
Children's Mercy Kansas City Children's Mercy Kansas City 

SHARE @ Children's Mercy SHARE @ Children's Mercy 

Manuscripts, Articles, Book Chapters and Other Papers 

7-6-2018 

Automated real-time collection of pathogen-specific diagnostic Automated real-time collection of pathogen-specific diagnostic 

data: Syndromic infectious disease epidemiology data: Syndromic infectious disease epidemiology 

Lindsay Meyers 
BioFire Diagnostics 

Christine C. Ginocchio 
BioFire Diagnostics 

Aimie N. Faucett 
BioFire Diagnostics 

Frederick S. Nolte 
Medical University of South Carolina 

Per H. Gesteland 
The University of Utah 

See next page for additional authors 
Let us know how access to this publication benefits you 

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/papers 

 Part of the Clinical Epidemiology Commons, Infectious Disease Commons, and the Pathology 

Commons 

Recommended Citation Recommended Citation 
Meyers L, Ginocchio CC, Faucett AN, et al. Automated Real-Time Collection of Pathogen-Specific 
Diagnostic Data: Syndromic Infectious Disease Epidemiology. JMIR Public Health Surveill. 2018;4(3):e59. 
Published 2018 Jul 6. doi:10.2196/publichealth.9876 

This Article is brought to you for free and open access by SHARE @ Children's Mercy. It has been accepted for 
inclusion in Manuscripts, Articles, Book Chapters and Other Papers by an authorized administrator of SHARE @ 
Children's Mercy. For more information, please contact hlsteel@cmh.edu. 

https://scholarlyexchange.childrensmercy.org/
https://scholarlyexchange.childrensmercy.org/papers
https://forms.office.com/r/pXN2VA1t4N
https://scholarlyexchange.childrensmercy.org/papers?utm_source=scholarlyexchange.childrensmercy.org%2Fpapers%2F1755&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/815?utm_source=scholarlyexchange.childrensmercy.org%2Fpapers%2F1755&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/689?utm_source=scholarlyexchange.childrensmercy.org%2Fpapers%2F1755&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/699?utm_source=scholarlyexchange.childrensmercy.org%2Fpapers%2F1755&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/699?utm_source=scholarlyexchange.childrensmercy.org%2Fpapers%2F1755&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hlsteel@cmh.edu


Creator(s) Creator(s) 
Lindsay Meyers, Christine C. Ginocchio, Aimie N. Faucett, Frederick S. Nolte, Per H. Gesteland, Amy Leber, 
Diane Janowiak, Virginia Donovan, Jennifer Dien Bard, Silvia Spitzer, Kathleen A. Stellrecht, Hossein 
Salimnia, Rangaraj Selvarangan, Stefan Juretschko, Judy A. Daly, Jeremy C. Wallentine, Kristy Lindsey, 
Franklin Moore, Sharon L. Reed, Maria Aguero-Rosenfeld, Paul D. Fey, Gregory A. Storch, Steve J. Melnick, 
Christine C. Robinson, Jennifer F. Meredith, Camille V. Cook, Robert K. Nelson, Jay D. Jones, Samuel V. 
Scarpino, Benjamin M. Althouse, Kirk M. Ririe, Bradley A. Malin, and Mark A. Poritz 

This article is available at SHARE @ Children's Mercy: https://scholarlyexchange.childrensmercy.org/papers/1755 

https://scholarlyexchange.childrensmercy.org/papers/1755


Original Paper

Automated Real-Time Collection of Pathogen-Specific Diagnostic
Data: Syndromic Infectious Disease Epidemiology

Lindsay Meyers1, BS; Christine C Ginocchio1,2,3, PhD; Aimie N Faucett1, MS; Frederick S Nolte4, PhD; Per H

Gesteland5, MD, MS; Amy Leber6, PhD; Diane Janowiak7, BS, MT (ASCP); Virginia Donovan8, MD; Jennifer Dien

Bard9,10, PhD, D(ABMM); Silvia Spitzer11, PhD; Kathleen A Stellrecht12, PhD; Hossein Salimnia13, PhD; Rangaraj

Selvarangan14, BVSc, PhD, D(ABMM); Stefan Juretschko15, PhD; Judy A Daly16, PhD; Jeremy C Wallentine17, MD;

Kristy Lindsey18, BSc (Health); Franklin Moore18, MD; Sharon L Reed19, MD; Maria Aguero-Rosenfeld20, MD; Paul

D Fey21, BS, PhD, D(ABMM); Gregory A Storch22, MD; Steve J Melnick23, MD, PhD; Christine C Robinson24, PhD;

Jennifer F Meredith25, PhD; Camille V Cook1, BS; Robert K Nelson1, BS; Jay D Jones1, MS; Samuel V Scarpino26,

