 0.519 0.827
d = 1.0 0.836 0.936 0.973 0.833 0.961 0.988 0.962 0.982 0.995 0.094 0.692 0.937

Case IV: compound symmetric correlation matrix with random rho∼beta(0.3,1.5)
d = 0 0.001 0.003 0.009 0 0.008 0.039 0.007 0.014 0.032 0 0 0.006
d = 0.6 0.324 0.565 0.755 0.329 0.711 0.864 0.654 0.804 0.88 0.002 0.186 0.624
d = 0.8 0.715 0.898 0.959 0.742 0.923 0.977 0.947 0.977 0.995 0.039 0.568 0.882
d = 1.0 0.884 0.964 0.989 0.869 0.979 0.995 0.985 0.999 1 0.065 0.719 0.956

Case V: compound symmetric correlation matrix with random rho∼ uniform(−0.2, 0.2)
d = 0 0 0.001 0.001 0.001 0.001 0.022 0.001 0.004 0.024 0 0 0.001
d = 0.6 0.285 0.585 0.768 0.372 0.709 0.894 0.684 0.82 0.895 0.003 0.233 0.62
d = 0.8 0.705 0.89 0.975 0.705 0.918 0.983 0.93 0.988 0.99 0.039 0.519 0.864
d = 1.0 0.864 0.982 0.996 0.861 0.975 0.999 0.992 0.998 0.998 0.082 0.7 0.956

Case VI: random positive definite correlation matrix
d = 0 0 0 0.005 0 0.002 0.025 0 0.007 0.022 0 0 0.001
d = 0.6 0.291 0.565 0.777 0.342 0.689 0.879 0.668 0.815 0.91 0 0.189 0.6
d = 0.8 0.703 0.908 0.97 0.735 0.935 0.986 0.944 0.982 0.994 0.035 0.547 0.879
d = 1.0 0.872 0.969 0.989 0.872 0.974 0.997 0.988 0.992 0.999 0.084 0.689 0.948

Alternatively, one can transform p-values by
Φ((Σ̂L

Φ−1(P ))
−0.5Φ−1((P1, P2, . . . , Pn)

t)) where Σ̂L
Φ−1(P )

can be estimated by permutation as described in Step 2.
When p-values are independent, ΣL

P is an identity matrix,
thus the transformation will return the same p-values.

3. EMPIRICAL ASSESSMENTS

Correlations among p-values pose a major challenge to
global testing methods. Therefore, we will assess the perfor-
mance of D CDF tests from two aspects. In the first part
of simulation, p-values with hypothesized correlation struc-
tures are simulated. To assess the robustness of D CDF
tests against correlation structures, we will directly apply
D CDF tests and other existing methods on these correlated
p-values. The second part of simulation is to generate cor-
relation structures for p-values from real microarray data
and we will assess the effectiveness of the transformation
procedure proposed in Section 2.4.

Let Y C
ij and Y T

ij be gene expression levels from the ith

gene of the jth subject in a control group and a test
group respectively. For each subject, genes expressions are
generated from the multivariate normal distributions [25]
with (Y C

1j , . . . , Y
C
nj)

t ∼ MVNn(�0,Σ) and (Y T
1j , . . . , Y

T
nj)

t ∼
N(θ,Σ) for j = 1, 2, . . . ,m. Perform two-sample t-test on
each gene to generate p-value Pj for gene j = 1, 2, . . . , n.

We assume that 20% genes from the test group have a
true mean difference, d ∈ [0, 2] (Tables 1–3). When effect size
d = 0, the percentage of rejecting H0 is the empirical Type I
error rate. When effect size d > 0, the percentage of rejecting
H0 is the power of statistical testing. All simulations are
repeated 1,000 times.

