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Identifying genetic factors 
that contribute to the increased 
risk of congenital heart defects 
in infants with Down syndrome
Cristina E. Trevino1,18, Aaron M. Holleman2,18, Holly Corbitt3, Cheryl L. Maslen3, 
Tracie C. Rosser1, David J. Cutler1, H. Richard Johnston1, Benjamin L. Rambo‑Martin1, 
Jai Oberoi1, Kenneth J. Dooley4, George T. Capone5, Roger H. Reeves6, Heather J. Cordell7, 
Bernard D. Keavney8, A.J. Agopian9, Elizabeth Goldmuntz10,11, Peter J. Gruber12, 
James E. O’Brien Jr.13, Douglas C. Bittel14, Lalita Wadhwa15, Clifford L. Cua16, 
Jennifer G. Mulle1, Michael P. Epstein1, Stephanie L. Sherman1,17 & Michael E. Zwick1,17*

Atrioventricular septal defects (AVSD) are a severe congenital heart defect present in individuals with 
Down syndrome (DS) at a > 2000-fold increased prevalence compared to the general population. This 
study aimed to identify risk-associated genes and pathways and to examine a potential polygenic 
contribution to AVSD in DS. We analyzed a total cohort of 702 individuals with DS with or without 
AVSD, with genomic data from whole exome sequencing, whole genome sequencing, and/or array-
based imputation. We utilized sequence kernel association testing and polygenic risk score (PRS) 
methods to examine rare and common variants. Our findings suggest that the Notch pathway, 
particularly NOTCH4, as well as genes involved in the ciliome including CEP290 may play a role in AVSD 
in DS. These pathways have also been implicated in DS-associated AVSD in prior studies. A polygenic 
component for AVSD in DS has not been examined previously. Using weights based on the largest 
genome-wide association study of congenital heart defects available (2594 cases and 5159 controls; all 
general population samples), we found PRS to be associated with AVSD with odds ratios ranging from 
1.2 to 1.3 per standard deviation increase in PRS and corresponding liability r2 values of approximately 
1%, suggesting at least a small polygenic contribution to DS-associated AVSD. Future studies with 
larger sample sizes will improve identification and quantification of genetic contributions to AVSD in 
DS.
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Congenital heart defects (CHD) are present in over 40% of infants with Down syndrome (DS), with the vast 
majority being septal defects1. Among septal defects, atrioventricular septal defects (AVSD) are the most severe, 
requiring surgery early in life. Approximately 20% of those with DS have an AVSD, compared to only 1 in 10,000 
in the non-DS population2. This > 2000-fold increase in AVSD prevalence strongly suggests that trisomy 21 and 
resulting dysregulation of the genome substantially increase the risk for this disorder. Furthermore, it is likely that 
other genetic variation across the genome contributes to DS-associated AVSD; however, identification remains 
elusive. Efforts to clarify the genetic basis of AVSD in DS are important, as improved understanding of genetic 
causes may inform future work that facilitates a decrease in AVSD burden among the DS community; moreover, 
it has potential to shed light on fundamental biology relevant to the formation of CHD generally, which could 
yield benefits that extend beyond those with DS.

There have been several studies of the role of common variants in DS-associated AVSD, including the larg-
est genome-wide association study (GWAS) to date with 210 complete AVSD cases with DS (DS + AVSD) and 
242 controls with DS and structurally normal hearts (DS + NH). These studies have not identified any common 
variants (single nucleotide polymorphisms [SNP] or copy number variants [CNV]) exceeding genome-wide 
significance, despite adequate sample sizes for detecting common variants with large effect sizes3–5. This suggests 
that large-effect common variants (e.g., odds ratios > 2.0) do not play a considerable role in DS-associated AVSD. 
However, low to moderate-effect common variants including SNPs and structural variants may be contributing 
to risk, perhaps in a cumulative way6.

Rare variant studies of AVSD have yielded some positive results, both among those with DS and those with 
non-syndromic AVSD. In a targeted sequencing study of 26 AVSD candidate genes among 141 DS + AVSD cases 
and 141 DS + NH controls, rare variants with predicted deleterious effects were found to be enriched in cases 
for genes involved in the vascular endothelial growth factor pathway7. A CNV analysis of the aforementioned 
210 DS + AVSD cases and 242 DS + NH controls identified a suggestive enrichment of large rare deletions in 
ciliome genes among cases3. A more recent study of 198 DS + AVSD cases and 211 DS + NH controls (a subset of 
those analyzed by Ramachandran et al.3,4) investigated CNVs on the trisomic chromosome 21. The investigators 
found controls self-identifying as African-American to have more bases covered by rare deletions than African-
American cases, while cases self-identifying as Caucasian had more genes intersected by rare duplications than 
Caucasian controls5.

Among those with nonsyndromic AVSD, a rare variant exome study (minor allele frequency [MAF] < 0.01) 
involving 13 parent–offspring trios of probands and 112 unrelated controls revealed cases to be enriched for mis-
sense variants in NR2F28, a gene that encodes for a nuclear receptor that is part of a steroid hormone superfamily 
and has been shown to play a role in heart development in mouse studies9,10. These findings suggest that rare 
variants may play an important role in DS-associated AVSD, warranting further study with larger sample sizes.

The limited success in identifying AVSD-associated sequence variants, both common and rare, may be due to 
small sample sizes that inhibit discovery. It is also possible that the genetic architecture of CHD is more complex 
than originally hypothesized. For common complex disorders such as schizophrenia and cardiovascular disease, 
it is now understood that there is a polygenic component to risk, whereby hundreds or thousands of common 
variants each incrementally increase risk for the phenotype11,12. AVSD may similarly have a polygenic component 
contributing to risk, which could be especially relevant when combined with a genomic background in which 
many genes are dysregulated due to trisomy 21. This polygenic component can be quantified using a polygenic 
risk score (PRS) methodology, which examines the extent to which common variants (MAF > 0.05) may be col-
lectively contributing to a phenotype.

Rare variants may also play an important role in AVSD. When working with a rare disorder such as 
DS + AVSD, it is essential to maximize the power of small sample sizes, as it is anticipated that many mutations 
will be private or ultra-rare. This notion supports the use of burden tests or the sequence kernel association test 
(SKAT)13, which group rare variants into those occurring in genes or pathways. Use of the optimal unified test 
(SKAT-O) maximizes the advantages of both types of combined variant testing by modeling both SKAT and the 
burden test for each defined variant set and finding the optimal linear combination of both tests, thus optimiz-
ing power for the test14. SKAT-O can be employed for analysis of common variants within genes and pathways 
as well as for rare variant testing15.

While the PRS and SKAT-O approaches are not designed to pinpoint individual genetic variants as associ-
ated with the target phenotype, they provide insight into the genetic underpinnings of the trait of interest that 
complements standard analyses of individual genetic variation. With this in mind, we implemented the PRS 
approach and SKAT-O in order to optimally examine whether common and rare variants may be contributing 
to DS-associated AVSD and to identify those genes and pathways that may be most relevant to this phenotype.