PhD; Benjamin M Althouse27,28, ScM, PhD; Kirk M Ririe29, BS; Bradley A Malin30, PhD; Mark A Poritz31, PhD
1BioFire Diagnostics, Salt Lake City, UT, United States
2bioMérieux USA, Durham, NC, United States
3Hofstra Northwell School of Medicine, Hempstead, NY, United States
4Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
5Departments of Pediatrics and Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, United States
6Laboratory of Microbiology and Immunoserology, Department of Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
7Department of Lab Operations, South Bend Medical Foundation, South Bend, IN, United States
8Department of Pathology, New York University Winthrop Hospital, Mineola, NY, United States
9Clinical Microbiology and Virology Laboratory, Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles,
CA, United States
10Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
11Molecular Genetics Laboratory, Stony Brook University Medical Center, Stony Brook, NY, United States
12Department of Pathology and Laboratory Medicine, Albany Medical Center, Albany, NY, United States
13Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States
14Clinical Microbiology, Virology and Molecular Infectious Diseases Laboratory, Department of Pathology and Laboratory Medicine, Children's Mercy
Hospital, Kansas City, MO, United States
15Department of Pathology and Laboratory Medicine, Division of Infectious Disease Diagnostics, Northwell Health, Lake Success, NY, United States
16Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
17Department of Pathology, Intermountain Medical Center, Murray, UT, United States
18Laboratory of Microbiology, University of Massachusetts Medical School-Baystate, Springfield, MA, United States
19Department of Pathology and Medicine, Divisions of Clinical Pathology and Infectious Diseases, UC San Diego, San Diego, CA, United States
20Department of Clinical Laboratories, New York University Langone Health, New York, NY, United States
21Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
22Department of Pediatrics, Washington University, St. Louis, MO, United States
23Department of Pathology and Clinical Laboratories, Nicklaus Children's Hospital, Miami, FL, United States
24Department of Pathology and Laboratory Medicine, Microbiology/Virology Laboratory Section, Children's Hospital Colorado, Aurora, CO, United
States
25Department of Laboratory Services, Microbiology Section, Greenville Health System, Greenville, SC, United States
26Northeastern University, Boston, MA, United States
27University of Washington, Seattle, WA, United States
28New Mexico State University, Las Cruces, NM, United States
29bioMérieux, Salt Lake City, UT, United States
30Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, TN, United States
31BioFire Defense, Salt Lake City, UT, United States

Corresponding Author:
Lindsay Meyers, BS
BioFire Diagnostics

JMIR Public Health Surveill 2018 | vol. 4 | iss. 3 | e59 | p. 1http://publichealth.jmir.org/2018/3/e59/
(page number not for citation purposes)

Meyers et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


515 Colorow Drive
Salt Lake City, UT, 84108
United States
Phone: 1 8017366354 ext 365
Fax: 1 8015880507
Email: lindsay.meyers@biofiredx.com

Abstract

Background: Health care and public health professionals rely on accurate, real-time monitoring of infectious diseases for
outbreak preparedness and response. Early detection of outbreaks is improved by systems that are comprehensive and specific
with respect to the pathogen but are rapid in reporting the data. It has proven difficult to implement these requirements on a large
scale while maintaining patient privacy.

Objective: The aim of this study was to demonstrate the automated export, aggregation, and analysis of infectious disease
diagnostic test results from clinical laboratories across the United States in a manner that protects patient confidentiality. We
hypothesized that such a system could aid in monitoring the seasonal occurrence of respiratory pathogens and may have advantages
with regard to scope and ease of reporting compared with existing surveillance systems.

Methods: We describe a system, BioFire Syndromic Trends, for rapid disease reporting that is syndrome-based but
pathogen-specific. Deidentified patient test results from the BioFire FilmArray multiplex molecular diagnostic system are sent
directly to a cloud database. Summaries of these data are displayed in near real time on the Syndromic Trends public website.
We studied this dataset for the prevalence, seasonality, and coinfections of the 20 respiratory pathogens detected in over 362,000
patient samples acquired as a standard-of-care testing over the last 4 years from 20 clinical laboratories in the United States.

Results: The majority of pathogens show influenza-like seasonality, rhinovirus has fall and spring peaks, and adenovirus and
the bacterial pathogens show constant detection over the year. The dataset can also be considered in an ecological framework;
the viruses and bacteria detected by this test are parasites of a host (the human patient). Interestingly, the rate of pathogen
codetections, on average 7.94% (28,741/362,101), matches predictions based on the relative abundance of organisms present.

Conclusions: Syndromic Trends preserves patient privacy by removing or obfuscating patient identifiers while still collecting
much useful information about the bacterial and viral pathogens that they harbor. Test results are uploaded to the database within
a few hours of completion compared with delays of up to 10 days for other diagnostic-based reporting systems. This work shows
that the barriers to establishing epidemiology systems are no longer scientific and technical but rather administrative, involving
questions of patient privacy and data ownership. We have demonstrated here that these barriers can be overcome. This first look
at the resulting data stream suggests that Syndromic Trends will be able to provide high-resolution analysis of circulating respiratory
pathogens and may aid in the detection of new outbreaks.

(JMIR Public Health Surveill 2018;4(3):e59)  doi: 10.2196/publichealth.9876

KEYWORDS

epidemiology; patients; privacy; communicable disease; internet; pathology, molecular

Introduction

Surveillance Landscape
The availability of real-time surveillance data that can monitor
the spread of infectious diseases benefits public health [1-3].
At present, tracking of respiratory or foodborne outbreaks relies
on a variety of methods ranging from automated real-time
electronic reporting to manual Web entry of test results. Systems
such as the Centers for Disease Control and Prevention’s (CDC)
FluView [4], National Respiratory and Enteric Virus
Surveillance Systems (NREVSS) [5], National Electronic
Disease Surveillance System [6], Global Emerging Infections
Surveillance (GEIS) [7], and others, although Web-based, still
require manual entry of data from laboratories, resulting in data
that are often incomplete or not current.

Syndrome-based surveillance systems [8-10] include BioSense
(extraction of symptomatic data from electronic health records

[11]), Google Flu (tracking of internet search queries [12] but
recently discontinued [13]), and Flu Near You (voluntary
reporting [14]). Additionally, numerous next generation,
syndromic surveillance systems, for example, pharmacy sales
records [15,16], Twitter conversations [17,18], and Wikipedia
hits [19,20] have come online in the past 5 years. However,
these systems cannot report the specific pathogen causing an
increase in a particular set of symptoms. Finally, there are more
localized efforts such as GermWatch in Utah [21] and the
Electronic Clinical Laboratory Reporting System (ECLRS) in
New York [22] that draw from hospital information systems
(HISs) and laboratory information systems (LISs). This disparity
in technologies and data collection methods results in incomplete
surveillance.