3.1 Modeled correlation structures

In this part of simulation, we considered seven differ-
ent types of correlation structures, including fixed and ran-
dom compound symmetric as well as random positive def-
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Table 2. Higher Criticism (HC) [8] and Modified Higher Criticism (MHC) [9] (For each case, the type I error rate is presented
in the first row with d = 0 and power is presented in the remaining rows with effect sizes d = 0.6, 0.8 and 1)

HC MHC (δ = 5) MHC (δ = 10) MHC (δ = 20)

Case I: Independent variance matrix with rho= 0
d = 0 0.557 0.052 0.018 0.011
d = 0.6 0.999 0.879 0.71 0.5
d = 0.8 1 0.996 0.981 0.925
d = 1.0 1 1 0.999 0.998

Case II: compound symmetric variance matrix with rho= 0.4
d = 0 0.552 0.072 0.035 0.012
d = 0.6 0.997 0.839 0.693 0.499
d = 0.8 1 0.994 0.981 0.938
d = 1.0 1 0.999 0.999 0.999

Case III: compound symmetric variance matrix with rho= 0.8
d = 0 0.56 0.119 0.064 0.023
d = 0.6 0.992 0.813 0.642 0.447
d = 0.8 1 0.99 0.97 0.909
d = 1.0 1 1 1 0.999

Case IV: compound symmetric variance matrix with random rho∼beta(0.3,1.5)
d = 0 0.539 0.072 0.04 0.019
d = 0.6 0.998 0.889 0.741 0.492
d = 0.8 1 0.996 0.981 0.931
d = 1.0 1 1 1 0.999

Case V: compound symmetric variance matrix with random rho∼ uniform(−0.2, 0.2)
d = 0 0.556 0.059 0.03 0.015
d = 0.6 0.997 0.888 0.712 0.472
d = 0.8 1 0.994 0.978 0.93
d = 1.0 1 1 1 0.999

Case VI: random positive definite variance matrix
d = 0 0.564 0.059 0.037 0.018
d = 0.6 0.999 0.87 0.703 0.501
d = 0.8 1 0.997 0.986 0.938
d = 1.0 1 1 0.998 0.998

inite variance-covariance structures for Σ. Denote I an
identity matrix, �1 a vector of 1, ⊗ Kronecker product,
and t transpose. In Cases I to V, let Σ = Block ⊗ I20
be compound symmetric variance matrices with 20 blocks
of size 5 where Block = �15�1

t
5ρ + (1 − ρ)I5. We vary

ρ over three fixed values with ρ = 0 for independence
(Case I), ρ = 0.4 for moderate dependence (Case II) and
ρ = 0.8 for strong dependence (Case III). In addition,
we simulate random correlation coefficients from beta and
uniform distributions, i.e., ρ ∼ beta(0.3, 1.5) in Case IV
and ρ ∼ uniform(−0.2, 0.2) in Case V, which ensures
that 20 variance blocks have distinct correlation coefficients
ρ within Σ. More generally, Case VI considers random
positive definite correlation matrices Σ that vary across
samples and simulation runs. The random positive defi-
nite correlation matrices were generated by the “genPosi-
tiveDefMat” function using the R software (http://cran.r-
project.org/). The “genPositiveDefMat” function offers four
methods to generate random covariance matrices. We chose
the eigen value method, which first randomly generated
eigenvalues for the covariance matrix, then used columns
of a randomly generated orthogonal matrix as eigenvec-
tors.

The 1,000 run simulation results in Table 1 and Table 2
are based on a hundred genes from 20 subjects (n = 100,
m = 20), which represents the typical gene size and sample
size in microarray pathway studies. In Table 1, we compared
the Type I error and power among unweighted D CDF
test (w(x) = 1), exponential kernel-weighted D CDF test
(w(x) = exp(−1.5x)), inverse exponential kernel-weighted
D CDF test (w(x) = exp(0.1x)) and gamma kernel-
weighted D CDF test w(x) = x−0.5 exp(−1.5x). Varying
c-level truncated tests are assessed with threshold c ranging
between 0.5 and 1. The results in Table 1 show that the
D CDF tests have well controlled Type I error rate (d = 0)
when using the appropriate weight functions or truncation
threshold. The Type I error and power of D CDF tests are
affected by weight functions and truncation points. For a
given weight function, truncation will increase power and
Type I error rate. For instance, in Table 1 Case 1, the Type
I error rate of the inverse exponential weighted D CDF test
is 0.045 when c = 0.6. Then the Type I error rate increases
to 0.091 when c = 0.5. In pathway analysis, it is very
critical to control the Type I error rate. Thus we have been
conservatively selecting larger cutoff values which yield low
Type I error rates in Table 1.
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Table 3. Type I error and power of D CDF tests using the transformation technique to address the correlation issue (For each
case, the type I error rate is presented in the first row with d = 0 and power is presented in the remaining rows with effect

sizes d = 0.6, 0.8 and 1. The winner model with the highest power and Type I error < 0.05 is in bold)