Methods
Subjects.  Participant samples for the whole exome sequencing (WES) and whole genome sequencing (WGS) 
studies that were defined as “cases” were obtained through three projects: the Down Syndrome Heart Project 
(DSHP), the Pediatric Cardiac Genomic Consortium (PCGC), and a consortium of collaborative surgical cent-
ers. The DSHP is a multi-site project conducted in the United States (details described in Ramachandran et al. 
2015 and Ramachandran et al. 2015)3,4. PCGC case probands were collected from multiple sites in the United 
States and United Kingdom as described in Hoang et al. 2018 and Hoang et al. 201316,17. The PCGC parent study 
recruited probands with heart defects, and in these analyses, we only used data from those who also had trisomy 
21. Cases from the DSHP (n = 252) and from the PCGC (n = 47) were defined as individuals with trisomy 21 with 
a complete, balanced AVSD diagnosed by echocardiogram or surgical reports. For the surgical collaborative, 
case probands were ascertained from those referred for operative repair. Again, all case probands had trisomy 21; 
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37 cases were diagnosed with complete AVSD, 19 with AVSD-Not otherwise specified, two with AVSD + Tetral-
ogy of Fallot, and two with single ventricle/unbalanced AVSD. We refer to all cases as DS + AVSD cases.

“Controls” were only drawn from the DSHP, and were defined as individuals with trisomy 21 and a structur-
ally normal heart, patent foramen ovale, or patent ductus arteriosus. The majority of controls were defined based 
on echocardiograms. We refer to all controls as DS + NH controls.

The WES dataset was used in the primary gene-set analyses and included case proband data from a subset 
of those ascertained from DSHP as well as all DS cases ascertained through the surgical collaborative. The WGS 
dataset was used as follow-up of the WES findings and included data from the remaining DSHP cases and all of 
the PCGC case samples. There was no overlap in samples in the WES and WGS analytic datasets. Table 1 provides 
the sample sizes of the WES and WGS datasets.

All experimental protocols for this study were approved by the Institutional Review Boards (IRB) of Emory 
University (Atlanta, GA); Johns Hopkins University and Kennedy Krieger Institute (Baltimore, MD); Oregon 
Health and Science University (Portland, OR); and all other participating universities and clinical sites. The 
authors assert that all methods used in this study were carried out in accordance with the relevant guidelines and 
regulations: all procedures contributing to this work comply with the ethical standards of the relevant national 
and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised 
in 2008. Informed consent was obtained from the parent or guardian of each participant before assessments were 
completed and biological samples obtained.

Whole exome sequencing.  WES was performed on 190 DS + AVSD cases and 138 DS + NH controls by the 
National Heart, Lung, and Blood Institute’s Resequencing and Genotyping Service at the University of Wash-
ington. FASTQ files from single-ended WES were mapped and variants were called with Emory’s PEMapper 
and PECaller, respectively18. Variants were annotated using Bystro (https​://bystr​o.io)19. A total of 331,935 sin-
gle nucleotide variants (SNVs) were detected by WES across the 190 cases and 138 controls. Mean coverage 
depth ± standard deviation (sd) of exome sequencing was 1.57 ± 0.39 for samples and mean transition/transver-
sion ratio ± sd was 2.7 ± 0.15.

Sample failures were addressed by removing any individuals missing > 1% genotypes or failing PLINK1.9’s 
sex check (based on F statistics for X chromosome heterozygosity, which were also used to impute sex on indi-
viduals missing sex data)20–22. These filters identified no samples for exclusion. Variant filters included removing 
SNVs with missingness > 10% and those failing the exact test for Hardy–Weinberg equilibrium (HWE) at a p 
value < 10–6.

We then performed principal component analysis (PCA), using PLINK1.9. We used common SNPs 
(MAF > 0.05) and pruned SNPs in linkage disequilibrium with an r2 > 0.2, stepping along five SNPs at a time 
within 50-kilobase windows. Through three rounds of PCA we identified a total of 28 outlier samples for removal. 
Following quality control (QC), the WES dataset contained 300 samples (174 cases, 126 controls) and 330,287 
SNVs for analysis.

Whole genome sequencing.  Paired-ended WGS was performed on 169 DS + AVSD cases and 39 DS + NH con-
trols by Hudson Alpha (Huntsville, AL) to a target depth of 30 ×. Raw FASTQ data were mapped and vari-
ants were called using PEMapper and PECaller, respectively, and variants were annotated using Bystro. In 
total, 12,302,231 SNVs were detected by WGS across 169 cases and 39 controls. Mean coverage depth ± SD was 
30.2 ± 4.1. Mean transition/transversion ratio ± SD was 2.05 ± 0.007.

Sample failures were addressed by removing samples with theta < 3 sd below mean theta, transition/transver-
sion ratio < 3 sd below mean transition/transversion ratio, heterozygosity/homozygosity ratio > 4 sd above mean 
heterozygosity/homozygosity ratio, missing > 1% of genotypes, or failing PLINK1.9’s sex check, and excluding 
one sample from each pair of related samples (with related samples defined as having a proportion of alleles 
shared identical by descent [IBD] > 0.1875). These steps resulted in the removal of 16 poor quality WGS samples. 
We also excluded one WGS sample identified as a duplicate of a WES sample. Variant QC involved removing 

Table 1.   Summary of cohort for SKAT-O analyses. Total cohort numbers after quality control and principal 
component analysis used for SKAT-O analyses are in parentheses.

WES dataset WGS dataset

Cases Controls Cases Controls

Total 190 (174) 138 (126) 169 (148) 39 (27)

Sex

Male 81 (75) 87 (79) 74 (66) 23 (17)

Female 109 (99) 51 (47) 95 (82) 16 (10)

Ethnicity

Caucasian 152 (152) 101 (101) 161 (148) 35 (27)

African American 34 (18) 37 (25) 7 (0) 4 (0)

Ad-mixed American 2 (2) 0 0 0

East Asian 2 (2) 0 0 0

Hispanic 0 0 1 (0) 0

https://bystro.io
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SNVs with missingness > 10%, and those failing the exact test for HWE among cases and controls combined at 
a p value < 10–12.

We performed PCA in the same manner as described for the WES dataset. Three rounds of PCA identified 
a total of 16 additional WGS samples as outliers for removal. After these QC steps, the WGS dataset contained 
175 samples (148 cases and 27 controls) and 12,279,101 variants.

Samples with imputed genotypes based on microarray.  Affymetrix Genome-Wide Human SNP 6.0 array geno-
type data were available for 459 DS samples (211 DS + AVSD cases, 248 DS + NH controls), including 198 (100 
cases, 98 controls) of the 328 WES samples and 95 (all cases) of the 208 WGS samples described above. Array 
data for these 459 DS samples were originally generated and analyzed in the prior GWAS and CNV analysis of 
DS-associated AVSD3,4. We applied standard GWAS QC and PCA procedures to these data (see Supplementary 
Methods for details) using PLINK1.9 and R (version 3.4.1)23, which yielded a dataset with 207 cases and 234 
controls, all of European ancestry, and 612,125 autosomal SNPs (excluding the trisomic chromosome 21).

For these samples, we performed genotype imputation using the Michigan Imputation Server24. Genotype 
imputation was based on the Haplotype Reference Consortium (HRC) panel (version r1-1 2016)25, which includes 
32,470 samples predominantly of European ancestry. The post-imputation files included 38,596,402 autosomal 
variants (all SNPs). Mean correlation between true and imputed genotypes for the ~ 600,000 genotyped SNPs was 
0.990, suggesting high quality imputation. For this dataset (referred to as the “imputed dataset”), we excluded 
variants with MAF < 0.01, those missing for more than 2% of samples, and those with imputation r2 < 0.80; and 
we set as missing any genotypes with maximum imputed genotype probability < 0.80.