Comprehensive Testing
Comprehensive and uniform diagnostic test data will aid in the
identification of potential outbreaks. A combination of broad
respiratory pathogen testing and an internal electronic
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surveillance system enabled the rapid dissemination of data
across the largest health care system in New York, the North
Shore-LIJ Health System (now Northwell Health), during the
influenza A H1N1-2009 pandemic in the New York City area.
Pathogen-specific molecular testing permitted rapid (1)
notification to state epidemiologists, (2) tracking of the virus
so that health care resources could be managed effectively, and
(3) evaluation of influenza diagnostics [23,24]. Today, with the
threat of emerging pathogens such as Middle East respiratory
syndrome coronavirus (CoV), avian influenza, enterovirus (EV)
D68, and Ebola virus, real-time surveillance programs are
critical [25,26].

It is not always possible to accurately diagnose the causative
agents of most infectious diseases from symptoms alone because
of overlapping clinical presentation. Thus, to achieve maximal
utility, infectious disease surveillance systems should move
beyond syndrome-based reporting and be pathogen-specific and
comprehensive, reporting on as many of the common pathogens
for a particular syndrome as possible. Sensitive and specific
automated molecular diagnostic systems that detect up to 4
different pathogens in a single sample have been available from
in vitro diagnostic (IVD) manufacturers for some time [27,28].
However, adoption of IVD platforms with broad multiplexing
capability has become widespread only in the last few years.
Commercially available systems that can detect most of the
known etiological agents for respiratory, gastrointestinal (GI),
and other multipathogen syndromes [29-31] include the BioFire
(Salt Lake City, UT) FilmArray System ([32]; Multimedia
Appendix 1); the GenMark (Carlsbad, CA) eSensor XT-8 [33]
and ePlex [34]; and the Luminex (Austin, TX) xTAG [35],
nxTag [36], and Verigene systems [37].

Sharing of Patient Data
Multianalyte diagnostic tests provide the raw data needed for
real-time pathogen-specific syndromic surveillance, but there
remain a number of obstacles to sharing these results (reviewed
in [38]). The obstacles largely center on information privacy
and network security. A real-time surveillance system using
diagnostic test results requires safeguards for protected health
information (PHI). Medical records and devices have become
attractive targets for cyber attackers in recent years [39], which
has made hospitals and clinics reluctant to connect their local
area networks (LANs) to the internet. Releasing patient test
results requires the removal of PHI or authorization from the
patient. Studies have shown that deidentification of patient data
is not as simple as removing all specific identifiers because in
the age of big data, under the right circumstances, it is possible
to reassociate patients and their data using publicly available
information [40-43].

We describe here the implementation of a real-time
pathogen-specific surveillance system that overcomes the PHI
concerns noted above. BioFire Syndromic Trends deidentifies,
aggregates, and exports test results from FilmArray Instruments
in use in US clinical laboratories [44]. Although data from all
commercially available FilmArray panels [45] are exported to
the Trend database, we focus here on the Respiratory Panel (RP)
that can detect 17 viral (adenovirus, Adeno; coronavirus, CoV
[OC43, 229E, NL63, HKU-1]; human metapneumovirus, hMPV;

human rhinovirus/enterovirus, HRV/EV; influenza A, Flu A
[subtyping H1N1, 2009 H1N1, H3N2]; influenza B, Flu B;
parainfluenza viruses, PIVs [1-4]; and respiratory syncytial
virus, RSV) and three bacterial (Bordetella pertussis, Chlamydia
pneumoniae, and Mycoplasma pneumoniae) pathogens
[32,46,47].

With more than 362,000 patient results for the FilmArray RP
test alone, the Trend database has many of the properties
associated with big data as it applies to infectious disease [48].
After describing how the dataset can be cleaned of nonpatient
tests, we make some observations on the seasonality of the
different respiratory pathogens and the occurrence of codetection
(more than one organism is detected in one test). Relatively
little is known about rates of multiple concurrent respiratory
infections and their overall impact on the health of the patient.
Finally, we apply the ecological concept of species diversity
[49] to observe a correlation between the abundance of each
pathogen and the rate at which codetections (more than one
positive result per test) occur in the tested population.

Methods

Origin of Syndromic Trends
FilmArray Trend was originally implemented to provide BioFire
customers with an up-to-date view of the respiratory and GI
pathogens circulating at their institution. From the perspective
of an IVD manufacturer, the most uniform and thus the simplest
method of accomplishing this is to follow a bottom-out approach
to data export in which the FilmArray sends data to a cloud
database managed by the manufacturer, and Web views of these
data are available by clinicians at the hospital that generated
the data (solid lines in Figure 1) rather than a top-out approach
(dashed lines in Figure 1) in which the data are extracted from
the hospital information system. This method provides the
clinical institution with a tool to perform pathogen-specific
surveillance for very little cost.

Patient Privacy When Exporting FilmArray Test
Results
The Expert Determination study of the Trend data export
algorithm (Multimedia Appendix 2) established that FilmArray
patient results have been adequately deidentified. Therefore, a
data use agreement (DUA), rather than business associates
agreements (see Multimedia Appendix 2 for the difference
between the two agreements) could be executed with each of
the collaborating institutions (Multimedia Appendix 1). The
DUAs define for the clinical laboratory how BioFire will
manage and make use of the Trend data. The Trend client
software residing on the FilmArray computer queries the
FilmArray test result local database and exports the results to
an Amazon Web Services database (Multimedia Appendix 1).
The Trend client software performs deidentification on the
FilmArray computer before export, as detailed in Multimedia
Appendix 2. Health care providers (HCPs) are granted access
to their institution’s Trend data by the laboratory director. As
Web access to view the data is restricted to the local site,
deidentification of geographic indicators is not required.
However, in the implementation of the public Trend website,
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which presents FilmArray test results from around the United
States, we have further aggregated the data with respect to
geographic origin and obfuscated the date of the test
(Multimedia Appendix 2). As only deidentified data are exported
from the clinical institutions, no PHI is sent to or stored on the
cloud server.

