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Wnt signaling regulates immunomodulatory functions
during infection and inflammation. Employing NCCIT and
HCT116 cells, having high endogenous Wnt signaling, we
observed elevated levels of low-density lipoprotein receptor–
related protein 5/6 (LRP5/6) and Frizzled class receptor 10
(FZD10) and increases in �-catenin, doublecortin-like kinase 1
(DCLK1), CD44molecule (CD44), and aldehyde dehydrogenase
1 family member A1 (ALDH1A1). siRNA-induced knockdown
of these receptors antagonized TOPflash reporter activity and
spheroid growth in vitro and elevated Wnt-inhibitory factor 1
(WIF1) activity. Elevated mRNA and protein levels of LRP5/6
and FZD10 paralleled expression of WNT2b and WNT4 in
colonic crypts at days 6 and 12 post-infection with Citrobacter
rodentium (CR) and tended to decline at days 20–34. The CR
mutant escV or the tankyrase inhibitor XAV939 attenuated
these responses. A three-dimensional organoid assay in colonic
crypts isolated from CR-infected mice revealed elevated levels
of LRP5/6 and FZD10 and �-catenin co-localization with
enhancer of zeste 2 polycomb repressive complex 2 subunit
(EZH2). Co-immunoprecipitation in the membrane fraction
revealed that axin associates with LRP5/6 in CR-infected crypts,
and this association was correlated with increased �-catenin.
Colon tumors from either CR-infected ApcPMin/� or azoxy-
methane/dextran sodium sulfate (AOM/DSS)-treated mice had
high LRP5/6 or FZD10 levels, and chronic Notch blockade
through the �-secretase inhibitor dibenzazepine down-regu-
lated LRP5/6 and FZD10 expression. In CR-responsive CT-26
cells, siRNA-induced LRP5/6 or FZD10 knockdown antago-
nized TOPflash reporter activity. Elevated miR-153-3p levels
correlated with LRP5/6 and FZD10, andmiR-153-3p sequestra-
tion via a plasmid-based miR inhibitor system attenuated Wnt
signaling. We conclude that infection-induced signals from the
plasma membrane epigenetically regulate Wnt signaling.

Signaling via the Wnt pathway controls myriad biological
phenomena during development and throughout adult life.
Aberrant Wnt signaling, however, underlies a wide range of
pathologies, including colorectal cancer (CRC)3 in humans (1,
2). In unstimulated cells, cytosolic �-catenin associated with
axin and APC undergoes phosphorylation and degradation by
the ubiquitin/proteasomal pathway. Wnt signaling is initiated
at the cell surface when Wnt proteins bind to co-receptors
LRP5/6 and FZD, in which de novo synthesized �-catenin
escapes degradation and acts as a transcriptional co-activator in
association with T cell factor-4 (TCF-4) (3).
In CRC, themajority ofWnt pathwaymutations occur in the

gene encoding �-catenin (CTNNB1) (4). However, aberrant
activation of theWnt pathway can also be driven by inactivating
mutations in zinc and RING finger 3 (ZNRF3) and RING finger
protein 43 (RNF43), which encodes tumor suppressor E3 ubiq-
uitin ligases (5). Thesemutations are frequently present in CRC
and endometrial cancers, leading to stabilization and higher
levels of FZD receptors (5, 6), which underscores a role for
upstream Wnt signaling in these tumors. Similarly, mutant
mice homozygous for LRP6 show embryonic defects and die at
birth, whereas Lrp5-deficient mice are viable, although with a
low-bone-mass phenotype (7–9). In humans, LRP6 variants
have been identified in individuals with an early-onset CRC
(�30 years of age) and contribute toward heterogeneous sus-
ceptibility to CRC (9). Despite these advances, a systematic
study looking beyond mutational activation of Wnt signaling
through signals generated at the plasma membrane in a non-
neoplastic colonic epithelium is lacking.
Cancer stem cells (CSCs), a heterogeneous population of

cells with overlapping and sometimes unique combinations of
markers such as aldehyde dehydrogenase-1A1 (ALDH1A1),
Dclk1, CD133, and Lgr5, have well-documented associations
with normal stem cells, cancer, CSCs, and chemoresistance.
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Markers including CD44, Lgr5, Dclk1, and EpCAM are espe-
cially relevant in CRC (10–12), and down-regulation of Lgr5
expression, which coincides with reduced Wnt signaling, or
diptheria toxin–induced depletion of Dclk1 attenuates colon
tumorigenesis (10, 13, 14). Despite their clinical relevance, the
mechanism of CSC regulation is poorly understood.
MicroRNAs (miRNAs) are a class of small noncoding RNA

molecules involved in the fine-tuning of fundamental biological
processes such as proliferation, differentiation, survival, and
apoptosis in many cell types. Recent evidence suggests that
miRNAs also play a key role in regulating CSC function by
modulating transcription factors and downstream signaling
pathways activated in CSCs (15). We previously determined
that miR-203 regulates expression of a Wnt antagonist WIF-1,
in a nonneoplastic but hyperproliferating colonic epithelium in
response to an enteric pathogen (16). How enteric pathogen-
induced changes in the components of theWnt pathway affect
the stemness potential of these CSCs remains to be elucidated.
Human enteric pathogens such as enteropathogenic Esche-