Truncation Unweighted Exponential weighted Inverse exponential Gamma weighted
level D CDF D CDF weighted D CDF D CDF
c = 0.9 0.8 0.7 0.7 0.6 0.5 0.9 0.8 0.7 0.8 0.7 0.6

Transform correlated p-values to independent p-values using formula (12)
d = 0 0.002 0.011 0.034 0 0.007 0.037 0.007 0.023 0.045 0 0.002 0.022
d = 0.5 0.017 0.094 0.238 0.001 0.033 0.202 0.055 0.17 0.315 0.001 0.028 0.118
d = 1.0 0.166 0.549 0.77 0.018 0.204 0.501 0.479 0.718 0.84 0.023 0.165 0.468
d = 1.5 0.47 0.807 0.909 0.061 0.364 0.634 0.775 0.907 0.925 0.11 0.363 0.649
d = 2.0 0.688 0.908 0.957 0.104 0.446 0.737 0.891 0.945 0.96 0.2 0.488 0.726

Transform correlated p-values to independent p-values using formula (13)
d = 0 0.001 0.005 0.023 0 0.003 0.03 0.006 0.013 0.037 0 0.001 0.013
d = 0.5 0.01 0.089 0.214 0 0.031 0.186 0.044 0.166 0.269 0.001 0.024 0.114
d = 1.0 0.158 0.515 0.776 0.025 0.226 0.524 0.429 0.687 0.829 0.034 0.175 0.465
d = 1.5 0.458 0.812 0.918 0.062 0.376 0.651 0.763 0.892 0.94 0.12 0.395 0.67
d = 2.0 0.667 0.91 0.943 0.099 0.424 0.7 0.889 0.951 0.951 0.209 0.501 0.737

Power simulation in Table 1 shows that D CDF tests have
sufficient power to detect small effect sizes d = 0.6, 0.8, 1.0
when a subset of genes in a pathway are differentially ex-
pressed. In this simulation, most weighted and truncated
D CDF tests have more than 95% power to detect effect
size d = 1.0 even when we conservatively assume that only
20% genes in a pathway are differentially expressed.

D CDF tests compare cumulative distribution of − ln(P ),
thus they are engineered to pick up small effect sizes existing
in a substantial amount of genes. In other words, comparing
CDFs betweenH0 andHa allows us to assess the cumulative
effects among genes. Due to this benefit, the original D CDF
(with no weight or truncation) has Type I error rate as low
as 0.001 for highly correlated data (Case III, ρ = 0.8, Ta-
ble 1) and power greater than 80% for d = 1 in all simulated
cases.

Truncation allows investigators to focus on the tail of
− ln(P ) distribution while weight functions can rescale the
discrepancy between competing models. Simulation results
show that truncation and weight function effectively im-
prove the power of D CDF tests. As shown in Table 1,
the 0.7-level truncated D CDF test improves the power
from ∼0.3 to ∼0.7 for d = 0.6 as compared to the un-
truncated D CDF test. Similarly, the inverse exponential
weighted D CDF test improves power from ∼0.7 to ∼0.9 for
d = 0.8 as compared to the un-weighted D CDF test. Over-
all, the inverse exponential weighted D CDF with a trunca-
tion threshold = 0.7 is the top performer in most simulated
scenarios.

In Table 2, we listed the Type I error rate and power
for higher criticism (HC) proposed by [8] and modified
higher criticism (MHC) with δ = 5, 10, 20 proposed by [9].
Since the HC statistic converges slowly as n → ∞, the
HC is shown to have inflated Type I error in our simu-
lated studies. Increasing δ can decrease the Type I error.

But there is no theoretical work to determine the optimal δ
for MHC.