Test Utilization Rate and Pathogen Detection Rate
The FilmArray RP test utilization rate (TUR) metric is defined
as the non-normalized number of RP patient test results
generated each week across the Trend sites (computed as a
centered 3-week moving average). To calculate the pathogen
detection rate (as displayed in Figure 2 [second data view] and
on the Trend website), we compute the rate for each organism
at each institution as a centered 3-week moving average. To
adjust for the capacity differences between sites, a national
aggregate is calculated as the unweighted average of individual
site rates. Only data from sites contributing more than 30 tests
per week is included to avoid noise from small numbers of tests.
Because the calculation of pathogen detection rate includes
results from patients with multiple detections, the detection rate
for all organisms can, in theory, add up to greater than one. In
practice, this does not occur.

Comparison With the Centers for Disease Control and
Prevention Influenza-Observed Rate of Detection
The CDC FluView rate of Flu A and Flu B detections, as well
as the reported incidence of weighted influenza-like illness
(ILI), are taken from the CDC website [4]. Only the CDC data
from the Department of Health and Human Services regions
that contained Trend pilot sites (Multimedia Appendix 1) were
used for calculating the rate of influenza detections.

Calculation of Codetection Rates and Related Measures
Pathogen codetections are defined as FilmArray tests in which
two or three organisms are detected. We also calculated two
other measures that relate to codetections: the circulating
pathogen number and the measure of interspecific encounter
(MIE). Both of these time series measures are calculated for
each site and week, a centered 5-week moving average is
computed, and then an unweighted average of all sites is used
to create a national aggregate. The 5-week moving average is
used to reduce noise because of small numbers of samples within
a week at some sites.

More specifically, the circulating pathogen number is simply
the count of the unique organisms detected at a site during a
1-week period. MIE is calculated from the frequencies of each
organism at a site (number of positive test results for an
organism divided by the number of FilmArray tests performed
at that site). To reduce noise, we only include site data if more
than 10 FilmArray tests were performed in that week. If P1...PN

are the percentage detection of the N different organisms
circulating at a single site over a single week, then MIE is
defined as shown in equation 1:

Conceptually, MIE is an attempt to estimate the likelihood that
a patient infected with one organism may be infected with
another unique organism circulating in the population at a given
period in time, resulting in a coinfection.

Figure 1. Schema for export of in vitro diagnostic (IVD) test results to an external database. Bottom-Out and Top-Out approaches for data export are
indicated by solid and dashed lines, respectively. Some institutions have developed their own systems for aggregating and displaying infectious disease
data (indicated by internal website). HIS: hospital information system; LIS: laboratory information system; CDC: Centers for Disease Control and
Prevention; NREVSS: National Respiratory and Enteric Virus Surveillance Systems.
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Figure 2. Detection of respiratory panel (RP) organisms over time across all sites. Detection of FilmArray RP pathogens in the Trend dataset displayed
as stacked area graphs. All data views have the same time period (July 2013 through July 2017). (First data view) Count of each organism. The test
utilization rate (TUR) metric (purple line, units are FilmArray RP tests performed) and count of FilmArray RP tests that are negative (white are between
pathogen count and TUR) are indicated. The y-axis values are not indicated as this is considered proprietary information. (Second data view) Pathogen
detection rates for all organisms. (Third data view) Pathogen detection rates for the subset of organisms that show seasonality (see Results and the
legend for the list of organisms). (Fourth data view) Human rhinovirus (HRV) or enterovirus (EV) detection rates. The CDC weighted influenza-like
illness (ILI; scaled up tenfold to be visible against the pathogen data) is indicated (black line) in the third and fourth data views. Organisms follow the
same color scheme in all panels; the order of organisms in the legend (down then across) matches that of the stacked area graph top to bottom.
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Results

Sending FilmArray Data Directly to the Cloud
The most general and efficient way to aggregate test results
from the FilmArray instrument in a clinical laboratory is to
follow a bottom-out approach to data export (Figure 1;
Multimedia Appendix 1). In this scheme, the FilmArray
instrument (at the bottom of the information hierarchy) directly
sends data via the internet to a single cloud database where it
can be viewed by HCPs at the originating institution. This data
export pathway contrasts with a top-out approach (Figure 1) in
which diagnostic test results are pushed from the instrument up
through the LIS, to the HIS (at the top of the information
hierarchy) and, finally, a subset of this information is forwarded
to cloud-based databases.

Initial testing of the Trend export mechanism was performed
in collaboration with the clinical laboratories of the Medical
University of South Carolina. This trial allowed us to develop
and test auto-export functions and deidentification protocols
for the Trend software. The deidentification requirement of the
Health Insurance Portability and Accountability Act (HIPAA)
of 1996, specifically the Safe Harbor provision, requires the
removal of 18 enumerated variables that could directly or
indirectly identify an individual [50]. In accord with this
requirement, the first stage study did not export test identifiers
or free-form text fields and only returned the year of the test.
The initial dataset provided low-resolution information but was
a useful platform to evaluate the proposed system. Further
development to enable export of higher resolution data required
the design of routines that would adhere to an alternative HIPAA
deidentification strategy, namely, the Expert Determination
approach, which requires a risk assessment demonstrating that
the chance of reidentifying an individual is sufficiently small
[51]. The Expert Determination process identified and made
recommendations for fields that could facilitate disclosure of
PHI (Multimedia Appendix 2). A summary of the Expert
Determination results detailing the risk of Trend data in regard
to replicability, availability, and distinguishability is shown in
Multimedia Appendix 2.