richia coli, enterohemorrhagicE. coli, and themurine pathogen
Citrobacter rodentium (CR), which uses attaching-and-effacing
lesion formation as a major mechanism of tissue targeting and
infection, represent the classic genome organization (17). Both
EPEC and EHEC are poorly pathogenic in mice but infect
humans and domestic animals. In contrast, CR is a natural
mouse pathogen that is related to E. coli and provides an excel-
lent in vivo model for attaching-and-effacing lesion–forming
pathogens (18). CR also provides a model of infections that are
mainly restricted to the lumen of the intestine. Work from our
laboratory provided the initial evidence of CR’s involvement in
the activation of theWnt signaling pathway (19). Published and
ongoing studies in our laboratory have further demonstrated
that CR-induced Wnt signaling does not work alone; rather,
cross-talk with Notch and NF-�B signaling pathways shapes
the pathogenesis ofCR-induced crypt hyperplasia (20, 21). Sim-
ilar studies with Salmonellla strains expressing AvrA have
shown enhanced nuclear translocation and acetylation of
�-catenin that lead to a significant increase in downstream tar-
gets (22). We add to this existing knowledge by further investi-
gating the role of bacterial infection in initiatingWnt signaling
at the plasma membrane and how this culminates in �-
catenin–dependent colonic crypt hyperplasia. We hypothe-
sized that signals generated at the plasma membrane in
response to CR infection will involve both Frizzled and LRP5/6
receptors to epigeneticallymodifyWnt signaling. In the current
study, we have attempted to systematically characterize the
components of theWnt signaling machinery using in vitro and
in vivo approaches and, based on our findings, suggest that tar-
geting individualmarkers ofCSCsmaynot be sufficient to erad-
icate CSCs in an environment fueled by high Wnt signaling.

Results

We began our quest to systematically analyze the compo-
nents of Wnt signaling by screening NCCIT and PA-1 terato-
carcinoma cell lines. These cells endogenously express high lev-
els of Wnt signaling components and therefore provide an
excellent system in which to systematically knock down mem-
brane receptors and examine how that impacts downstream

signaling and stemness. As depicted in Fig. 1 (Ai–Aiii), we
detected varying levels of LRP5, LRP6, and Fzd10 in both
NCCIT and PA-1 cell lines, respectively. At the protein level,
NCCIT cells expressed these proteins at the highest levels com-
pared with PA-1 cells. These results were comparable in the
HCT116 colon cancer cell line. �-Catenin, either at the mRNA
or protein level, also exhibited strong expression in the NCCIT
cells (Fig. 1, Aiv and Bi). When we examined the protein levels
of various markers of CSCs, both Dclk1 and CD44 levels were
elevated inNCCIT and PA-1 cell lines, whereas increased levels
of ALDH1A1were recorded in bothNCCIT andHCT116 cells,
respectively (Fig. 1Biv). We next performed TOPflash and
WIF-1 reporter assays following knockdown of both LRP5
and LRP6 in either HEK293 or NCCIT cells, respectively. As
depicted in Fig. 1 (Ci and Cii), knocking down both LRP5 and
LRP6 decreased TOPflash reporter activities albeit at varying
levels. WIF-1 reporter activities, on the other hand, exhibited a
slight increase following knockdown of these receptors (Fig. 1,
Ciii and Civ). Fig. S1 represents the real-time PCR levels for
LRP5, LRP6, and Fzd10 following their knockdown. Further
investigation into the expression levels of Wnt antagonists
revealed increases in DKK1, -2, and -3 as well as SFRP1 and -2
and WIF1, particularly in Fzd10-knocked down cells (Fig. S1).
Encouraged by these results, we next performed spheroid
assays in NCCIT cells as a measure of stem-cell functions (or
stemness) (23). As depicted in Fig. 1 (Di andDii), knockdown of
both LRP5 and Fzd10 significantly reduced spheroid growth,
whereas spheroid growth was less efficiently blocked following
LRP6 knockdown. Because we showed previously (16) that
EZH2 is an integral component of CSC gene repertoire, knock-
down of EZH2 reproducibly blocked spheroid growth (Fig.
1Dii) that validated the efficiency of these assays.
Based on these results, we next started focusing on murine

models of colonic crypt hyperplasia and intestinal tumorigene-
sis to systematically analyze epithelial responses toCR infection
and how it affected the expression of Wnt ligands and LRP5/6
and Fzd10 expression. As depicted in Fig. 2 (A and B), increases
in LRP5, LRP6, and Fzd10 either at themRNA level using in situ
hybridization (ISH; Fig. 2A) or at the protein level (Fig. 2B)
paralleled increases in Wnt2b and Wnt4 ligand expression in
the crypts at days 6 and 12 post-CR infection (progression of
hyperplasia) with a declining trend at days 20–34 (regression of
hyperplasia) (Fig. 2Ci). Wnt2b and Wnt4 expression in the
crypt-denuded lamina propria (CLP), on the other hand, was
only noticeable during the regression phase of crypt hyperplasia
(Fig. 2Cii). To functionally link Wnt2b to downstream Wnt
signaling, RT-PCR in NCCIT cells transfected with siRNAs to
Wnt2b showed a decline in Wnt2b expression coincident with
decreases in TOPflash reporter activity (Fig. S2, A–C). Thus,
CR infection induces significant changes in Wnt ligand and
receptor expression that may explain its ability to modulate
Wnt signaling that culminates in �-catenin–induced crypt
hyperplasia (16, 19, 20).
In the context of intestinal homeostasis, there is evidence of

significant cross-talk between theWnt and theNotch pathways
(20, 21). We have shown previously that CR infection regulates
a functional cross-talk between these pathways and that
chronic blockade of the Notch pathway also interferes with
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Wnt signaling, leading to inflammation and colitis (20). To
investigate whether the cross-talk also influenced the expres-
sion ofWnt receptors, we performed ISH, and intriguingly, the

Notch blocker dibenzazepine (DBZ) significantly inhibited
expression of LRP5, LRP6, and Fzd10 compared with CR-in-
fected alone (Fig. 3A). Follow-up Western blots revealed