Tables 1 and 2 were generated from the same simulation
scenarios so we can compare these two tables and see that
the D CDF tests outperformed HC and MHC with well con-
trolled Type I error and higher power in all six cases. The
D CDF test is developed to detect the cumulative effects,
often mild or moderate, from multiple variants while the
MHC is targeted for very rare signals. Genetic pathways are
often involved with variants regulated by the same genes,
thus multiple variants are often assoicated with moderate
effects [26]. As a result, our method might be more suit-
able than the MHC to detect aggregated effects from path-
ways.

In addition, we compare the D CDF test with seven
existing methods, including the Kolmogrov-Smirnov test
(KS) [27], the Fisher’s inverse Chi-square test (Chi) [28],
the inverse normal test (Norm) [29], the Wilcoxon Test
(Wilcoxon) [30], the Logit test (Logit) [31], the Akaike Infor-
mation Criterion (AIC) [32], the Bayesian Information Cri-
terion (BIC) [33]. The results are in Table A in Appendix.
Existing methods have inflated Type I errors for correlated
data. In Case III with strong dependence among p-values
ρ = 0.8, the Type I error rates among the existing methods
range between 0.117 and 0.316 when the nominal error rate
is set to be 0.05. Although these tests demonstrate sufficient
power, high inflation of Type I error rate will lead to a large
amount of false discoveries for pathway data analysis.

These simulation studies suggest that the good perfor-
mance of D CDF is not only relative to MHC but also rela-
tive to a broad array of competitors. However, the possibil-
ity has not been ruled out that MHC would fare better than
D CDF if the signals were rare. Of course, in that case, the
contaminated exponential model would be inappropriate to
begin with.
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3.2 Correlation structures from real
microarray data

A Type I diabetes gene expression microarray data set
(data set id: GDS10) from the gene expression omnibus
(GEO) website (http://www.ncbi.nlm.nih.gov/geo/) is se-
lected for simulation of correlation structures. The data set
contains expression levels of 23,709 genes from 28 samples
of spleen and thymus of type 1 diabetes non-obese dia-
betic (NOD) mouse, NOD-derived diabetes-resistant con-
genic strains and non-diabetic control strains.

In each run of simulation, correlation coefficient from 25
randomly selected genes are used to simulate Σ. New data
sets with 20 samples are generated with the effect sizes d ∈
[0, 2]. To assess the procedure proposed in Section 2.4, we
transform the correlated p-values into independent p-values
using the formula

Φ

((
2 sin

(
π

6
Σ̂L

P

))−0.5

Φ−1
(
(P1, P2, . . . , Pn)

t
))

, or(12)

Φ
((
Σ̂L

Φ−1(P )

)−0.5
Φ−1

(
(P1, P2, . . . , Pn)

t
))
,(13)

where the correlation among p-values Σ̂L
P and the standard

normal quantile of p-values Σ̂L
Φ−1(P ) are estimated by the

permutation procedure proposed in Section 2.4.
We compared the Type I error rate and power among

unweighted D CDF test (w(x) = 1), exponential ker-
nel weighted D CDF test (w(x) = exp(−1.5x)), in-
verse exponential kernel weighted D CDF test (w(x) =
exp(0.1x)) and gamma kernel weighted D CDF test w(x) =
x−0.5 exp(−1.5x) for correlated p-values from 25 genes and
20 samples.

The results in Table 3 suggest that both transformation
techniques are able to control the Type I error within the
nominal rate and remain high power for d = [0.5, 2.0]. For
this real microarray data, the top performer is the inverse
exponential weighted D CDF test at the truncation thresh-
old c = 0.7. The reduction of power from Table 1 to Table 3
is primarily due to reduction of gene sizes from 100 to 25
genes in a pathway.

In summary, the results from Tables 1–3 indicate that
the un-weighted D DCF performs well in all six correlation
scenarios and real microarray data. Weight functions and
truncation can increase the power of D CDF tests and keep
the Type I error rate under the nominal rate. The D CDF
test is robust to correlated data. Transformation of corre-
lated p-values to independent p-values can further prevent
false discoveries. As compared to other existing tests, the
D CDF test has well controlled type I error rate and higher
power.

4. PATHWAY CASE STUDY

Gene expression measurements from livers of female mice
of a specific F2 intercross are used to illustrate our method.

This data set contains 3,600 genes, which were filtered from
the original over 20,000 genes by keeping only the most vari-
ant and most connected ones. In addition to the expres-
sion data, several physiological quantitative traits, includ-
ing weight and total fats etc. were measured. The data set
contains 135 samples. For more details, see [34].