We then applied standard GWAS QC to the imputed dataset (see Supplementary Methods for details). We 
also removed variants with A/T, T/A, C/G, and G/C alleles which can be difficult to match between datasets due 
to strand ambiguity; this was done in preparation for merging this imputed dataset with unique WGS samples, 
to create a larger sample for the PRS analyses (these steps are explained in detail in the PRS Analysis section). 
This left an imputed dataset with 440 samples (206 cases, 234 controls) and 5,079,537 autosomal SNPs.

Analyses.  SKAT‑O variant analyses.  All variants in both the WES and WGS datasets were filtered using 
Bystro to include only exonic and untranslated regions (UTR) of the genome for any transcript as defined by 
the National Center for Biotechnology Information’s Reference Sequence Database (RefSeq) for human genome 
build 38 (hg38). Variants in multiple overlapping genes were included in each gene separately. They were further 
filtered using Bystro to only include SNVs. Separate analyses were conducted for variants within the specified 
MAF categories (Table 2). Genome Aggregation Database (gnomAD) MAFs were used to define eligible variants 
for rare or common analyses. In order to capture variants at a very low population MAF in our dataset, variants 
missing from gnomAD were included in the rare analysis. As an additional step to ensure those missing variants 
were truly at a low MAF, the variants that were missing allele frequency information in gnomAD were filtered 
based on the WES or WGS dataset at MAF < 0.02. In contrast, for the ultra-rare analysis we excluded the variants 
missing from gnomAD in order to test whether well-defined ultra-rare variants could be driving the top rare 
results. MAFs from gnomAD were used as weights in the rare and ultra-rare variant analyses (Table 2). Records 
where the reference allele was the minor allele were excluded. Variants in chromosome 21 were excluded. SKAT-
O testing was done using the SKAT package in R using sex and the first five principal components of ancestry as 
covariates. For the SKAT-O analysis, the WES dataset was analyzed first. Genes with a resulting p < 0.001 (small-
sample adjusted) were then evaluated in the WGS dataset by SKAT-O. The genes with the lowest p value were 
evaluated as candidate genes. Candidate genes were checked for cardiac phenotypes and heart expression using 
data from the Genotype-Tissue Expression (GTEx) project.

Rare variant pathway analyses.  As a follow-up to the gene-based SKAT-O tests, two pathways that our top can-
didate genes belong to were evaluated due to their reported involvement in heart development: (1) ciliome gene 
set26 and (2) Notch pathway27. Each was evaluated as a single gene set. For the ciliome, 3573 SNVs identified in 
301 genes found in the van Dam Ciliome gene list were evaluated26. For the Notch pathway, 487 SNVs identi-
fied in 48 genes in the Notch pathway defined by the Kyoto Encyclopedia of Genes and Genomes (KEGG) were 
analyzed27. All variants within a defined MAF-filtered category (common, rare, and ultra-rare) were analyzed 
with SKAT-O.

Polygenic Risk Score analyses.  We have grouped the PRS analyses into primary and secondary analyses. The 
primary analyses had the goal of examining the genome-wide polygenic contribution to DS-associated AVSD, 
while the secondary analyses had the goal of estimating the additional polygenic contribution specifically due to 
the trisomic chromosome 21. These primary and secondary PRS analyses utilized slightly different target data-

Table 2.   Summary of genes analyzed using SKAT-O, based on variants in exons and UTRs.

SKAT-O analysis MAF filter Genes SNVs MAF weighting in SKAT

WES-common MAF > 0.05 10,228 25,355 No

WES-rare MAF < 0.01 and missing in gnomAD 17,318 142,006 Yes

WES-ultra-rare MAF < 0.001 14,898 59,092 Yes
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sets and slightly different processes for generating and analyzing the PRS (as described below), but employed the 
same discovery datasets for weighting alleles in the PRS.

Target dataset for primary PRS analyses.  The target sample for our primary PRS analyses included 245 
DS + AVSD cases and 242 DS + NH controls and represents a combination of the WGS and imputed datasets. We 
prepared the WGS dataset (175 samples) for merger with the imputed dataset (440 samples) by removing vari-
ants with MAF < 0.01, those missing for > 2% of samples, and indels (filters which had already been applied to the 
imputed dataset). We then merged these datasets and subjected the resulting 615 samples and 2,366,788 SNPs to 
standard QC measures. An IBD check identified 90 sample duplicates and 1 sample pair with a sibling or child/
parent relation. Each of these related pairs involved a WGS sample and an imputed sample (i.e., the duplicates 
were the result of each sample being represented in both the imputed and WGS datasets). For these samples, we 
kept the data from the WGS dataset as it appeared to be of slightly better quality overall, and we dropped the 
imputed duplicates. No additional variants required removal. Note that because imputed data were not available 
for the trisomic chromosome 21 (methods for imputing trisomic genotypes are lacking), this target dataset for 
the primary analyses did not include chromosome 21 variants. This intermediate data set included 524 samples 
(263 cases, 261 controls) and 2,366,788 autosomal SNPs.

We then performed PCA, first anchoring our dataset in the HapMap328 dataset and constructing principal 
components (PC) using PLINK1.9 in order to identify and remove DS samples with PC values outside of the 
HapMap3 CEPH/Utah (CEU) cluster (in order to match the European ancestry of the discovery datasets), and 
then removing the HapMap samples and performing further outlier removal based only on the DS samples (see 
Supplementary Methods for details). This PCA process identified 37 sample outliers for removal.

As a final step in preparing the DS target dataset for PRS analysis, we removed the extended major histocom-
patibility complex region (chromosome 6, ~ 25,000,000–34,000,000, human genome build 19), which is a region 
of extended high linkage disequilibrium that can overly influence PRS results. Our final data set included 487 
samples (245 DS + AVSD cases, 242 DS + NH controls) and 2,351,951 autosomal SNPs (excluding chromosome 
21). The multiple steps involved in generating this final data set for the primary PRS analyses are presented as a 
flowchart in Supplementary Fig. S1.

Target dataset for secondary PRS analyses.  Our secondary PRS analyses examined the contribution by alleles 
on the trisomic chromosome 21 to a polygenic component for DS-associated AVSD. We were able to do this 
because, while imputed data were not available for chromosome 21, all imputed samples did have SNP array 
genotypes for chromosome 21. Furthermore, the WGS samples had sequencing data for chromosome 21. For 
all target samples analyzed in the primary analyses (245 cases, 242 controls), we therefore obtained SNP-array-
level data for the trisomic chromosome 21, and likewise limited all other chromosomes to SNPs available on the 
Affymetrix Genome-Wide Human SNP 6.0 array.

We processed the chromosome 21 data separately from the other chromosomes due to the trisomic nature 
of these data. Prior to merging chromosome 21 data for the imputed and WGS samples, we applied certain QC 
filters (see Supplementary Methods for details). We subsequently merged the array and WGS chromosome 21 
data, leaving 3984 chromosome 21 SNPs and 487 samples.

Discovery data used to define weights for the PRS.  For discovery datasets, there were no GWAS of AVSD or 
other congenital heart defects (CHD) among individuals with DS that were independent of our target dataset 
nor were there any GWAS specifically for non-syndromic AVSD. Thus, we used results from two of the largest 
available independent GWAS of mixed CHD, diagnosed among those without DS who were ancestrally matched 
to our target samples.