Epigenetic regulation of Wnt signaling through enteric pathogen
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decreases in relative levels of LRP5/6 and Fzd10 in CR�DBZ–
treated crypt extracts compared with CR alone (Fig. 3B).
Because pivotal aspects of tissue homeostasis are often de-
duced from studies of tumor cells, we next performed ISH on
ApcMin/�mice that develop tumors in the colon in response to
CR infection (24, 25). As depicted in Fig. 4, CR infection led to
significant increase in LRP5/6 and Fzd10 expression at 12 days
post-infection compared with uninfected controls, similar to
data shown in Figs. 2 and 3, whereas tumors resembling adeno-
mas in the distal colons of these mice at 3 months of age also
exhibited significant increase in the levels of these receptors. To
further understand whether these changes were not unique to
CR infection, we next examined AOM and AOM/DSS models
of colon cancer. As depicted in Fig. 4, AOM treatment alone
had significant effect on the expression of these receptors,
whereas AOM/DSS tumors further revealed high LRP5/6 and
Fzd10 immunoreactivity compared with adjacent controls (Fig.
4). These findings provide compelling evidence that supports
the notion that infection induces up-regulation ofWnt compo-
nents that underlie early stages of colon carcinogenesis.
Mucosal surfaces lining the gastrointestinal tract possess a

complex three-dimensional (3D) structure that facilitates
tissue-specific functions. Because appropriate modeling of
the 3D microenvironment is important for mimicking dis-
ease, which led to development and application of 3D
organoid models (26), we next isolated intestinal and colonic
crypts from uninfected or CR-infected mice and grew them
as 3D organoids. These organoids were subsequently fixed
and stained for LRP5/6 and Fzd10 as well as for Lgr5 and
Dclk1, respectively. As shown in Fig. 5, infection with CR,
despite its being a colon pathogen, impacted both enteroid
and colonoid growth along with measurable increases in
LRP5/6, Fzd10, and Lgr5 immunoreactivity. The extent of
Dclk1 staining, particularly in colonoids from CR-infected
mice, on the other hand, was lower compared with unin-
fected controls, consistent with our previous report (27). To
see how these changes impacted signaling components
EZH2 and �-catenin, we next stained the colonoids for these
downstream targets. As shown in Fig. 6A, colonoids from
CR-infected mice, when compared with uninfected controls,
exhibited significant increase in EZH2 that co-localized with
PCNA. Similarly, we observed increase in both membrane-
bound and punctate nuclear staining for �-catenin that co-
localized with EZH2 (Fig. 6B). We next isolated colonic
crypts from CR-infected mice that were given Notch blocker
DBZ for 10 days and grew them as colonoids. As shown in
Fig. 6C, these colonoids appeared disintegrated with selec-
tive decrease in both EZH2/PCNA and EZH2/�-catenin
staining, respectively. Taken together, these findings under-
score the relevance of infection-induced Wnt signaling in

the context of colonic crypt hyperplasia and how targeting
these receptors may lead to early diagnosis and better out-
come for colon cancer patients.
Before moving to the mechanistic studies, we next estab-

lished the specificity of these changes in vivo by infecting NIH:
Swiss mice with either WT or CR mutants, respectively. As
shown in Fig. 7A, the levels of either LRP5 or LRP6 in escV-
infected crypts were lower compared with levels in crypts from
either WT or espG-infected mice. escV is a type 3 secretion
systemmutant that fails to inject CR’s effector proteins into the
host (16). The relative abundance of Fzd10 was also impacted
by escV, but the reduction in levels was less obvious than those
recorded for LRP5/6 (Fig. 7A). Pulldown assays in crypt (Fig. 7B,
left) or CLP (Fig. 7B, right) with antibodies to either LRP5 or
LRP6 followed by blotting with axin revealed axin’s association
with either protein at days 6–34 compared with uninfected
controls. This led to increases in relative levels of �-catenin in
response to CR infection at day 12 (Fig. 7C). These increases in
�-cateninwere attenuated in crypt extracts prepared frommice
treated with Wnt inhibitor XAV939 (Fig. 7C) (31). We next
utilized CT-26 cells to examine how the relative levels of these
proteins changed in response to CR infection. As depicted in
Fig. 7 (Di–Dv), relative increases in LRP5/6 and Fzd10 in
response to CR infection coincided with increases in �-catenin.
siRNA-induced knockdown of LRP5/6 or Fzd10 in CT-26 cells
significantly reduced �-catenin/TCF-4–specific TOPflash
reporter activity (Fig. 7E). These studies further validate infec-
tion-induced changes in Wnt receptors and how that impacts
downstreamWnt signaling.
Because microRNA dysregulation and the Wnt/�-catenin

signaling have been implicated in driving the process of carci-
nogenesis, metastasis, and drug resistance, we next screened
the NCCIT cells along with PA-1, HCT116, and HEK293 cells
for differential regulation ofmiRNAs.As depicted in Fig. 8A, we
detected varying levels of miR-221, miR-222, and miR-153-3p
in the indicated cell lines. Of these miRNAs, miR-153-3p was
consistently elevated in both NCCIT and PA-1 cells (Fig. 8A).
These findingswere corroborated in YAMCcells (Fig. S3A) and
to some extent in CT-26 cells, particularly at 72 h after CR
infection. Next, we used a plasmid-based miR inhibitor system
(PMIS) (28) as a sponge to these miRNAs and performed a
real-time PCR to examine the degree of inhibition. As depicted
in Fig. 8B, PMIS-153– and PMIS-222–based sequestration led
to a sharp decline in miR-153 and miR-222 levels, whereas
PMIS-221 was less efficient. Next, we examined the effect of
sequestering miR-153 on �-catenin/TCF-4–specific TOPflash
reporter activity. As shown in Fig. 8C, the 3�-UTR of TCF-4
aligned perfectly with miR-153’s seed sequence, and following
PMIS-153–based sequestration, therewas a uniform inhibition
of the reporter activity across all of the indicated cell lines, sug-