Data was first checked to identify excessive missing values
and outliers. There was no excess of missing values among
subjects, but one subject with a completely different profile
as ascertained through cluster analysis was removed from
study. The data input, cleaning and preprocessing were per-
formed using a Bioconductor WGCNA package [35]. In this
work, we assess the association between gene expression and
weight. p-values for testing the null hypothesis of no associ-
ation were generated for each gene.

We performed the pathway analysis using gene ontology
based pathway gene sets. A total of 1,454 pathway gene sets
were analyzed. After mapping to 3,600 genes in the mouse
data set, the sizes of gene sets ranged between 0 and 317
genes. We then performed D CDF tests on gene sets with
more than 5 genes.

Correlated p-values were transformed to independent p-
values using the formula (12). The original D CDF test (no
weight or truncation) identified 36 pathways at FDR ad-
justed significance level 0.0001. By using a truncated thresh-
old c = 0.9, the D CDF test identified 64 pathways at 0.0001
significance level. We then added a gamma kernel weight
function w(x) = x exp(−0.5x) to the D CDF test. The un-
truncated D CDF test identified 91 pathways and 0.9-level
truncated test identified 97 pathways. The top 10 pathways
from the gamma weighted 0.9-level truncated D CDF test
are listed in Table 4.

We also performed a D CDF test without transformation
of P-values. There was a slight increase in pathways that
were selected. The results from two sets of analysis were
very similar regarding selected top pathways. The existing
methods (KS, Chi, Norm, Wilcox, Logit, AIC, BIC) identi-
fied 399 to 692 pathways at significance level 0.0001, largely
due to the severe inflation of Type I errors. The gene en-
richment analysis [35] did not identify significant pathways.

5. CONCLUSION AND DISCUSSIONS

Pathways may contain a substantial amount of variants
with small effect sizes. The proposed D CDF test addresses
this challenge by assessing the CDF distribution of − ln(P )
under a mixture setting. The log transformation enlarges
the scales for small p-values and CDF functions allow as-
sessment of cumulative effects from genetic variants. Re-
searchers are often interested in p-values less than 0.05 but
small p-values are close to the boundary 0. As a result, in
genetic and genomic data analysis, p-values are often log
transformed and mapped to the chromosome location. Fur-
thermore, we implement weight functions and truncation
functions to improve the power of D CDF tests. Truncation
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Table 4. Top 10 pathways identified by gamma weighted D CDF test at truncation threshold c = 0.9

GO
Accession

FDR Adjusted
p-value

Pathway Name Gene
Ontology

Description

GO:0043283 2.86E-20 Biopolymer
metabolic process

biological
process

The chemical reactions and pathways involving biopolymers,
long, repeating chains of monomers found in nature e.g.
polysaccharides and proteins.

GO:0005737 1.71E-17 Cytoplasm cellular
component

All of the contents of a cell excluding the plasma membrane
and nucleus, but including other subcellular structures.

GO:0006139 1.71E-17 Nucleobasenucleo
sidenucleotide and
nucleic acid
metabolic process

biological
process

The chemical reactions and pathways involving nucleobases,
nucleosides, nucleotides and nucleic acids.

GO:0044267 1.86E-16 Cellular protein
metabolic process

biological
process

The chemical reactions and pathways involving a specific
protein, rather than of proteins in general, occurring at the
level of an individual cell. Includes protein modification.

GO:0044260 2.66E-16 Cellular
macromolecule
metabolic process

biological
process

The chemical reactions and pathways involving
macromolecules, large molecules including proteins, nucleic
acids and carbohydrates, as carried out by individual cells.

GO:0019538 5.21E-16 Protein metabolic
process

biological
process

The chemical reactions and pathways involving a specific
protein, rather than of proteins in general. Includes protein
modification.

GO:0007165 6.53E-15 Signal
transduction

biological
process

The cascade of processes by which a signal interacts with a
receptor, causing a change in the level or activity of a second
messenger or other downstream target, and ultimately
effecting a change in the functioning of the cell.