The first discovery dataset was a GWAS of 2594 cases with a mixture of CHD diagnoses (see Table 3) and 
5159 population-based controls, all of European ancestry. Genotyping was performed using the Illumina 
Human660W-Quad array for cases and the Illumina 1.2 M chip for controls. The GWAS results included sum-
mary statistics for 501,899 autosomal SNPs. Summary level results for this GWAS are available upon request 

Table 3.   First discovery dataset: diagnoses for 2594 mixed CHD cases29,30. *For a more complete list of 
included CHD diagnosis, see29,30.

CHD diagnosis Number (%) of samples

Tetralogy of Fallot 835 (32.2)

Left-sided malformations 387 (14.9)

Ostium secundum atrial septal defect 340 (13.1)

Transposition of the great arteries 207 (8.0)

Ventricular septal defect 191 (7.4)

Conotruncal malformations 151 (5.8)

Double outlet right ventricle 96 (3.7)

AVSD (partial and complete) 73 (2.8)

Other CHD* 314 (12.1)
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through Dr. Heather Cordell. GWAS of particular diagnostic CHD subsets of this dataset have been published 
previously29,30.

The second discovery dataset was a GWAS of 406 mixed CHD cases (Table 4) and 2976 pediatric controls, 
all recruited from the same hospital and self-reporting as non-Hispanic Caucasian31. Samples were genotyped 
with Illumina arrays (550 v1/v3, 610, or 2.5 M chip), and genome-wide imputation was then carried out using 
the 1000 Genomes Project data as a reference. The GWAS results included summary statistics for 4,612,359 
autosomal SNPs, all of which had imputation r2 > 0.80. Summary results from this GWAS are available upon 
request through Dr. A.J. Agopian.

We used each of these discovery datasets separately as training data for the PRS analyses. We also meta-
analyzed the summary results from these two GWAS using Genome-Wide Association Meta-Analysis (GWAMA) 
software32, and used the resulting estimates as training data.

Generating PRS for the primary analyses.  For the primary PRS analyses, PRSice-2 (version 2.1.6)33 was used to 
generate PRS for each sample in the target dataset. Prior to PRS construction, PRSice performs clumping on the 
discovery dataset in order to obtain a set of independent SNPs for scoring (clumping parameters: 500-kilobase 
window, r2 threshold 0.10). The clumped SNPs are then used to generate PRS, which are calculated as

where the subscript i denotes a specific SNP contributing to the PRS, the subscript j denotes a particular indi-
vidual in the target dataset, β is the estimated effect from the discovery GWAS (e.g., the natural logarithm of 
the odds ratio), EA is the number of effective alleles possessed by the target individual (0, 1 or 2 for a disomic 
chromosome), and N is the total number of alleles considered for scoring. To facilitate interpretation of results, 
we applied an option in PRSice to standardize the PRS.

We constructed multiple PRS for each target individual using different subsets of the set of clumped SNPs, 
with subsets determined by applying different p value thresholds to the discovery GWAS results (e.g., PRS may 
be constructed using SNPs with discovery p value < 1 × 10–6, < 0.05, < 1). Given the relatively small sample sizes for 
each discovery GWAS, we were concerned that effect estimates for SNPs with lower MAFs may be particularly 
subject to error. To address this, we applied a range of MAF filters (from 0.10 to 0.40) to the discovery datasets 
prior to generating the PRS, excluding those SNPs with MAF below the threshold. Thus, for each discovery 
dataset, we constructed PRS and performed separate analyses for each combination of MAF filter and discovery 
p value threshold.

Generating PRS for the secondary analyses.  For the secondary PRS analyses, which involved analyses both with 
and without the trisomic chromosome 21 data, we constructed PRS using PLINK1.9. The PLINK1.9 binary, 
which is the file format that we used in conjunction with PRSice for the primary PRS analyses, is not able to 
represent trisomic genotype data. However, we were able to modify the chromosome 21 genotype data to fit the 
PLINK1.9 dosage file format, which can be used in conjunction with PLINK’s allelic scoring flag to generate PRS. 
This involved dividing each allele count by 3 and thereby converting allele counts of 0, 1, 2 and 3 to values of 0, 
1/3, 2/3 and 1 (interpreted by PLINK as dosages ranging from 0 to 1). We then used this chromosome 21 dosage 
format file in combination with the clumped training data (clumped using PRSice) to generate PRS, which were 
generated by PLINK as a simple sum score (a sum of the products of SNP weight times transformed allele count 
for each scoring SNP). Finally, we multiplied each outputted PRS by 3, yielding PRS that accurately reflected 
allele counts of 0, 1, 2 and 3 for the trisomic chromosome 21.

Separately, we used PLINK1.9 to construct PRS for the remaining autosomes. Given that these remaining 
autosomes were diploid, we were able to use the standard PLINK1.9 binary in combination with the allelic scoring 
flag to generate PRS. To be consistent with the chromosome 21 PRS, we used an option to generate these PRS 
as sum scores. For the analyses including chromosome 21, we then summed the chromosome 21 PRS and the 
PRS for the remaining autosomes for each target individual, yielding a PRS based on alleles from all autosomes 
combined. The analyses excluding chromosome 21 only utilized the PRS based on all autosomes minus chromo-
some 21. As for the primary PRS analyses, we standardized the final PRS, and generated multiple PRS for each 
target individual based on different discovery GWAS p value and MAF thresholds.

PRSj =
∑

i

βi × EAij

Nj

Table 4.   Second discovery dataset: diagnoses for 406 mixed CHD cases31.

CHD diagnosis Number (%) of samples

Tetralogy of Fallot 134 (33.0)

Ventricular septal defect 109 (26.8)

D-transposition of the great arteries 80 (19.7)

Double outlet right ventricle 25 (6.2)

Isolated aortic arch anomalies 22 (5.4)

Truncus arteriosus 19 (4.7)

Other CHD 17 (4.2)
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Testing association of PRS with DS + AVSD.  We used logistic regression to test associations of PRS with the 
outcome; this was performed by PRSice for the primary analyses and within R for the secondary analyses. We 
included sex, platform (WGS vs. imputed), and the top five principal components of ancestry as covariates in 
the analyses. Tests were two-tailed. Given the multiple testing involved in these PRS analyses (394 tests for dif-
ferent combinations of MAF filter, p value threshold, and discovery and target datasets, considering the primary 
and secondary PRS analyses together), we employed the p value adjusted for correlated tests (PACT​)34 method to 
generate p values corrected for multiple correlated tests.

Results
Gene discovery using SKAT analyses.  Three separate SKAT-O analyses were conducted at different 
MAF filtering thresholds. All of the p values for SKAT-O analyses derived from the WES dataset fell within 
expected or slightly deflated values, likely due to the small sample size (Supplementary Fig. S2). No gene was 
significant following Bonferroni correction for the total number of genes in each set, although 19 genes in the 
common variant analysis (MAF > 0.05), 10 genes in the rare variant analysis (MAF < 0.01 or missing in gno-
mAD) and one gene in the ultra-rare variant analysis (MAF < 0.001) displayed nominal significance levels of p 
value < 10–3 (Tables 5, 6, 7). Of those genes with nominal significance in the WES dataset, three were supported 
in the WGS dataset. Two of those genes, NOTCH4 and CEP290, have been reported as being involved in heart 

Table 5.   SKAT-O results of common variants: common variants are defined as MAF > 0.05 in gnomAD. All 
genes were tested in the WES dataset; only the top-ranked genes (p < 0.001) were tested in the WGS dataset as 
a replication set. Common variant SKAT-O analyses were not weighted by MAF. In the ‘Locus’ column, ‘chr’ 
refers to chromosome.