Figure 1. Biochemical and molecular alterations in LRP5, LRP6, and Fzd10 dictate Wnt signaling and stemness in vitro. A, total RNAs isolated from
HEK293, HCT116, NCCIT, and PA-1 cells were tested for the expression of LRP5, LRP6, Fzd10, and �-catenin through real-time quantitative PCR. Baseline
expression profiles of the indicated markers are shown as box plots (n � 3/group). B, Western blots showing the relative abundance of LRP5, LRP6, Fzd10,
�-catenin, and EZH2 (Bi–Biii) along with the CSC markers ALDH1A1, Dclk1, and CD44 (Biv). Actin and H3 were used as loading controls, respectively (n �
3/group). C, HEK293 and NCCIT cells were co-transfected with TOPflash reporter plasmid and siRNAs to LRP5 and LRP6 for 24 h, followed by measurement of
reporter activity (pvalues as shown;n�3/group).D, NCCIT cellswere transfectedwitheither control siRNAor siRNAs toLRP5, LRP6, Fzd10, andEZH2andgrown
in specific spheroid growth media in low adherent plates. After 1 week, spheroid formation was analyzed, and images were obtained with phase-contrast
microscopy (n � 3/group; scale bar, 50 �m; n� 5 independent experiments). Error bars, S.D.
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gesting a positive role for miR-153-3p in Wnt signaling. A fol-
low-up real-time PCR for the components of Wnt signaling
impacted by the loss of miR-153-3p revealed significant down-
regulation of Fzd10 with a less efficient decreases in LRP5 and
LRP6, respectively (Fig. 8Di). Intriguingly, the seed sequence
for miR-153-3p did not align with the Fzd10 3�-UTR (data not
shown), suggesting an off-target effect. In contrast, we discov-
ered down-regulation of Dclk1 levels following miR-153-3p
loss and that Dclk1 3�-UTR aligned with miR-153-3p’s seed
sequence (Fig. 8Di). A follow-up Western blotting confirmed

decreases in Dclk1’s relative abundance, whereas protein levels
of other CSCs, including CD44 and ALDH1A1, were not
affected (Fig. 8Dii). To determine whether reduction in Dclk1
levels influenced the growth of spheroids in vitro, we trans-
fected NCCIT cells with either PMIS-153-3p or miRIDIAN-
153 along with PMIS-221 followed by a spheroid assay. As
shown in Fig. 8E and Fig. S4A, neither PMIS-153 ormiRIDIAN-
153 overexpression had any effect on spheroid growth. Simi-
larly, PMIS-221 only marginally affected the spheroid growth.
This lack of inhibitory effect on spheroid growth was further

Figure2. In situhybridizationandprotein levelsof LRP5, LRP6, andFzd10correlatewith ligandexpression in vivo.A, in situhybridization for LRP5, LRP6,
and Fzd10 in themouse distal colon tissue sections prepared at days 0 (N), 6 (D6), 12 (D12), 20 (D20), 27 (D27), and 34 (D34) after CR infection. B, total crypt (Bi)
or CLP (Bii) extracts prepared from the group ofmice described in Awere probedwith antibodies for LRP5, LRP6, and Fzd10. Actin was used as loading control
(n � 3/group; n� 3 independent experiments). C, RT-PCR of total RNA samples prepared from crypt or CLP isolated from the group of mice described in A.
GAPDH was used as a loading control (n � 3/group; n� 3 independent experiments).

Figure 3. Cross-talk between Notch and Wnt pathway components. A, uninfected normal (N) NIH:Swiss mice were infected with CR and received the
�-secretase inhibitorDBZ (CR�DBZ) for 10days, followedby euthanasia at day 12. Paraffin-embedded sectionswere analyzedby in situhybridization.Bar, 150
�m (n � 5/group). B, top, total crypt extracts prepared from the group of mice described in Awere probedwith antibodies for LRP5, LRP6, and Fzd10. Bottom,
bar graphs showing relative levels of LRP5/6 and Fzd10 normalized to actin. One-way ANOVAwas used to examine statistical significance (n� 3/group; *, p�
0.05 (N versus CR); **, p� 0.05 (CR versus CR� DBZ).
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confirmed following siRNA-induced knockdown of Dclk1 (Fig.
8F). As proof-of-concept, we analyzed Dclk1 promoter activi-
ties in the knocked down cells, and both long (Dclk1-L) and
short (Dclk1-S) promoter activities were significantly inhibited
in either HEK293 or NCCIT cells (Fig. S4B). Because levels of
bothCD44 andALDH1A1 remained elevated aftermiR-153-3p
sequestration, we also performed spheroid assays following
siRNA-induced knockdown of CD44 and ALDH1A1, respec-
tively. As revealed in Fig. 8 (G and H), only marginal inhibition
of spheroid growth was observed, suggesting functional redun-
dancies in CSCs that may require a multipronged approach for
efficient targeting. We have shown previously that casein
kinase-1� (CK1�) is up-regulated in response to CR infection
(19). Because CK1� positively regulatesWnt signaling, which is
key to CSC maintenance (29), we next measured CK1� expres-
sion in NCCIT and HEK293 cells following knockdown of
Dclk1. As depicted in Fig. S4C, expression of CK1� in NCCIT
cells with high endogenous Wnt signaling was mostly un-
changed, whereas CK1�’s expression was significantly down-
regulated in HEK293 cells after Dclk1 knockdown, suggesting
that CK1� may be fueling the spheroid growth in NCCIT cells
knocked down for Dclk1. In silico binding studies indicated the