All sites (Multimedia Appendix 1) submitted the Trend project
for review by their local institutional review board; all but one
of the 20 review boards deemed the project exempt because of
the absence of PHI export. Thus, the security requirements for
the database and the controls necessary for storage and transport
of deidentified data are significantly reduced.

Following the protocol established by Expert Determination
review, the Trend software delays the export of results until the
number of tests queued for export exceeds a minimum threshold
for each type of FilmArray panel. In practice, this results in an
average time to export of less than 2 hours from each site that
has multiple instruments. A total of 99.11% (74,912/75,585) of
the test results exported automatically occurred within 24 hours
of test completion.

Characteristics of the FilmArray Sites Used in the
Trend Pilot Study
The 20 sites contributing to the Trend pilot project (Multimedia
Appendix 1) have the same average number of instruments; six
(range: 1-22) as for all US FilmArray customers. The Trend
pilot sites have been using the FilmArray RP test for an average
of 3.8 years (range: 1-6) before June 2017. The size of the
institutions participating ranges from 300 to 6400 beds, with
the majority being large hospitals, and health care networks
with an average of 1100 beds. Six (30%, 6/20) sites are pediatric
hospitals, and one is a reference laboratory. Fifteen (75%, 15/20)
of the sites have uploaded archived FilmArray RP test results
to the Trend database, with eight (40%, 8/20) reporting results
dating back to 2012. Unless stated otherwise, the data presented
here cover the period from July 2013 to July 2017.

The algorithm used to diagnose the cause of respiratory disease
varies by site. More than half of the Trend sites do not enforce
an institutional respiratory testing protocol and, even within
sites that have a required protocol, some discretionary use of
FilmArray RP is allowed. Without detailed records from each
institution’s HIS, it is not possible to determine whether the
FilmArray RP was used as a front line test or as a reflex test
(typically following a negative result for influenza and RSV).

Cleaning Nonpatient Test Results From the Trend
Database
To determine the prevalence of respiratory pathogens, we needed
to expunge the Trend database of test results that are not derived
from clinical patient samples. Nonpatient results come from a
variety of sources including verification testing, routine quality
control (QC), and proficiency testing (PT; Multimedia Appendix
3). Despite this complexity, the majority of nonpatient test
results can be identified and distinguished from the
patient-derived data because of the high number of positive
organism calls in a single test and because of the temporal
aspects of verification and control testing (Multimedia Appendix
3 shows one such identification method). QC tests are estimated
to account for half of all FilmArray RP results in which more
than three organisms are detected. In addition to the exclusion
of tests temporally associated with validation events, all results
with four or more positives were removed from further analysis
(approximately 1% of the filtered total). This includes the small
fraction of test results with exactly four organisms (Multimedia
Appendix 3, Tests after event removal column) because the
minority are derived from patient testing.

Detection of Respiratory Pathogens in Trend Samples
From 2013 to 2017
The detection counts and pathogen detection rates derived from
the Trend dataset for each organism in the FilmArray RP are
shown in Figure 2. Other views of these data, including percent
detection of individual organisms or combinations of organisms,
are available on the BioFire Syndromic Trends public website
[44]. The FilmArray RP TUR (see Methods) and the individual
organism detection counts increased over this period because
the Trend clinical sites increased their utilization of the
FilmArray RP tests (Figure 2, first data view). Seasonal
fluctuations can also be seen within this growth pattern, with
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use increasing up to four-fold each winter when compared with
the previous summer. HRV/EV, the most common pathogen
detected group, is identified in approximately one-fourth of all
samples tested each year (Multimedia Appendix 4). Other
pathogens detected in approximately one-tenth of the samples
include RSV, the PIVs, ADV, influenza, and hMPV. M
pneumoniae, C pneumonia, and B pertussis are detected in a
small percentage (one-fiftieth) of all samples. The average
percentage of each organism is relatively constant over the 4
years of data in the Trend database (Multimedia Appendix 5).

The pathogens’ seasonal variability measured by percent
detection can be classified into at least three groups. Group 1:
the majority of organisms follow the classical respiratory season
(October-March) and increase by more than ten-fold above their
baseline detection rate (Figure 2, third data view). These include
the CoVs, Flu A, Flu B, hMPV, the PIVs, and RSV (PIV3 is a
slight exception to this rule in that it peaks in the summer
months and has a winter peak that is only detected regionally;
data not shown). Within this group, all but five viruses
demonstrate significant fluctuations from year to year; Flu B,
hMPV, OC43, and PIV3 and RSV experience relatively
consistent annual peaks. Group 2: HRV/EV is in a class by itself
in that it is detected in a high percentage of tests over time
(minimum of one-tenth of tests in winter) and experiences
moderate peaks of two- to three-fold outside the respiratory
season baseline in the early fall and spring (Figure 2, fourth
data view). Group 3: the bacteria and Adeno are present at a
relatively constant rate (Multimedia Appendix 6). The CDC
FluView reported rate of ILI tracks moderately well with the

group 1 organisms (cross-correlation of 0.85) and not with
HRV/EV or with Adeno and the bacteria.