Gene Locus p value—WES Variants tested p value—WGS Variants tested

AMOT chrX:112,774,503–112,840,815 8.21E−04 1 0.849 6

CEP290 chr12:88,049,016–88,142,088 1.88E−04 3 0.064 3

CTDSP1 chr2:218,399,755–218,405,941 8.82E−04 2 0.392 3

DNAJA4 chr15:78,264,086–78,282,196 2.37E−04 2 0.296 7

GABRE chrX:151,953,124–151,974,676 2.49E−04 1 0.339 6

HHAT chr1:210,328,252–210,676,296 6.39E−04 3 0.576 5

HJURP chr2:233,836,702–233,854,535 8.49E−04 7 0.592 10

MEFV chr16:3,242,028–3,256,627 7.18E−04 8 0.388 12

MRGPRX3 chr11:18,120,955–18,138,480 6.07E−04 3 0.808 6

MYO5B chr18:49,822,789–50,195,147 2.72E−04 5 0.263 14

NEK10 chr3:27,110,904–27,369,392 8.52E−04 3 0.092 8

NR0B2 chr1:26,911,489–26,913,975 5.91E−04 1 0.83 3

PLEKHM3 chr2:207,821,288–208,025,527 3.48E−04 2 0.826 10

SAG chr2:233,307,816–233,347,055 3.35E−04 3 0.527 3

TRMT9B chr8:12,945,673–13,029,777 6.22E−05 8 0.627 40

WDR61 chr15:78,283,235–78,299,609 5.98E−04 1 0.414 2

WDR87 chr19:37,884,932–37,906,677 8.81E−05 4 0.198 13

ZNF571 chr19:37,562,392–37,594,790 8.60E−04 3 0.203 5

ZNF573 chr19:37,738,302–37,779,590 7.08E−04 2 0.148 3

Table 6.   SKAT-O results of rare variants: rare variants are defined as MAF < 0.01 or missing in gnomAD with 
an additional dataset MAF filter < 0.02. All genes were tested in the WES dataset; only the top-ranked genes 
(p < 0.001) were tested in the WGS dataset as a replication set.

Gene Locus p value—WES Variants tested p value—WGS Variants tested

ALG11 chr13:52,012,398–52,033,600 9.66E−04 6 0.543 6

CST4 chr20:23,685,640–23,689,040 6.21E−04 8 0.815 5

NOTCH4 chr6:32,194,843–32,224,067 6.66E−04 9 0.031 10

PODNL1 chr19:13,933,957–13,953,302 7.86E−04 5 0.568 14

RBM12 chr20:35,648,925–35,664,900 9.04E−04 3 0.523 8

RNF135 chr17:30,971,039–30,999,911 9.14E−04 6 0.651 5

RNF152 chr18:61,808,067–61,893,007 5.06E−04 7 0.701 7

SLIT3 chr5:168,661,740–169,301,129 7.30E−04 23 0.484 23

TRIM56 chr7:101,085,481–101,097,967 4.73E−04 8 0.836 6

VCX3A chrX:6,533,618–6,535,118 9.07E−04 4 0.69 4
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development. NOTCH4 is expressed in the developing heart and has previously been identified as playing a 
role in early artery and endothelial-to-mesenchymal transformation, which is critical for endocardial cushion 
differentiation35,36. CEP290 codes for a centrosomal protein involved in cilia development that has been found to 
have differential expression between the left and right ventricles of the heart in newborn piglets, and which may 
play a role in remodeling of the ventricular myocardium postnatally37. The third gene, ZNF318, has not previ-
ously been implicated in heart defects.

As a follow-up of these results, we conducted gene-set analyses based on genes in the ciliome and those in 
the Notch pathway using the WES dataset. We used SKAT-O, combining all variants identified in each pathway 
and again filtering on MAF thresholds, and found moderate significance of p < 0.05 in the set of rare variants 
(MAF < 0.01 or missing in gnomAD) (Table 8).

CHD polygenic risk score and its association with DS + AVSD.  Primary analyses indicate a non‑sig‑
nificant association of the CHD‑based PRS with DS + AVSD.  Over a range of MAF filters and discovery GWAS p 
value thresholds for constructing PRS, the analyses using the GWAS of 2594 mixed CHD cases and 5159 controls 
as the discovery dataset (501,899 autosomal SNPs) tended to yield maximum odds ratios (ORs) of 1.2–1.3 for 
association of PRS with AVSD among those with DS, meaning that a 1 standard deviation increase in PRS was 
associated with a 20–30% greater odds of having AVSD in the DS target sample (Supplementary Fig. S3). Corre-
sponding Nagelkerke’s r2 values ranged from 0.75 to 1.25% (calculated as Nagelkerke’s r2 for the model with PRS 
and covariates minus Nagelkerke’s r2 for the model with only covariates), with p values that were non-significant 
following adjustment for multiple correlated tests (adjusted p values > 0.15; unadjusted p values approximately 
0.01–0.09). These maximum results were most evident at higher MAF filters (i.e., MAF ≥ 0.30, ≥ 0.35, ≥ 0.40) and 
discovery GWAS p value thresholds between 0.001 and 0.3. Figure 1 and Supplementary Table S1 present results 
when PRS are constructed using SNPs with MAF ≥ 0.35, which are representative of the maximum PRS results 
achieved when using this particular discovery dataset.

PRS results when using the GWAS of 406 CHD cases and 2976 pediatric controls as the discovery dataset 
(4,612,359 autosomal SNPs) exhibited a different pattern than when using the GWAS of 2594 mixed CHD cases 
and 5159 controls as training data. Across various MAF filters and p value thresholds, ORs tended to hover near 
the null and on both sides of the null, indicating that these PRS were minimally associated with AVSD (Sup-
plementary Fig. S4). A few results were stronger, with ORs in the 1.2–1.3 range (adjusted p values > 0.15); these 
results occurred when using MAF filters of ≥ 0.10 and ≥ 0.15 in combination with the smallest discovery GWAS 
p value thresholds for selecting scoring SNPs.

We also performed a meta-analysis of the two GWAS datasets, yielding a single discovery dataset with asso-
ciation estimates for 4,684,854 autosomal SNPs, of which 429,336 SNPs had estimates based on both studies 
(meta-analysis sample size of 3000 CHD cases and 8135 controls), while the remainder had estimates based on 
just one of the two studies. In constructing PRS based on this meta-analysis discovery dataset, we applied an 
inverse variance weighting approach such that SNP association estimates based on a larger sample size (e.g., two 
studies) were weighted more heavily. Using the meta-analysis dataset in this manner produced results which, 
as might be expected, were a mixture of the PRS results obtained when using each discovery GWAS dataset 
separately (Supplementary Fig. S5). In general, maximum ORs for association of AVSD in DS with PRS and 
corresponding Nagelkerke’s r2 values were slightly attenuated compared with results when using the GWAS of 
2594 mixed CHD cases and 5159 controls as the discovery dataset.