potential binding between Fzd10/Wnt2b (Fig. S5, A–C) and
LRP6/Wnt2b (Fig. S5, D–F) as was revealed through molecular
docking. Further examination revealed that WNT2B interacts
with FZD10 and LRP6 through the same region but with differ-
ent amino acids (Fig. S5,C and F). A similar binding patternwas
obtained between LRP5/Wnt2b (data not shown). We further
evaluated the predicted structures of Wnt2b and Fzd10 using
the Ramachandran plot generated by PDBSUM (PROCHECK).
Fig. S5 (G and H) represent the best and themost stable protein
structure based on G-factor scores provided by PROCHECK.
Fig. 9 is the schematic of possible mechanism of ligand-recep-
tor engagement that transduces CR-induced Wnt signaling
through �-catenin.

Discussion

Employing cell lines with elevated levels of endogenousWnt
signaling and a murine model of enteric infection, we elucidate
the mechanism of epigenetic regulation of Wnt/�-catenin sig-
naling initiated at the plasma membrane and provide evidence
that selective targeting of individual CSCs is not sufficient to
block spheroid growth in an environment fueled by high Wnt
signaling.
The canonical Wnt/�-catenin pathway is activated when

Wnt ligands bind to the Frizzled (FZD) receptors at the cell
surface together with the low-density lipoprotein receptor–
related protein (LRP) family receptors, LRP5/6. However, these
membrane events are complicated and poorly elucidated, par-
ticularly in response to gastrointestinal infection. Certain
pathogens harness Wnt-signaling components to promote
infection. In one study, Ehrlichia chaffeensis, an obligate intra-
cellular bacterium,was shown toutilizeboth�-catenin–depen-
dent and –independent hostWnt signaling pathways to stimu-
late phagocytosis and promote intracellular survival (30).
Similarly,Chlamydia trachomatis, a Gram-negative bacterium,
was found to exploitWnt/�-catenin signaling to disturb epithe-
lial tissue homeostasis in fallopian tubes (31). Despite these
advances, the sequela of events that occur in response to infec-
tion, including the activation of LRP5/6 and FZD receptors that
profoundly influence epithelial turnover within the gut, is
poorly characterized. Using in vitro and in vivo approaches, we
describe sequential changes in LRP5/6 and Fzd10 both at the
mRNA and protein level in response to CR infection that coin-
cides with �-catenin nuclear translocation and colonic crypt
hyperplasia (19, 20, 24). In addition, we discovered a significant
increase in canonical Wnt2b and noncanonical Wnt4 (32)
ligand expression in the crypt that coincided with elevated
LRP5/6 and Fzd10 expression, suggesting that they may be
coordinating activation of these receptors to positively influ-
ence Wnt signaling in response to CR infection. Indeed, RT-
PCR data in NCCIT cells transfected with siRNAs to Wnt2b
showed a decline in Wnt2b expression coincident with
decreases in TOPflash reporter activities. This is consistent
with our previous findings, in which purifiedWnt2b promoted
�-catenin accumulation and �-catenin–dependent wound
healing (33). Because CR infection causes infectious colitis
in susceptible strains, these findings also align with Wnt
pathway–related gene expression seen in inflammatory bowel
disease (34).

Figure 4. Colon tumors are endowed with higher levels of LRP5, LRP6
and Fzd10. A, representative photomicrographs of paraffin-embedded
sections prepared from the distal colons of uninfected normal (N), CR-in-
fected at day 12, or CR-infected ApcMin/� mice at 3 months of age with
tumor (CRT). In situ hybridization was performed to detect changes in
LRP5, LRP6, and Fzd10. Bar, 150 �m (n � 3/group). B, paraffin-embedded
sections prepared from AOM-treated or AOM � DSS–treated mice at 168
days were analyzed by in situ hybridization. Bar, 150 �m (n � 3/group; n�
3 independent experiments).
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Notch andWnt signals play essential roles in intestinal devel-
opment and homeostasis. Ongoing and published studies
employing a CR model have so far established that Wnt/�-
catenin, Notch, and phosphatidylinositol 3-kinase pathways
regulate colonic crypt hyperplasia, whereas epithelial-stromal
cross-talk, mediated by MEK/ERK/NF-�B signaling, regulates
inflammation and/or colitis in susceptible strains.We have also
previously shown that CR infection regulates a functional
cross-talk between Wnt/�-catenin and Notch pathways and

that targeting the Notch pathway through the �-secretase
inhibitor DBZ also interferes with Wnt signaling, leading to
inflammation and colitis (20). In the current study, we observed
a significant decline in the levels of LRP5/6 and FZD10 in the
colonic sections prepared from mice that received DBZ, sug-
gesting the existence of a feedback loop that blocks elevated
expression of these receptors in response to CR infection when
the cross-talk no longer exists. In a similar study, it was shown
previously that the proliferative effect of Notch signals requires

Figure 5. Infection-inducedWnt signaling promotes organoid growth in vitro. Small intestinal (A) or colon (B) crypt cells isolated from uninfected normal
or CR-infectedmice at day 12were grownonMatrigel and stainedwith antibodies for LRP5, LRP6, Fzd10, Lgr5, andDclk1, respectively (n� 3/group; scale bars,
25 �m (bright field image) and 50 �m (immunostained spheroids); n� 3 independent experiments).