GO:0005634 4.30E-14 Nucleus cellular
component

A membrane-bounded organelle of eukaryotic cells in which
chromosomes are housed and replicated. In most cells, the
nucleus contains all of the cell’s chromosomes except the
organellar chromosomes, and is the site of RNA synthesis
and processing. In some species, or in specialized cell types,
RNA metabolism or DNA replication may be absent.

GO:0031323 8.42E-14 Regulation of
cellular metabolic
process

biological
process

Any process that modulates the frequency, rate or extent of
the chemical reactions and pathways by which individual
cells transform chemical substances.

GO:0019222 8.42E-14 Regulation of
metabolic process

biological
process

Any process that modulates the frequency, rate or extent of
the chemical reactions and pathways within a cell or an
organism.

allows testing to focus on the tail part of − ln(P ) and weight
function can adjust − ln(P ) by theoretical distribution or
auxiliary information from other covariates.

Correlations in the pathway data make the alternative hy-
pothesis, Ha : not uniform(0, 1) too broad, as a histogram
of variables, each of which is uniform marginally, will not
appear uniform if the variables are correlated. Therefore,
Ha : not uniform(0, 1), may reject the null hypothesis due
to any deviation from uniformity, which could lead to false
discoveries when applied to the omnibus testing of p-values.
To address this issue, we first refine Ha : not uniform(0, 1)
into hypothesis (1) and construct the exponential mixture
model of − ln(P ) to ensure the equivalency between hy-
potheses (1) and (4). By conducting a one-sided test, the
D CDF test effectively prevents false discoveries of any ar-
bitrary deviation from uniformity.

Even the beta mixture model P ∼ (1 − π)beta(1, 1) +
πbeta(α, β) in [36] has a rather broad alternative hypoth-

esis, namely π(α − 1) �= 0 or π(β − 1) �= 0. The ex-
ponential mixture model herein has a much narrower al-
ternative hypothesis, equivalent to π(α − 1) < 0 if ex-
pressed in terms of the beta mixture model. In general,
narrower alternative hypotheses allow statistical tests to
have greater power (i.e., fewer Type II errors). Therefore,
the present testing procedure is anticipated to have higher
power than the testing procedure in [36] when both are ap-
plicable (i.e., independence of p-values may be assumed).
Moreover, the present procedure is much more widely ap-
plicable because, unlike the procedure in [36], the present
procedure accommodates non-independence. If the proce-
dure in [36] were naively applied under non-independence,
the Type I error rate could be substantially inflated. Future
research may adapt the procedure in [36] to accommodate
non-independence.

Truncation and weighting function in D CDF tests can
also help address the correlation issue. Often correlation
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among p-values with no genetic effects will have a peak
in the middle or upper tail part of p-values. By trun-
cating to the lower tail part of p-values and/or adding
weight function to the tail part of p values, we can avoid
false rejections of deviation from uniformity due to corre-
lation. To further improve the robustness of the D CDF
test against correlation, we propose a copula based trans-
formation procedure to convert correlated p-values into in-
dependent p-values. Empirical simulations and case stud-
ies demonstrate the effectiveness of the proposed proce-
dures.

The general guidelines of weight function are as follows:
1. Assigning larger weights to smaller p-values will increase
the power of the D CDF test. For instance, inverse exponen-
tial kernel-weighted D CDF test (w(x) = exp(0.1x)) has a
higher power than the unweighted D CDF test (w(x) = 1);
2. Increasing weight will yield a higher power. That is, if
w1(x) and w2(x) are two different weight functions and
x1 > x2, then w1(x1)/w1(x2) > w2(x1)/w2(x2) suggests
that w1(x) will yield a better power than w2(x). For in-
stance, the D CDF test with (w(x) = exp(0.5x)) has a
higher power than the D CDF test with (w(x) = exp(0.1x));
3. As suggested by [11], procedures that assign weights posi-
tively associated with the underlying alternative hypotheses
will usually improve power, except in cases where power is
already near one.

