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Genetic mismatches in protein coding genes between allogeneic hematopoietic stem

cell transplantation (allo-HSCT) recipient and donor can elicit an alloimmunity response

via peptides presented by the recipient HLA receptors as minor histocompatibility

antigens (mHAs). While the impact of individual mHAs on allo-HSCT outcome such

as graft-vs.-host and graft-vs.-leukemia effects has been demonstrated, it is likely that

established mHAs constitute only a small fraction of all immunogenic non-synonymous

variants. In the present study, we have analyzed the genetic mismatching in 157

exome-sequenced sibling allo-HSCT pairs to evaluate the significance of polymorphic

HLA class I associated peptides on clinical outcome. We applied computational

mismatch estimation approaches based on experimentally verified HLA ligands available

in public repositories, published mHAs, and predicted HLA-peptide affinites, and

analyzed their associations with chronic graft-vs.-host disease (cGvHD) grades. We

found that higher estimated recipient mismatching consistently increased the risk of

severe cGvHD, suggesting that HLA-presented mismatching influences the likelihood

of long-term complications in the patient. Furthermore, computational approaches

focusing on estimation of HLA-presentation instead of all non-synonymous mismatches

indiscriminately may be beneficial for analysis sensitivity and could help identify

novel mHAs.
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INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-
HSCT) presents a potentially curative treatment for a variety
of malignant diseases and other serious disorders of the
blood and hematopoietic system. The human leukocyte
antigen (HLA) allele matching across several loci between
the donor and recipient is a prerequisite for allo-HSCT to
avoid lethal alloimmunity complications where the grafted
T-cells mount an immune response against healthy recipient
tissues (1). However, despite comprehensive HLA identity and
advances in immunosuppressive medication, the graft-vs.-host
disease (GvHD) remains a major cause of morbidity and
mortality (2). On the other hand, alloreactivity directed against
leukemic cells via the graft-vs.-leukemia (GvL) effect (3) is
required for elimination of residual malignancy and curing the
primary disease.

Following a HLA-matched allo-HSCT, the T-cell mediated
alloimmunity is initiated mainly by non-HLA genetic differences
encoding protein-level polymorphisms known as minor
histocompatibility antigens (mHAs) (4). Common coding region
genetic variability such as splicing variants (5), gene deletions
(6), and non-synonymous single nucleotide variants (7) as
well as de novo somatic mutations (8) can produce peptides
that are presented by the HLA receptors on the cell surface
and recognized by specific donor-derived T-cells as “non-self ”
epitopes. mHAs limited to the hematopoietic tissue are able
elicit a highly specific GvL effect in allo-HSCT setting (9),
while mHAs with broader and more varying expression profiles
typically contribute to both GvL and GvHD (10). Since GvL can
occur independent of GvHD, mHAs hold significant therapeutic
potential for manipulating the alloimmunity (11). However, even
though in vitro experimental analyses have identified several
ligands for various alleles of different types of HLA receptors
(12), only about 50 actual mHAs relevant for GvHD or GvL
are currently known (13). Thus, extensive characterization of
the mHA repertoire arising from germline or somatic genetic
variability is expected to bring mHA targeted cell therapies closer
to clinical application.

Due to the limited number of known mHAs, the extent
of overall genome-wide non-synonymous mismatching has
been proposed as a measure of alloreactivity potential in allo-
HSCT recipients (14–16). In principle, separating the protein-
coding mismatches by expression patterns could help assess the
magnitude in and balance between GvHD and GvL. However,
analysis of protein coding differences in related and unrelated
allo-HSCTs has shown only weak association of estimated
mismatching to the risk of severe acute GvHD (14). Further,
in an alternative approach, computational prediction of HLA
binding affinities of amino-acid altering genetic differences
has shown a difference between related and unrelated allo-
HSCTs (16), and has been reported to associate with GvHD
risk (17). Studies analyzing the presence of known mismatched
mHAs in allo-HSCT recipients have likewise identified small
effects on GvHD risk and relapse-free survival (18–22). Given
the various methodological approaches and that few of these
associations remain statistically significant after multiple testing

adjustment, further studies are warranted to investigate the graft
alloimmunity capacity.