Figure 6. Infection-induced epigenetic changes underlie cross-talk between the Notch and the Wnt pathway. Colonic crypt cells isolated from
uninfected normal (N) or CR-infected (CR) and CR-infected plus �-secretase inhibitor DBZ–treatedmice at day 12were grown onMatrigel and co-stained
with antibodies for EZH2 and PCNA or �-catenin and EZH2, respectively (n � 3/group; scale bar, 50 �m; n � 3 independent experiments). DAPI,
4�,6-diamidino-2-phenylindole.
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normal Wnt signaling, whereas its influence on intestinal dif-
ferentiation appears independent of Wnt (35). However, the
synergy between these pathways has been shown to induce the
formation of intestinal adenomas, particularly in the colon (35).
We provide evidence of LRP5/6 or Fzd10 up-regulation in
tumors isolated from the colons of either CR-infectedApcMin/�

or AOM/DSS-treated mice, respectively. This is consistent
with a report in which Cripto-1, an EGF-Cripto-1/FRL1/Cryp-
tic (CFC) gene family member (36), was shown tomodulate the
canonical Wnt/�-catenin signaling pathway through direct
interaction with the LRP5 and LRP6 co-receptors and was
implicated in playing a role in mammary transformation (36).
When we knocked down LRP5/6 and particularly Fzd10, there
was significant increase in DICKKOPF-1 (DKK-1) mRNA
expression. DICKKOPF-1 (DKK-1) encodes a secreted Wnt
antagonist that binds to LRP5/6 and induces its endocytosis,
leading to inhibition of the canonical pathway (37, 38). These
results align with previous findings, in which González-Sancho
et al. (39) described DKK-1 as a tumor suppressor gene, as its

loss led to development and progression of human colon can-
cer. The critical role of enteric pathogens inWnt regulation has
also been established using Salmonella, in which activation of
Wnt/�-catenin by Salmonella infection was shown to be asso-
ciated with cell proliferation, inflammation, apoptosis, trans-
differentiation, and tumorigenesis (40–48).
Colon cancer has been mainly viewed as a disease driven by

the accumulation of genetic mutations. However, epigenetic
mechanisms, including miRNAs, serve as vital players in mod-
ulating multiple biological processes, and dysregulation of
oncogenicmiRNAs induces constitutively activeWnt signaling
in cancer (46). During screening of cell lines for miRNAs, we
discovered significant changes in the expression and function
of miR-153-3p. To associate miR-153-3p with Wnt signaling,
we utilized a plasmid-based miRNA inhibition system (PMIS)
pioneered by Brad Amendt’s group (28) to show that PMIS-
153-3p significantly blocked TOPflash reporter activity, sug-
gesting that miR-153-3p positively regulates Wnt signaling.
miR-153-3p is involved in the pathogenesis of acute graft-ver-

Figure7.Specificityof changes in thecomponentsof theWntpathway in vivoandsignificanceofabrogatingWntsignalingonwoundhealing in vitro.
A, NIH:Swiss mice were either uninfected (N) or infected with WT CR or espG and escV mutants, respectively. Relative levels of LRP5, LRP6, and Fzd10 were
determined in the colonic crypt extracts by Western blotting. Actin was used as loading control (n � 3/group; n� 3 independent experiments). B, pulldown
assays in themembrane fractionprepared from the colonic crypts (Bi) or crypt-denuded laminapropria (Bii) at days 0 (N), 6 (D6), 12 (D12), 20 (D20), 27 (D27), and
34 (D34) post-CR infection. Immunoprecipitation (IP) was performedwith anti-axin-1 followed by blottingwith either anti-axin-1 or LRP5, LRP6, and Fzd10. IgG
heavy chain (IgG-H) was used as a loading control. C, NIH:Swiss mice were either uninfected (N) or infected with CR and CR � tankyrase inhibitor XAV939.
Relative levels of active and total �-catenin were determined in the colonic crypt extracts by Western blotting. Lamin B was used as loading control (n �
3/group; n� 3 independent experiments).D, WB showing relative abundance of Fzd10, LRP5, LRP6, and �-catenin in uninfected (N) or CR-infected CT-26 cells
at 24, 48, or 72 h, respectively. Actin was used as a loading control. E, CT-26 cells were co-transfectedwith TOPflash reporter plasmid and siRNAs to LRP5, LRP6,
and Fzd10 for 24 h, followed by measurement of reporter activity. One-way ANOVA was used to examine statistical significance (n � 3/group; *, p � 0.05
(N versus CR); **, p� 0.05 (CR versus CR� siLRP5/6/Fzd10). Error bars, S.D.
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sus-host disease (47) and enhances cell radiosensitivity by tar-
geting BCL2 in human glioma (48). In a recent study, it was
shown that overexpression of miR-153 promoted �-catenin
transcriptional activity, leading to cell-cycle progression, pro-
liferation, and colony formation of hepatocellular carcinoma
cells (49). We, however, provide the first evidence of miR-153-
3p’s regulation of Wnt signaling in colon cancer cells. Because
aberrant activation of Wnt/�-catenin signaling is associated
with activation and maintenance of CSCs and miRNAs play a
critical role in regulating CSC function, we evaluated the effect
of PMIS-153 overexpression on CSCs. Unlike Dclk1, neither
CD44norALDH1A1protein levelswere affected by PMIS-153-
3p. The 3�-UTR of Dclk1, however, aligned with the seed
sequence in miR-153-3p that impacted Dclk1 levels. Encour-
aged by these results, we performed spheroid assays in cells
transfectedwith PMIS-153with the assumption that Dclk1 loss
may influence spheroid growth. Contrary to our expectations,
neither PMIS-153-3p overexpression nor siRNAs to Dclk1
affected spheroid growth in NCCIT cells that exhibit high
endogenous Wnt signaling. Similarly, targeting CD44 or
ALDH1A1 individually had only marginal impact on spheroid
growth. It is important to highlight that not all CSCs express
distinctive markers, and no marker set is exclusive to CSCs.
Further complexity is attributed to change in marker profiles
over time. Collectively, these findings underscore the heteroge-

neity among the CSCs and that a combinatorial approach may
be needed to completely eradicate CSCs in an environment
fueled by high Wnt signaling. Understanding the epigenetic
regulation of human colorectal CSCs is expected to promote
development of biomarkers for colorectal cancers and to iden-
tify targets for CSC-targeting therapies.