Comparison of Trend With Centers for Disease
Control and Prevention Measures of Influenza
The CDC FluView network [4] gathers information about
influenza prevalence from a large number of public health and
clinical laboratories in the United States. FluView is considered
the gold standard for these measures. We compared the Trend
detection rates for Flu A (all subtypes) plus Flu B with the
FluView Influenza (A and B) from September 2015 to July
2017 (Figure 3). The analysis was restricted to this time period
because of a change in the CDC’s reporting of flu prevalence
in the fall of 2015. A cross-correlation of 0.974 was observed
between the Trend Flu A or B percent detection and FluView
reported influenza prevalence. Notably, the onset, peak, and
duration of the influenza season coincide between the two
measures.

Respiratory Panel Codetections
We found that approximately 38,000 FilmArray RP tests in the
Trend dataset had two or three codetections. The most common
codetections observed are those involving HRV/EV, which is
the pathogen with the overall highest rate of detections (Figure
4, first data view). The codetection rate within each organism
varies widely (from one-tenth to one-half; Figure 4, second data
view). Although an additional pathogen was detected in half of
the Adeno and CoV positive samples, codetections were
observed in only one-tenth of the samples positive for either
Flu A or Flu B (Figure 4, second data view).

Figure 3. Trend influenza detection rate compared with Centers for Disease and Prevention’s (CDC) influenza activity. Percent of combined FilmArray
Flu A (all subtypes) and Flu B detections (blue line) and CDC-reported influenza prevalence (black lines). CDC data are aggregated only from regions
with participating Trend sites.
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Figure 4. Detection rates for all organisms compared with codetections. Percent total positive detections for each organism in the respiratory panel
(RP) Trend dataset is presented in stacked bars, showing the rate of detection of a single organism (first data view, blue) and those involved in a
codetection (first data view, black). Data are calculated for each site during the period from July 2013 to July 2017, when available, and then aggregated.
(Second data view) Percentage of each organism involved in a codetection is shown. Bars are colored by pathogen family (CoV, purple; bacteria, blue;
PIVs, green; Flu A, yellow).
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Figure 5. Seasonal variation in pathogen diversity and codetections. (First data view) Average circulating pathogen number (black line) and one SD
computed across all Trend sites (gray area). (Second data view) Rate of codetections in the respiratory panel (RP) Trend dataset (gray bars, left axis),
the measure of interspecific encounter (MIE) index (purple line, right axis), and MIE CIs (shaded purple area).

Trend data have high temporal, spatial, and organism-specific
resolution. These three properties allow for a novel evaluation
of codetections. The observed rates of codetections should be
influenced by the number of circulating pathogens detected by
the FilmArray RP test at a particular site. Figure 5, first data
view, shows the average number of unique organisms detected
at each site in a given week (see Methods: Calculation of
codetection rates). This number fluctuates from a summer low
of four to a winter high of 11 pathogens. Figure 5, second data
view (gray bars), shows that the total rate of organism

codetections in the Trend dataset fluctuates annually, with peak
rates occurring in the winter months. The average rates have
been as high as one in 8 tests in the winter of 2016 and as low
as one in 50 in the summer of 2014.

From the Trend data, an MIE can be calculated as the probability
of a codetection, weighted by the prevalence of each circulating
pathogen at a site. Although the value of the MIE metric is
higher than the actual codetection rate, it correlates well (Figure
5, second data view, purple line compared with the gray bars
has a cross-correlation of 0.9488 at a lag of 0). The magnitude
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adjustment between MIE and the observed codetections is
calculated by the slope of the linear regression of the two metrics

(Multimedia Appendix 7) and has a value of 4.05 (R2=.9003).

Discussion

Properties of Trend Data
This study describes BioFire Syndromic Trends, a new system
for real-time reporting of widespread pathogen-specific
syndromic data. Even in its pilot phase, the Trend database
already has many of the features that characterize big data [48].
The Vs of big data—volume (amount), velocity (speed of
acquisition), veracity (accuracy), variety (diversity of
information), and value (utility)—should be kept in mind as we
consider the properties of Trend in clinical and public health
settings.

The Trend RP dataset is growing at an average rate of >400,000
pathogen test results per month (>20,000 patient tests with 20
pathogens). Connecting the first 20 clinical sites has provided
insight into the principal concerns that will be raised by the
legal, information technology, and administrative departments
of the HCPs that house FilmArray instruments. It should be
possible, therefore, to expand the Trend installed base by 10-
to 20-fold over the next few years. Similarly, the existence of
Trend should enable other IVD manufacturers to build their
own Trend-like systems with greater acceptance on the part of
their customers, thereby allowing a more global and
comprehensive surveillance perspective.

The data in Figure 2 are similar to previous demonstrations of
the seasonality associated with different respiratory viruses
[52-55]. What is novel is that these data are generated
automatically, on site, and in close to real time compared with
other surveillance systems. Nearly all of the test results are
exported to the Trend database within 24 hours of being
generated. As part of the deidentification protocol, sequential
FilmArray RP tests of the same type are put into the same time
bin. This has the effect that test results are exported faster during
periods of peak use, such as during the peak of the respiratory
season or during an outbreak. Trend should be instrumental at
a local level to determine the start of a respiratory season; many
hospitals make significant changes to their operations based on
this event; however, at present, data collection to track the
respiratory season is often slow and manual, or semiautomated
at best.

The key to implementing Trend clinical sites was to demonstrate
that FilmArray test results can be exported without the risk of
breaching PHI confidentiality either directly or through some
combination of the data that were exported. Trend successfully
used the Expert Determination process as prescribed by the
HIPAA guidelines (see Multimedia Appendix 2), which greatly
simplified the data sharing agreement between BioFire
Diagnostics and the clinical site and allowed HCPs to use Trend
without risk of inadvertently disclosing PHI.