Adding data from chromosome 21 into the PRS calculation did not change the association with DS + AVSD.  We 
performed the secondary analyses using only the training dataset derived from 2594 mixed CHD cases and 5159 
controls, since using these training data produced the best results for the primary PRS analyses. The results from 
PRS analyses including and excluding chromosome 21 were essentially the same, with only slight fluctuations 

Table 7.   SKAT-O results of ultra-rare variants: ultra-rare variants are defined as MAF < 0.001 in gnomAD 
without variants missing in gnomAD to test whether the well-defined ultra-rare variants are driving the top 
rare results. All genes were tested in the WES dataset; only the top-ranked genes (p < 0.001) were tested in the 
WGS dataset as a replication set.

Gene Locus p value—WES Variants tested p value—WGS Variants tested

ZNF318 chr6:43,336,070–43,369,647 8.07E−04 17 0.042 2

Table 8.   SKAT-O results in WES dataset for the two pathways suggested by the single gene test results and by 
previous literature.

Gene

Common variants Rare variants Ultra-rare variants

p value Variants tested p value Variants tested p value Variants tested

Cilia pathway 0.77 674 0.04 3542 0.80 1490

Notch pathway 0.24 73 0.03 487 0.39 222
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in ORs and corresponding Nagelkerke’s r2 values (Supplementary Figs. S6 and S7). These results generally fol-
lowed a similar pattern to those observed for the primary PRS analysis using the same discovery dataset (Sup-
plementary Fig. S3), wherein use of greater MAF filters yielded larger associations. However, the results from 
these secondary analyses fluctuated more across discovery GWAS p value thresholds and included more outlier 
OR estimates, which was likely a result of the smaller number of SNPs used for scoring in the secondary analyses 
(which were limited to SNPs on the Affymetrix array).

Discussion
Previous studies of AVSD in DS have had limited success in identifying rare variant contributions and have 
failed to clarify the role of common variants3–7. In the current study, we examined the role of rare and common 
SNVs in DS-associated AVSD by analyzing data from whole exome sequencing, whole genome sequencing, and 
genome-wide SNP imputation in cases with DS + AVSD and DS + NH controls. We used SNV-set analyses (group-
ing variants into genes and pathways) to examine both rare and common variant associations and polygenic risk 
score methods to investigate the combined effect of common variants across the genome.

In the genome-wide variant-set analyses which grouped SNVs by gene, we obtained preliminary support 
for 3 genes, 2 of which have been reported previously as genes involved in heart development. Prior studies in 
AVSD and other heart defects have identified cilia as a major factor in heart development38,39 and the ciliome 
has been identified as a pathway enriched in DS + AVSD for rare deletions and differential gene expression3,40. 
In our analyses, NOTCH4 and CEP290, whose roles in heart development and the ciliome have been previously 
described36,37, were found to have nominally significant associations with DS + AVSD in both WES and WGS 
datasets. CEP290 was also recently identified as potentially associated with non-syndromic CHD (including any 
type of heart defect) by a targeted sequencing study of 406 candidate genes involved in heart development41.

Investigating rare variants in the Notch pathway and ciliome genes as a whole also yielded moderate associa-
tions with DS + AVSD in our dataset. These results provide further support for the involvement of the Notch 
pathway and ciliome in heart development, and suggest a specific link between these pathways and AVSD in DS. 
Considering the small sample sizes of the WES and WGS datasets and the case–control imbalance in the WGS 

Figure 1.   PRS results using discovery GWAS of 2594 mixed CHD cases and 5159 controls and SNPs with 
MAF ≥ 0.35. Plot shows odds ratio per standard deviation increase in PRS, with corresponding 95% confidence 
interval (CI). ‘P value threshold’ indicates that SNPs with discovery GWAS p values below the threshold were 
used for PRS construction. Padj is the p value after correction for multiple correlated tests.
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dataset, a larger balanced WGS dataset should enable greater power to detect individual genes in these pathways 
that contribute to AVSD in DS.

The PRS analyses are the first such analyses of AVSD in DS, and to the best of our knowledge they are also the 
first use of PRS methods to examine polygenicity of CHD generally. Our analyses of PRS calculated from GWAS 
studies of non-syndromic CHD suggest at minimum a small polygenic contribution to AVSD among individuals 
with DS. When using dense SNP data (WGS or imputed data) for the 487 individuals in the target sample and 
excluding chromosome 21, a single standard deviation increase in PRS was associated with a 20–30% increased 
odds for having AVSD, with Nagelkerke’s r2 values for PRS of around 1% (Fig. 1; Supplementary Fig. S3); this 
occurred when using the larger of the two independent discovery datasets. Assuming a population prevalence of 
20% for AVSD among those with DS, these Nagelkerke’s r2 values are quite similar to the corresponding liability 
scale r2 values (correcting for case–control ascertainment). For instance, the PRS analyses depicted in Fig. 1 
yielded a Nagelkerke’s r2 of 1.03% when applying MAF ≥ 0.35 and discovery GWAS p value ≤ 0.001 thresholds; 
the corresponding liability r2 estimate is 1.11%42. As demonstrated by the PRS results presented in Supplementary 
Figs. S6 and S7, which involved the use of array SNPs only, inclusion of dense genotype data for chromosome 21 
is unlikely to substantially alter these estimates for the association of PRS with DS-associated AVSD; SNPs on 
chromosome 21 are perhaps not a key factor driving AVSD in DS.

Given the small sample sizes for the discovery GWAS datasets and prior research demonstrating that vari-
ance explained by PRS tends to increase as discovery GWAS sample size increases11, which is attributable to 
increased accuracy of the SNP effect estimates used as weights for the PRS, it seems likely that the use of a larger 
discovery GWAS of CHD will uncover a greater polygenic contribution to AVSD in DS. Furthermore, use of a 
large discovery GWAS that only includes the particular CHD subtypes which are most closely genetically related 
to AVSD (perhaps a GWAS including only AVSD and septal defect cases) may reveal a polygenic contribution 
to DS-associated AVSD that exceeds what we have identified. We demonstrate this in Supplementary Fig. S8, 
showing that under reasonable assumptions, using a discovery GWAS of phenotypes that are highly genetically 
correlated with the target phenotype (AVSD) will result in PRS r2 values that increase as discovery GWAS sample 
size increases; the discovery samples similar in size to those used for the current PRS analyses are only able to 
capture a portion of the true polygenic component (plots generated using the ‘avengeme’ R package)43.

The finding of an association of AVSD in DS with PRS constructed based on SNPs identified as having some 
measure of association with CHD in mixed CHD samples suggests the possibility of genetic overlap between 
AVSD and various other subtypes of CHD. This is consistent with the potential for investigations of DS-associated 
AVSD to shed light on fundamental biology relevant to CHD more generally. To further examine this potential 
genetic overlap, including which CHD subtypes may have the greatest shared genetic architecture with AVSD, it 
will be important to utilize large GWAS datasets of specific CHD subtypes rather than a mixture of CHD types.

We observed that PRS constructed based on the discovery GWAS of 2594 mixed CHD cases and 5159 controls 
consistently yielded ORs > 1 (indicating, as expected, that increased PRS was associated with increased AVSD 
risk). In contrast, PRS constructed using the discovery GWAS of 406 CHD cases and 2976 pediatric controls 
yielded OR estimates generally quite close to the null, and on both sides of the null. One possible reason for this 
difference is that the smaller-sized discovery GWAS had more imprecisely estimated SNP associations, leading 
to less informative PRS. Another possibility is that particular CHD diagnoses included within the larger discov-
ery GWAS may be more genetically related to AVSD in DS than the CHD diagnoses in the smaller discovery 
GWAS. Indeed, the larger GWAS included 73 cases with AVSD, while in the smaller GWAS there were only 
seven instances of AVSD (six of the cases with double outlet right ventricle also had AVSD, and a single case had 
tetralogy of Fallot with atrioventricular canal septal defect).