Experimental procedures

Murine model, treatments, and subcellular fractionation

Mouse housing, handling, and all of the related procedures
were approved by theUniversity of KansasMedical CenterAni-
mal Care andUseCommittee andwere performed according to
the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health. Male Helicobacter pylori-free
NIH:Swiss and ApcMin/� mice at 5 and 6 weeks of age were
procured from Jackson Laboratory (Bar Harbor, ME). NIH:
Swiss orApcMin/�micewere infected by oral inoculationwith a
16-h culture of either WT CR (biotype 4280, ATCC) or CR
mutants espG and escV, respectively (at 108 cfu) (50) identified
as pink colonies on MacConkey agar, as described previously
(16, 19–21, 24, 27, 51, 52). The escV mutant was constructed
using SacB mutagenesis (50). Age- and sex-matched control
mice received sterile culture medium only. To block the Notch
pathway DBZ (EMD Chemicals, Inc., Gibbstown, NJ) suspen-
sions was prepared as described elsewhere (20) and injected
intraperitoneally in mice (at 10 �mol/kg body weight) for 10
consecutive days beginning 2 days after CR infection (20, 53).
For the AOM/DSS model following intraperitoneal pretreat-
ment with azoxymethane (10 mg/kg body weight), the animals
were subjected to three cycles of alternating administration of
2.5% DSS (36,000–50,000 molecular weight, SKU 0216011080,
MP Biomedicals, Solon, OH) for 7 days followed by distilled
water for 14 days. Mice were euthanized at 24 weeks after DSS
treatment. Tankyrase-1/2 inhibition viaXAV-939was achieved
through intraperitoneal injections at a dose of 1 mg/ml, once a
day for 10 consecutive days (injection volume 100 �l) based on
previous publications (54). Controlmicewere injectedwith 100
�l of XAV-939 solvent (10% DMSO, 90% of 0.9% NaCl). Total
or nuclear fractions were prepared from colonic crypts isolated
from uninfected mice or mice infected with CR for 6–34 days
and stored at�80 °C until used for analyses.

Cell lines and plasmids

Unless mentioned otherwise, all cell lines were obtained
from American Type Culture Collection (Manassas, VA). All
cell lines were validated every 6 months or re-acquired from a
new ATCC stock. In addition, all of the experiments were per-
formed between the 5th and 20th passages. Cells were grown in
5% CO2, Dulbecco’s modified Eagle’s medium, or RPMI con-

Figure 8. miRNAs and Wnt signaling. A, total RNAs isolated from HEK293, HCT116, NCCIT, and PA-1 cells were subjected to quantitative real-time RT-PCR
(qRT-PCR) to examine expression of the indicatedmiRNAs (n� 3/group). B, NCCIT cellswere transfectedwith a PMIS specific tomiR-153,miR-221, andmiR-222.
After 48 h, total RNA was isolated and subjected to qRT-PCR (n � 3/group). C, NCCIT cells were co-transfected with TCF-4 reporter plasmid (TOPflash) or a
mutant TCF-binding site (FOPflash), respectively, and pRL-TK Renilla vector was used as internal control. Twenty-four hours later, cells were transfected with
either PMIS-153or PMIS-222 for 24handanalyzedby theDual-Luciferase assay kit. The valueswerenormalized to the internal control. *,p�0.001 (HEK293and
HCT116) and p� 0.05 (NCCIT and SW480); n� 3biological replicates).D, NCCIT cellswere transfectedwith PMIS-153 or control vector for 24–48 h, and relative
expression levels of LRP5, LRP6, Fzd10, andDclk1were determined either throughqRT-PCR (Di;n� 3/group) orWestern blotting (Dii;n� 3/group). E–H, NCCIT
cells were transfectedwith either control vector or PMIS-153 (E), control siRNA or siRNAs to Dclk1 (F), CD44 (G), or ALDH1A1 (H) and grown in specific spheroid
growth media in low adherent plates. After 1 week, spheroid formation was analyzed, and images were obtained with phase-contrast microscopy (n �
3/group; scale bar, 25 �m; n� 5 independent experiments). Error bars, S.D.

Figure 9. Schematic of proposedmechanism.Wepropose that in response
to CR infection, Wnt2b interacts with both LRP5/6 (LRP6 shown as a proto-
typic example) and Fzd10 to promote �-catenin stabilization/nuclear trans-
location to positively impact Wnt signaling. Intervention via �-secretase
inhibitor (GSI) or miR-153-3p sequestration (PMIS153) can negatively impact
Wnt signaling.
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taining 10% fetal bovine serum and penicillin/streptomycin.
YAMC and CT-26 cells were cultured as described elsewhere
(27). All plasmid construct sequences were verified by auto-
mated DNA sequencing. PMIS vectors, including PMIS-miR-
221, PMIS-miR-222, and PMIS-miR-153, were provided by
NATUREmiRi (28) and validated in our laboratory.