By avoiding re-sampling or permutation, the D CDF
test based on Theorem 1 is computationally effective in
analyzing a large number of pathways for high through-
put genomic data. Increasing pathway sizes and numbers
of genetic variants does not pose a major computation is-
sue to the proposed method. The computing time for the
D CDF test of 100, 1000 and 10,000 p-values using R soft-
ware version 3.0.0 (http://www.r-project.org/) in a reg-
ular computer (64-bit operating system, Intel processor,
2.67 GHz and 14.0 GB RAM) are <1 second, 2 seconds
and 5 seconds respectively. This computing time applies to
all D CDF with varying weight functions and truncations
without the copula transformation. The copula transfor-
mation will require more computing time to perform per-
mutation among p-values thus it does not have comput-
ing advantage over other permutation methods. The pro-
posed method can be applied to a wide spectrum of ge-
netic data analysis, including genotyping data, gene ex-
pression data, sequencing data, proteomic data, expres-
sion quantitative trait loci (eQTLs) mapping and link-
age analysis. The proposed method can also be applied to
meta-analysis to combine information from multiple stud-
ies.
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APPENDIX

Proof of Theorem 1. For the D CDF statistic (6), rewrite
the difference between the competing CDFs as

F (Xi|λ0)− F̃ (Xi|π̂, λ0, λ̂)

= F (Xi|λ0)−
[
(1− π̂)F (Xi|λ0) + π̂F (Xi|λ̂)

]
= π̂

(
F (Xi|λ0)− F (Xi|λ̂)

)
.

Perform Taylor expansion for F (Xi|λ̂) around λ0, we have

D CDF = n−1/2
n∑

i=1

w(Xi)I{Xi∈S}π̂

×
(
−(λ̂− λ0)f(Xi|λ0)− 0.5(λ̂− λ0)

2 ∂
2F (Xi|λ)
∂λ2

∣∣∣∣
λ=ξi

)

for some ξi between λ0 and λ̂. Due to Lemma 1 in Sec-
tion 2.2, we have

D CDF = n−1/2
n∑

i=1

w(Xi)I{Xi∈S}π̂(λ0 − λ̂)f(Xi|λ0)

×
(
1 + 0.5(λ̂− λ0)

∂2F (Xi|λ)
∂λ2

∣∣∣∣
λ=ξi

/f(Xi|λ0)

)

=
√
nπ̂(λ0 − λ̂)

∫
x∈S

w(x)
(
f(x|λ0)

)2
dx+ op(1)

L→ N
(
0, B2λ2

0

)
by the law of large numbers and Slutsky’s theorem [37].

Corollaries 1–4 follow from Theorem 1 by direct calcula-
tion.

Proof of Theorem 2. Under the fixed alternative Ha,1, the
mixture model (3) is identifiable with respect to (π, λ). The-
orem 3.1 of [38] shows that the MLEs for (π, λ) are

√
n-

consistent and asymptotically normal. If we consider a prior
proportional to (π(1 − π))C , the MMLEs of (π, λ) are the
same as the Bayes maximum a posteriori estimators that
maximize the posterior distribution function. The Bayes es-
timators are asymptotically efficient. As a result, we have

π̂
P→ πa, λ̂

P→ λa. Then statement (10) follows by uniform
law of large numbers, Theorem 2 of [10], and Slutsky’s the-
orem [39].

The distribution of
√
nπ̂(λ̂− λ0)under the local alterna-

tive Ha,2 can be derived from the null limiting distribution

of (
√
nπ̂(λ̂− λ0),Λn) where

Λn =

n∑
i=1

log
{
(1− πa − hπ1n

−τ1)f(Xi|λ0) + (πa + hπ1n
−τ1)

× f(Xi|λ0 + hλn
−0.5)

}
−

n∑
i=1

log f(Xi|λ0).
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Table A. Comparison of D CDF test and 7 existing methods (For each case, the type I error rate is presented in the first row
with d = 0 and power is presented in the remaining rows with effect sizes d = 0.6, 0.8 and 1.)