In conclusion, while our analyses yielded no statistically significant findings following multiple testing correc-
tion, the results suggest that rare variation in certain pathways and common variants acting through a polygenic 
component may play roles in increasing risk for AVSD among those with DS. The use of larger sample sizes, 
including a larger DS + AVSD/DS + NH sample as well as larger discovery GWAS samples for PRS construction, is 
important as it will enable greater power for identifying and quantifying rare variant and polygenic contributions. 
It is also possible that genetic effects on DS-associated AVSD are particularly pronounced in the presence of cer-
tain environmental factors. This could be investigated in future studies by examining environmental interactions 
with potentially involved genetic factors including variation in the Notch pathway and ciliome as well as PRS.

Data availability
Affymetrix Genome-Wide Human SNP 6.0 array genotype data are available for 437 DS samples (DS + AVSD 
cases and DS + NH controls) via the Gene Expression Omnibus [GEO] data repository, accession number 
GSE60607. Genotypes for some of the samples described in this paper were excluded from GEO due to privacy 
concerns. WES data is available on request. WGS data results from the PCGC samples can be accessed through 
the PCGC dbGaP study (https​://www.ncbi.nlm.nih.gov/proje​cts/gap/cgi-bin/study​.cgi?study​_id=phs00​1194.
v2.p2).

Received: 13 August 2020; Accepted: 5 October 2020

References
	 1.	 Ferencz, C. et al. Congenital cardiovascular malformations associated with chromosome abnormalities: an epidemiologic study. 

J. Pediatr. 114, 79–86 (1989).
	 2.	 Hartman, R. J. et al. Descriptive study of nonsyndromic atrioventricular septal defects in the National Birth Defects Prevention 

Study, 1997–2005. Am. J. Med. Genet. A 155A, 555–564 (2011).

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001194.v2.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001194.v2.p2


11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18051  | https://doi.org/10.1038/s41598-020-74650-4

www.nature.com/scientificreports/

	 3.	 Ramachandran, D. et al. Contribution of copy-number variation to Down syndrome-associated atrioventricular septal defects. 
Genet. Med. 17, 554–560 (2015).

	 4.	 Ramachandran, D. et al. Genome-wide association study of Down syndrome-associated atrioventricular septal defects. G3 5, 
1961–1971 (2015).

	 5.	 Rambo-Martin, B. L. et al. Analysis of copy number variants on chromosome 21 in Down syndrome-associated congenital heart 
defects. G3 8, 105–111 (2018).

	 6.	 Sailani, M. R. et al. The complex SNP and CNV genetic architecture of the increased risk of congenital heart defects in Down 
syndrome. Genome Res. 23, 1410–1421 (2013).

	 7.	 Ackerman, C. et al. An excess of deleterious variants in VEGF-A pathway genes in Down-syndrome-associated atrioventricular 
septal defects. Am. J. Hum. Genet. 91, 646–659 (2012).

	 8.	 Al Turki, S. et al. Rare variants in NR2F2 cause congenital heart defects in humans. Am. J. Hum. Genet. 94, 574–585 (2014).
	 9.	 Lin, F.-J. et al. Endocardial cushion morphogenesis and coronary vessel development require chicken ovalbumin upstream pro-

moter-transcription factor II. Arterioscler. Thromb. Vasc. Biol. 32, e135–e146 (2012).
	10.	 Pereira, F. A., Qiu, Y., Zhou, G., Tsai, M.-J. & Tsai, S. Y. The orphan nuclear receptor COUP-TFII is required for angiogenesis and 

heart development. Genes Dev. 13, 1037–1049 (1999).
	11.	 Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated 

genetic loci. Nature 511, 421–427 (2014).
	12.	 Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic 

mutations. Nat. Genet. 50, 1219–1224 (2018).
	13.	 Wu, M. C. et al. Powerful SNP-set analysis for case-control genome-wide association studies. Am. J. Hum. Genet. 86, 929–942 

(2010).
	14.	 Lee, S. et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-

exome sequencing studies. Am. J. Hum. Genet. 91, 224–237 (2012).
	15.	 Ionita-Laza, I., Lee, S., Makarov, V., Buxbaum, J. D. & Lin, X. Sequence kernel association tests for the combined effect of rare and 

common variants. Am. J. Hum. Genet. 92, 841–853 (2013).
	16.	 Hoang, T. T. et al. The congenital heart disease genetic network study: cohort description. PLoS ONE 13, e0191319 (2018).
	17.	 Pediatric Cardiac Genomics Consortium et al. The Congenital Heart Disease Genetic Network Study: rationale, design, and early 

results. Circ. Res.112, 698–706 (2013).
	18.	 Johnston, H. R. et al. PEMapper and PECaller provide a simplified approach to whole-genome sequencing. Proc. Natl. Acad. Sci. 

U. S. A. 114, E1923–E1932 (2017).
	19.	 Kotlar, A. V., Trevino, C. E., Zwick, M. E., Cutler, D. J. & Wingo, T. S. Bystro: rapid online variant annotation and natural-language 

filtering at whole-genome scale. Genome Biol. 19, 14 (2018).
	20.	 Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
	21.	 Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).
	22.	 Purcell, S. M. & Chang, C. C. PLINK [v1.9b6.6]. www.cog-genom​ics.org/plink​/1.9/.
	23.	 R Core Team. R: a language and environment for statistical computing. https​://www.R-proje​ct.org/ (R Foundation for Statistical 

Computing, 2017).
	24.	 Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
	25.	 McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).
	26.	 van Dam, T. J., Wheway, G., Slaats, G. G., Huynen, M. A. & Giles, R. H. The SYSCILIA gold standard (SCGSv1) of known ciliary 

components and its applications within a systems biology consortium. Cilia 2, 7 (2013).
	27.	 Kanehisa, M. Post-Genome Informatics (Oxford University Press, Oxford, 2000).
	28.	 International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).
	29.	 Cordell, H. J. et al. Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus 

for atrial septal defect at chromosome 4p16. Nat. Genet. 45, 822–824 (2013).
	30.	 Cordell, H. J. et al. Genome-wide association study identifies loci on 12q24 and 13q32 associated with tetralogy of Fallot. Hum. 

Mol. Genet. 22, 1473–1481 (2013).
	31.	 Agopian, A. J. et al. Genome-wide association studies and meta-analyses for congenital heart defects. Circ. Cardiovasc. Genet. 10, 

e001449 (2017).
	32.	 Mägi, R. & Morris, A. P. GWAMA: software for genome-wide association meta-analysis. BMC Bioinform. 11, 288 (2010).
	33.	 Choi, S. W. & O’Reilly, P. F. PRSice-2: Polygenic Risk Score software for biobank-scale data. GigaScience https​://doi.org/10.1093/

gigas​cienc​e/giz08​2 (2019).
	34.	 Conneely, K. N. & Boehnke, M. So many correlated tests, so little time! Rapid adjustment of P values for multiple correlated tests. 