Real-time and RT-PCR analyses

Total RNA was isolated from HEK293, HCT116, NCCIT,
and PA-1 cells as well as from crypts or CLP at selected time
points using TRIzolTM reagent. Expression levels of mRNA in
the colonic crypts or CLPweremeasured by synthesis of cDNA
from 2 �g of total RNA via a high-capacity cDNA reverse tran-
scription kit (Applied Biosystems, Foster City, CA). cDNAs
were used for real-time PCR using Jumpstart TaqDNA poly-
merase (Sigma-Aldrich) and SYBR Green (Molecular Probes,
Inc., Eugene,OR) nucleic acid stain as amarker forDNAampli-
fication on aBio-RadCFX96TouchTM real-timePCRdetection
system. Relative -fold change values were calculated with the
comparative threshold cycle (�Ct) method normalized to
GAPDH.Changes inmRNA expressionwere expressed as -fold
change relative to control.

In situ hybridization

In situ hybridization analysis was performed on 4-�m-thick
formalin-fixed and paraffin-embedded colon tissue sections
using the RNAscope 2.5HD reagent kit-Brown/Red (Advanced
Cell Diagnostics, Newark, CA), according to the manufactu-
rer’s instructions. In brief, the sections were deparaffinized,
incubated with hydrogen peroxide for 10 min at room temper-
ature, boiled with target retrieval for 15 min, and treated with
protease at 40 °C for 30min. The tissue sectionswere incubated
with the desired probes (Designed by Advanced Cell Diagnos-
tics) specific for LRP5, LRP6, and Fzd10mRNA for 2 h at 40 °C.
Incubations were done in the EZ Hybridization oven (ACD)
using the humidity control tray (ACD). Signal amplification
and detection steps were performed followed by counterstain-
ing with hematoxylin. Sections weremounted using EcoMount
(Biocare Medical), and pictures were taken with Nikon i80
microscope.

Immunoprecipitation and Western blotting

Total crypt cellular or nuclear extracts were prepared as
described (16, 19–21, 27, 51). The isolated membrane extracts
from the distal colons of uninfected control or day 6–34 CR-
infectedmicewere preclearedwith 1�g ofmouse IgG and 15�l
of protein AG–agarose beads. The samples were immunopre-
cipitated with 2 �g of axin-1 antibody overnight at 4 °C. There-
after, 20 �g of protein AG–agarose beads were added, and the
samples were incubated for 45 min at 4 °C. The immunopre-
cipitates were washed multiple times with cold PBS. The pre-
cipitated protein samples were heated with 2� Laemmli sam-
ple buffer for 3 min and subjected to SDS-PAGE. Cell lysates
from cell lines were prepared in radioimmunoprecipitation
assay buffer with complete protease inhibitors (Roche Applied
Science). Western blots were performed as described before
(16, 19–21, 27, 51, 52).

Spheroid or organoid growth, wound-healing assays, and
RNAi

Confluent monolayers of cells were trypsinized. Low cell-
binding plates were used to seed the cells in corresponding
culture medium containing 20 ng/ml fibroblast growth factor,
20 ng/ml epidermal growth factor (Sigma), and 10ml/500ml of
B27 supplement (BD Biosciences) and cultured at 37 °C (5%
CO2, 100% humidity). Multicellular spheroids were desig-
nated as random spheroids and used for all experiments that
employed larger populations of cells. Isolated crypts from
uninfected or CR-infected and CR-infected plus DBZ-
treated mouse distal colons were embedded in Matrigel for
organoid culture according to the instructions in previous
publications (16, 55–57). The siRNAs were purchased from
Dharmacon (Lafayette, CO) or Fisher. Cells were transfected
with 100 nM final concentrations of siRNA duplexes using
Lipofectamine 2000 (Invitrogen), following the manufactu-
rer’s instructions. To determine luciferase reporter activity,
TCF luciferase constructs (0.5 �g), containing the WT
(pTOPflash) or mutant (pFOPflash) (Upstate, Charlottes-
ville, VA) TCF-binding sites along with an internal control
(0.1 �g of pRL-TK Renilla luciferase vector; Promega, Mad-
ison, WI) were transfected into NCCIT, HEK293, or CT26
cells (5� 105 cells/well). Transfection experiments were car-
ried out in triplicate using Lipofectamine 2000 (Invitrogen
Life Technologies) following the manufacturer’s instruc-
tions. The cells were incubated for 48 h and transfected with
either PMIS (28) or siRNAs for 24 h followed by measure-
ment of reporter activity using reagents from the Dual-Lu-
ciferase kit (Promega) as described previously (16).

Molecular docking

We used amolecular docking technique to study the inter-
action of Wnt2b with LRP6 and FFZD10. The LRP6 protein
X-ray crystal structure was downloaded and extracted from
the Protein Data Bank (entry 3S2K) (58). As Wnt2b and
FZD10 have not been crystallized, we used a homo-
logy-modeling approach to generate their protein structures
using the Swiss Model online program (http://swissmodel.
expasy.org/) (59). SWISS-MODEL is a fully automated
server for protein structure prediction using homologymod-
eling. It is accessible via the ExPASy web server or from the
program DeepView, also known as Swiss PDB Viewer. The
predicted structures were evaluated by using the Ramachan-
dran plot generated by PDBSUM (PROCHECK), and the
most stable protein structure was selected based on G-factor
scores. The protein-protein modeling was performed by
using the GRAMM-X Protein-Protein Docking web server
(60). The best stable predicted interaction was selected and
visualized using Discovery studio.

Statistical analysis

Statistical analyses were performed using both parametric
and nonparametric tests; the latter is robust to departures from
normality and was used in cases where sample sizes involved
in the comparisons were limited. Specifically, unpaired, two-
tailed Student’s t tests and Wilcoxon rank-sum tests were
used for two-group comparisons. One-way analysis of variance
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(ANOVA) models were used for multiple-group comparisons
(GraphPad Prism version 5). p � 0.05 was considered statisti-
cally significant.
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