The software architecture underlying the Trend system is both
simple and secure: (1) no changes to the institutional firewall
or LAN are needed; (2) the Trend database cannot reach back
and query the FilmArray computer because of the institutional

firewall, which is set to outbound data only; and (3) Trend
software can only submit data to the cloud database and cannot
query the database (Multimedia Appendix 1). Yet, despite this
security, authorized users of the Trend database can mine the
deidentified data to look for novel patterns in respiratory
pathogen epidemiology.

The Costs and Benefits of Bottom-Out Data Export
System
The goal of an epidemiological surveillance network is to infer
which infectious diseases are circulating in the general
population based on testing a sample of patients [56]. Different
surveillance systems have different biases in their data; biases
that perturb the ability to predict true population prevalence.

Although the removal of all PHI has great benefits in terms of
implementation, it also has several shortcomings that complicate
interpretation of the data. First, Trend cannot account for the
variability in the diagnostic testing algorithms applied to the
selection of samples to be tested by the FilmArray instruments.
During the respiratory season, HCPs may prescreen patients
with other diagnostic tests including rapid antigen or molecular
assays for influenza and RSV or commercial and
laboratory-developed molecular tests for a mix of other
respiratory pathogens. Depending upon the sensitivity of these
upstream tests, more than half of influenza and RSV for the
subset of the patients screened would be excluded from the
Trend dataset if the front line test is positive. This testing
protocol may skew the actual prevalence of not only influenza
and RSV but all other individual respiratory pathogens and
coinfections detected by the FilmArray. In some institutions,
testing is reserved for hospitalized patients and others at risk
for developing complications of respiratory tract infections,
including the very young, very old, and immunocompromised
patients. So Trend data may represent a less healthy patient
population and not necessarily general community prevalence.
Conversely, there are sites that perform a significant number of
tests for the outpatient setting. This may create variability among
the clinical sites’ percent positivity and introduces a challenge
to comparing pathogen intensity between sites.

The uncertainties surrounding the testing algorithm and the
precise patient population tested should not interfere with
determining the onset, peak, and duration of the pathogen season
at each institution. These limitations on the data are likely to
be common among almost all current surveillance systems for
similar reasons. Given these concerns, the agreement between
the percent positivity of Flu A or B as determined by Trend and
the percent positivity reported by CDC FluView Influenza is
striking (Figure 3), supporting the validity and utility of the
Trend data.

The second source of concern in the Trend dataset is a
consequence of the removal of sample identification such that
we cannot directly determine whether the sample was from a
patient or was a nonclinical sample (verification test, QC, or
PT) and should be removed from further epidemiological
analysis. We estimate that nonpatient testing makes up
approximately one-fiftieth of the total FilmArray RP tests.
Automated detection algorithms remove roughly one in 25 of
the total RP tests, including approximately half of the nonclinical
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samples. With the exception of the four positive tests, the
clinical samples removed by filtering should be a random
sampling of all patient tests. The remaining nominal fraction
of nonpatient tests has essentially no impact on the Trend
evaluation of pathogen prevalence, but they do make it more
difficult to perform high-resolution analysis of pathogen
codetections. This is especially true for codetections of low
prevalence organisms where QC positives are likely to be more
common than real positives. Future updates to the FilmArray
software will simplify the process by which the instrument
operator can tag tests of nonpatient samples, thereby largely
eliminating the need to filter such test results from the Trend
database before analysis.

The Seasonality and Coinfections of Respiratory
Pathogens
The total positivity rate of the FilmArray RP test varies from a
low of approximately one-third of tests in the summer months
to a high of three-fourths of the tests in December and January.
Figure 5, second data view, shows that the average number of
different circulating pathogens at a single institution can vary
from eight up to 11 during the winter months. Even during the
peak periods of ILI, many respiratory infections are due to other
viruses (Figure 2, third data view) that can present clinically in
a similar fashion [57,58]. Therefore, the presumption of an
influenza infection based on reported influenza percent
positivity, without diagnostic testing for the virus, can lead to
the inappropriate use of antiviral agents [59]. Conversely,
without comprehensive testing, a negative influenza or RSV
test can lead to the prescription of an unnecessary antibiotic.
Trend data can be a valuable aid for antimicrobial stewardship
programs because it provides real-time information regarding
the causes of respiratory infections and highlights the prevalence
of viral infections.

As previously observed [55], the viruses that share the winter
seasonality of influenza demonstrate annual or biennial behavior.
It is possible that the viruses that share an influenza-like
seasonality but do not show a two-year cycle (RSV and hMPV)
are actually alternating strains, but the FilmArray RP Test does
not detect this difference (eg, the FilmArray RP does not
differentiate between RSV A and RSV B). Adeno and the
bacteria show constant occurrence through the year; HRV is in
a unique class with peaks in the fall and spring.

Detection of multiple respiratory viruses in the same patient
has been reported before. In the Trend dataset, the rate of dual
and triple codetections was approximately 7.94%
(28,741/362,101), with HRV/EV as the organism most
commonly observed in a codetection. Some viruses such as
ADVs and the CoVs are detected in the presence of another
organism approximately half of the time (Figure 4). In principle,
a FilmArray RP positive result may represent detection of
residual pathogen nucleic acid from a previous infection that
has resolved. However, several studies suggest that coinfections
are associated with more severe disease [60-62] (see also
discussion in [63]). In such cases, information about multiple
detections can provide infection control practitioners with data
that can assist in bed management and in the assessment of risk
for nosocomial infections in a patient population that has been

segregated by the occurrence of a common pathogen. Such
information can prevent the introduction of a new pathogen
associated with cohorting patients during busy respiratory
seasons [64-66].