Am. J. Hum. Genet. 81, 1158–1168 (2007).
	35.	 Wythe, J. D. et al. ETS factors regulate Vegf-dependent arterial specification. Dev. Cell 26, 45–58 (2013).
	36.	 Noseda, M. et al. Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal 

transformation. Circ. Res. 94, 910–917 (2004).
	37.	 Torrado, M., Iglesias, R., Nespereira, B. & Mikhailov, A. T. Identification of candidate genes potentially relevant to chamber-specific 

remodeling in postnatal ventricular myocardium. J. Biomed. Biotechnol. https​://doi.org/10.1155/2010/60315​9 (2010).
	38.	 Burnicka-Turek, O. et al. Cilia gene mutations cause atrioventricular septal defects by multiple mechanisms. Hum. Mol. Genet. 25, 

3011–3028 (2016).
	39.	 Klena, N. T., Gibbs, B. C. & Lo, C. W. Cilia and ciliopathies in congenital heart disease. Cold Spring Harb. Perspect. Biol. 9, a028266 

(2017).
	40.	 Ripoll, C. et al. Molecular signatures of cardiac defects in Down syndrome lymphoblastoid cell lines suggest altered ciliome and 

hedgehog pathways. PLoS ONE 7, e41616 (2012).
	41.	 Alharbi, K. M. et al. Targeted next-generation sequencing of 406 genes identified genetic defects underlying congenital heart 

disease in Down syndrome patients. Pediatr. Cardiol. 39, 1676–1680 (2018).
	42.	 Lee, S. H., Goddard, M. E., Wray, N. R. & Visscher, P. M. A better coefficient of determination for genetic profile analysis. Genet. 

Epidemiol. 36, 214–224 (2012).
	43.	 Dudbridge, F. Correction: Power and predictive accuracy of polygenic risk scores. PLOS Genet. https​://doi.org/10.1371/annot​ation​

/b91ba​224 (2013).

Acknowledgements
First and foremost, we want to thank the families and individuals with Down syndrome for contributing their 
time and effort towards this project. The DS Heart Project (R.H.R.) was a collaborative project supported through 
several National Institutes of Health awards: R01 HL092981-01A1 (M.E.Z.) and R01 HL083300 (R.H.R.) from 
NIH/National Heart, Lung, and Blood Institute; R01 HD38979 (S.L.S.) from NIH/National Institute of Child 
Health and Human Development and GM117946 (M.P.E.) from NIH/National Institute of General Medi-
cal Sciences. Whole exome sequencing services that were done as part of the DSHP were provided by the 

http://www.cog-genomics.org/plink/1.9/
https://www.R-project.org/
https://doi.org/10.1093/gigascience/giz082
https://doi.org/10.1093/gigascience/giz082
https://doi.org/10.1155/2010/603159
https://doi.org/10.1371/annotation/b91ba224
https://doi.org/10.1371/annotation/b91ba224


12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18051  | https://doi.org/10.1038/s41598-020-74650-4

www.nature.com/scientificreports/

University of Washington, Department of Genome Sciences under U.S. Federal Government Contract Num-
ber HHSN268201100037C (D. Nickerson). Whole genome sequencing services were supported by the Emory 
Integrated Genomics Core (EIGC) and the Emory Integrated Computational Core (EICC), which are sub-
sidized by the Emory University School of Medicine and are part of the Emory Integrated Core Facilities. 
Partial support to M.E.Z was also provided by the Georgia Clinical & Translational Science Alliance which is 
funded by the National Center for Advancing Translational Sciences of the National Institutes of Health under 
Award number UL1TR002378. The American Heart Association Western States Affiliate provided support to 
H. Corbitt (Grant Number 16PRE30190012). We thank Dr. Eleanor Feingold for providing the chromosome 21 
genotype calls for the SNP Affymetrix dataset. We thank the Pediatric Cardiac Genomic Consortium (PCGC) 
for its contributions to this work, and recognize E.G. as sponsor of the PCGC-approved ancillary project. The 
PCGC provided samples for the WGS study which were collected under the auspices of the National Heart, 
Lung, and Blood Institute’s Bench to Bassinet Program (https​://bench​tobas​sinet​.com). Support for the PCGC 
is provided through grants from National Heart, Lung, and Blood Institute (U01-HL098188, U01-HL098147, 
U01-HL098153, U01-HL098163, U01-HL098123, U01-HL098162). We would like to thank Marianne S. Hird at 
the PCGC for her help on this project throughout its administration. The Agopian et al. (2017) GWAS discovery 
dataset used for the PRS analyses was generated with support from an Institutional Development Fund to The 
Center for Applied Genomics from The Children’s Hospital of Philadelphia. Further support was provided by the 
National Heart, Lung, and Blood Institute P50-HL74731 (E.G.) and the National Center for Research Resources 
M01-RR-000240, RR024134 [now the National Center for Advancing Translational Sciences UL1TR000003) 
(E.G.). The Cordell et al. (2013) GWAS discovery data used for the PRS analyses were generated with support 
from the British Heart Foundation, Heart Research UK, Wellcome Trust and European Union. B.D.K. is sup-
ported by a British Heart Foundation Personal Chair. The content is solely the responsibility of the authors and 
does not necessarily represent the official views of the National Institutes of Health.

Author contributions
C.E.T., A.M.H., M.E.Z., S.L.S., M.P.E., D.J.C., and J.G.M. were all involved in the conception and design of the 
work presented in this manuscript. C.E.T. and A.M.H. jointly drafted the manuscript, with all authors review-
ing and providing feedback on the manuscript. Ascertainment of the samples and phenotype assessment of 
individuals with DS were accomplished through the efforts of S.L.S., C.L.M., T.C.R., K.J.D., G.T.C., R.H.R, P.J.G., 
J.E.O., D.C.B., L.W., C.L.C., and E.G. (sponsor of PCGC-approved ancillary project). H.R.J., D.J.C., and B.L.R. 
performed mapping and variant calling for the WES and WGS datasets, and together with C.E.T. performed 
QC of these data. C.E.T. performed the gene- and pathway-level (SKAT) analyses. H.C. and J.O. were involved 
in the initial phase of these datasets and helped to set the framework for these analyses. H.J.C., B.D.K., A.J.A., 
and E.G. generated the GWAS summary results used as training data for the PRS analyses. A.M.H. performed 
imputation of the array genotype data, and QC and analyses for the PRS application.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https​://doi.org/10.1038/s4159​8-020-74650​-4.

Correspondence and requests for materials should be addressed to M.E.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

https://benchtobassinet.com
https://doi.org/10.1038/s41598-020-74650-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Identifying genetic factors that contribute to the increased risk of congenital heart defects in infants with Down syndrome.
	Recommended Citation
	Creator(s)

	Identifying genetic factors that contribute to the increased risk of congenital heart defects in infants with Down syndrome
	Methods
	Subjects. 
	Whole exome sequencing. 
	Whole genome sequencing. 
	Samples with imputed genotypes based on microarray. 

	Analyses. 
	SKAT-O variant analyses. 
	Rare variant pathway analyses. 
	Polygenic Risk Score analyses. 
	Target dataset for primary PRS analyses. 
	Target dataset for secondary PRS analyses. 
	Discovery data used to define weights for the PRS. 
	Generating PRS for the primary analyses. 
	Generating PRS for the secondary analyses. 
	Testing association of PRS with DS + AVSD. 


	Results
	Gene discovery using SKAT analyses. 
	CHD polygenic risk score and its association with DS + AVSD. 
	Primary analyses indicate a non-significant association of the CHD-based PRS with DS + AVSD. 
	Adding data from chromosome 21 into the PRS calculation did not change the association with DS + AVSD. 


	Discussion
	References
	Acknowledgements