D CDF KS Chi Norm Wilcox Logit AIC BIC

Case I: Independent correlation matrix with rho= 0

d = 0 0.014 0.049 0.048 0.051 0.052 0.049 0.075 0.004

d = 0.6 0.908 0.690 0.948 0.848 0.719 0.876 0.933 0.752

d = 0.8 0.998 0.901 0.999 0.980 0.878 0.987 0.999 0.989

d = 1.0 0.999 0.967 1.000 0.997 0.925 1.000 0.999 0.999

Case II: compound symmetric correlation matrix with rho= 0.4

d = 0 0.047 0.080 0.096 0.093 0.089 0.094 0.137 0.018

d = 0.6 0.859 0.671 0.937 0.822 0.699 0.857 0.917 0.734

d = 0.8 0.979 0.887 0.997 0.965 0.859 0.980 0.997 0.979

d = 1.0 0.994 0.964 1.000 0.992 0.908 0.997 0.998 0.998

Case III: compound symmetric correlation matrix with rho= 0.8

d = 0 0.049 0.166 0.178 0.174 0.174 0.173 0.316 0.117

d = 0.6 0.528 0.657 0.883 0.766 0.656 0.798 0.862 0.681

d = 0.8 0.835 0.857 0.990 0.928 0.801 0.954 0.990 0.966

d = 1.0 0.936 0.953 0.999 0.979 0.850 0.992 0.996 0.995

Case IV: compound symmetric correlation matrix with random rho∼beta(0.3,1.5)

d = 0 0.032 0.064 0.072 0.074 0.072 0.071 0.109 0.014

d = 0.6 0.88 0.696 0.950 0.848 0.722 0.879 0.931 0.761

d = 0.8 0.995 0.895 0.999 0.971 0.868 0.985 0.999 0.986

d = 1.0 1 0.961 1.000 0.995 0.911 0.999 0.999 0.999

Case V: compound symmetric correlation matrix with random rho∼ uniform(−0.2, 0.2)

d = 0 0.024 0.051 0.053 0.051 0.051 0.049 0.072 0.004

d = 0.6 0.895 0.696 0.954 0.854 0.721 0.886 0.940 0.772

d = 0.8 0.99 0.890 0.999 0.973 0.873 0.986 0.998 0.987

d = 1.0 0.998 0.966 1.000 0.996 0.922 0.998 1.000 0.999

Case VI: random positive definite correlation matrix

d = 0 0.022 0.048 0.049 0.049 0.052 0.049 0.075 0.006

d = 0.6 0.91 0.692 0.953 0.854 0.731 0.883 0.937 0.757

d = 0.8 0.994 0.906 0.998 0.977 0.878 0.988 0.998 0.986

d = 1.0 0.999 0.962 1.000 0.995 0.917 0.999 0.999 0.999

By Taylor’s expansion, central limit theorem and Slutsky’s

theorem,

Λn =

n∑
i=1

log

{
1 +

(
πa + hπ1n

−τ1
)

× f(Xi|λ0 + hλn
−0.5)− f(Xi|λ0)

f(Xi|λ0)

}

=

n∑
i=1

(
πa + hπ1n

−τ1
)f(Xi|λ0 + hλn

−0.5)− f(Xi|λ0)

f(Xi|λ0)

− 0.5

n∑
i=1

[(
πa + hπ1n

−τ1
)

× f(Xi|λ0 + hλn
−0.5)− f(Xi|λ0)

f(Xi|λ0)

]2
+ op(1)

=
(
πa + hπ1n

−τ1
)
hλn

−0.5
n∑

i=1

∂ log(f(Xi|λ))
∂λ

∣∣∣∣
λ=λ0

− 0.5
(
πa + hπ1n

−τ1
)2
h2
λn

−1

×
n∑

i=1

(
∂ log(f(Xi|λ))

∂λ

∣∣∣∣
λ=λ0

)2

+ op(1)

L→ N
(
−0.5π2

ah
2
λ/λ

2
0, π

2
ah

2
λ/λ

2
0

)
.

In light of the null distribution for
√
nπ̂(λ̂ − λ0) =

n−0.5λ2
0

∑n
i=1

∂ log(f(Xi|λ))
∂λ |λ=λ0 + op(1), the joint null limit-

ing distribution is given by[ √
nπ̂(λ̂− λ0)

Λn

]

L→ N

([
0

−0.5π2
ah

2
λ/λ

2
0

]
,

[
λ2
0, πahλ

πahλ, π
2
ah

2
λ/λ

2
0

])
.

According to LeCam’s contiguity theorem ([40] page

90), we have
√
nπ̂(λ̂ − λ0)

L→ N(πahλ, λ
2
0) under Ha,2.

Then statement (11) follows by repeating the proof for The-
orem 1.
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