The question of whether different respiratory pathogens interfere
with, or facilitate, growth in a human host is of some interest
and not well understood. With the right data, it can be studied
at the population [67], individual [68], and cellular level [63].
Because the Trend data still include some nonpatient tests, we
have chosen not to analyze every possible dual or triple infection
individually. Rather, we have taken a global approach and
compared the overall rate of observed codetections with MIE,
which is a measure of the diversity of viruses circulating in a
specific region and time period. MIE is similar, but not identical,
to Probability of Interspecific Encounter (PIE [69]), also referred
to as the Gini-Simpson index (1-D, where D is the Simpson’s
index), which is used in ecology as a measure of the species
diversity of a region. Similarly, the circulating pathogen number
of Figure 5, first data view, is identical to the Species Richness
measure of ecology. We calculate MIE using frequencies (Pi)
of pathogen positivity per FilmArray test and note that the sum
of all pathogen frequencies can add up to more than unity
because of codetections or be less than unity because of the
presence of negative tests. In this regard, MIE differs from PIE
because it is not a probability measure.

Figure 5, second data view, shows that the observed rate of
codetections is a constant fraction of MIE (approximately
one-quarter as indicated by the linear regression of Multimedia
Appendix 7). This observation suggests that, in the aggregate,
respiratory pathogens are appearing in coinfections at a rate that
can be predicted by their observed abundance. The data,
however, may be biased by the patient population tested and
the type of respiratory disease. The data also does not rule out
that there are particular respiratory pathogens that occur more
or less often in mixed infections than predicted by their
individual percent positivity rates [63,70]. As we improve our
ability to remove nonpatient test results from the Trend dataset,
we will be able to characterize specific virus codetection rates
and their significance [54,55,67,68,71,72].

Applications of Trend Data
As with weather forecasting, there is both a theoretical and a
practical interest in predicting the next few weeks or months of
the respiratory season [73-76]. Trend contributes to infectious
disease forecasting efforts because the data are timely and
comprehensive. As the number of sites participating in Trend
increases, it will be possible to localize the reported infections
to smaller geographical regions. At a high enough density of
Trend sites, patterns of movement of respiratory pathogens
across the United States will become visible in a way that has
not been easily observed before now.

The Trend RP data show the percentage contribution of each
pathogen to what is currently being detected by FilmArray RP
testing (Figure 2, second data view) [44]. This analysis does
not take into account changes in the rate of testing over a given
season; information that should provide additional data regarding
disease intensity and severity. In contrast, the simple metric,
TUR, describes the non-normalized rate of FilmArray test usage
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and serves as a surrogate for the level of syndromic disease that
HCPs observe (Figure 2, first data view).

TUR suffers from two defects. First, it is closely linked to the
sales of the FilmArray test and thus is proprietary data that
BioFire does not share (Google took a similar position in regard
to releasing the search queries used by Google Flu Trends [12]).
Second, TUR is driven by both the demand for testing and the
growth in FilmArray product adoption and increasing acceptance
and usage by HCPs. A useful step beyond TUR would be a
normalized rate that can adjust for the underlying growth of
testing unrelated to the intensity and duration of the respiratory
disease season. An increase in a normalized TUR metric may
indicate the prevalence of circulating respiratory viruses and
the intensity of respiratory disease overall. Likewise, an increase
in the normalized metric, concomitant with an increase in
negative tests, may indicate the occurrence of an outbreak
caused by an emerging pathogen.

Public health agencies, which include local and state health
departments and the CDC, are specifically exempt under a
HIPAA provision that allows clinical laboratories to disclose
PHI to the agencies for specified public health purposes [77].
The exemption includes follow-up studies on reportable
infectious diseases. Real-time pathogen-specific syndromic
surveillance systems such as Trend will allow state health
departments to more rapidly identify, acquire, and test residual
samples from potential outbreaks. Conversely, perceived
outbreaks may actually be coincidental multi-organism seasonal
surges, and rapid analysis by Trend-like systems could prevent
timely and costly outbreak investigation.

Given the movement in health care technology toward greater
vertical integration of a hospital’s data, the bottom-out approach
exemplified by Trend will face more competition from top-out
approaches (Figure 1, see, eg, GermWatch in Utah, [21])

because these systems can capture patient information (eg, age,
gender, and patient address) that is critical for more detailed
epidemiological analysis. However, combining PHI with the
diagnostic test result in the top-out approach makes these
systems more complex and difficult to implement and may limit
participation by health care institutions. Ironically, bottom-out
data export systems have a role to play in the development of
top-out systems because bottom-out export provides a rapid and
efficient means to quality check the data flowing from top-out
systems. Trend data could also be combined with data derived
from other automated diagnostic platforms [78,79]. This work
might best be accomplished by a third party that is viewed as
independent and impartial. For example, in the case of data
originating in the United States, a federal institution or a private
foundation could host a database to which IVD manufacturers
would contribute their different syndromic test results. The
benefits of a more complete view of circulating pathogens
should outweigh the complexities of combining data from
different platforms.

Future Outlook
Syndromic Trends is a novel surveillance tool for simultaneously
monitoring multiple syndromic diseases that has demonstrated
promise in expanding our knowledge of the epidemiology of
infectious diseases. Indeed, the close correlation of seasonal
respiratory viruses tracked by Trend with reported CDC ILI
highlights the major contributory role of multiple respiratory
pathogens beyond influenza to ILI. The national and global
expansion of Trend will provide a comprehensive tool to study
the impact of coinfections, understand the role of previously
underappreciated pathogens, and clarify true disease
epidemiology. Finally, systems such as Trend will be essential
for the rapid identification of disease anomalies indicating
potential emergent outbreaks, thereby providing an independent
tool for public health surveillance.
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