Here, we have analyzed genomic mismatching in 157 sibling
allo-HSCT pairs to study the effects of HLA-presentation of
non-synonymous variants on chronic GvHD. Based on previous
reports, our hypothesis was that patients with severe cGvHD
are more likely to harbor a higher number of mismatched
HLA class I ligands than patients without cGvHD. Owing to
the relatively small set of donor-recipient pairs in our study
cohort, we have not considered acute GvHD since the number
patients with severe form of this condition may not be adequate.
Similarly, as the number of bone marrow expressed peptides
is significantly smaller than peptides expressed in epithelial
tissues, we have chosen not to focus on relapse or GvL. While
the impact of predicted and experimental mHAs on GvHD
have been studied previously by computational techniques, to
our knowledge, existing databases of in vitro verified HLA
ligands have not been employed in genomic studies of GvHD
before. In contrast to mHAs, the relatively large amount
of available experimental HLA ligands allows both statistical
estimates with higher confidence and analyses in conjunction
with other external data sets. Thus, comparison of this approach
with established methods is needed to better understand
alloreactivity and its computational modeling. To this end,
we have carried out a computational analysis of class I HLA
peptide binding affinity and immunogenicity potential, included
epithelial protein expression data and enumerated the presence
of experimentally verified HLA ligands and mHAs available in
the public domain to evaluate the capability of these different
approaches to estimating long-term alloreactivity capacity.

METHODS

HSCT Pairs
The study cohort consisted of 157 Finnish HLA-matched sibling
HSCT donors and recipients undergoing HSCT during the
years 2001–2015 in two transplantation centers in Finland.
The cohort and definitions of clinical outcomes have been
described previously in detail (23). General characteristics of
the cohort are given in Table 1. The study was approved by
the Ethics Committees of Helsinki University Central Hospital
and Turku University Central Hospital and the Finnish National
Supervisory Authority for Welfare and Health (Valvira; https://
www.valvira.fi/en/web/en). Informed and written consent was
taken when possible, and in cases when it could not be asked (e.g.,
if the patient had deceased), a retrospective consent was given by
the supervisory authority.

HLA-Typing and Matching
The extent of HLAmatching between the sibling donor-recipient
pairs has varied over time during the 1990s and the 2000s.
Depending on a given time period, HLA-C, and/or HLA-DQB1
genes were genotyped only in the pairs with an HLA mismatch
in any of the HLA-A, -B, -DRB1 genes, conforming with the
European Federation of Immunogenetics (EBI) guidelines at the
time. Thus, not all pairs were initially guaranteed to match over
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TABLE 1 | General characteristics of the study cohort.

Characteristic Category Value

Graft type; number (percentage) PB 118 (76.1)

BM 37 (23.9)

Acute GvHD grade; number

(percentage)

0 94 (59.9)

1 28 (17.8)

2 19 (12.1)

3 & 4 16 (10.2)

Chronic GvHD grade; number

(percentage)

No 77 (51.0)

Limited 23 (15.2)

Extensive 51 (33.8)

Relapse occurrence; number

(percentage)

Yes 47 (30.1)

No 109 (69.9)

Recipient-mismatched peptides; mean (95% CI) 872,895

(627,999–

1,375,167)

Filtered recipient-mismatched peptides; mean (95% CI) 28,146

(17,925–44,979)

M1; mean (95% CI) 393 (88–889)

M2; mean (95% CI) 21.6 (3.0–47.1)

M3; mean (95% CI) 2.6 (0.0–10.1)

M4; mean (95% CI) 39.5 (2.0–172.6)

For explanations of analysis approaches M1–M4 (see Table 2).

the six HLA genes (HLA-A, -B, -C, -DRB1, -DQB1, DPB1).
Hence, all pairs were re-typed with NGS technology in this study.

HLA typing was performed as described previously (24).
Briefly, the alleles of HLA-A, -B, -C, -DQB1, and -DRB1 genes
were identified at the resolution level of the first field (i.e.,
allele group) in the HLA Laboratory of the Finnish Red Cross
Blood Service using rSSO-Luminex technology (Labtype, One
Lambda, Inc., CA, USA) and PCR-SSP (Micro SSPTM Generic
HLA Class I/II DNA Typing Trays, One Lambda, Inc.; Olerup
SSP R© genotyping, Olerup SSP AB, Stockholm, Sweden). Two
pairs with 5/6 HLA-match were confirmed by sequencing at the
second field resolution level (i.e., amino acid level) (AlleleSEQR
PCR/Sequencing kits, Atria Genetics, Hayward, CA, USA) using
ABI 3130xl genetic analyzer (Applied Biosystems, Thermo Fisher
Scientific, MA, USA). The results were analyzed with Assign 3.5+
software (Conexio Genomics Pty Ltd, Fremantle, Australia). The
FASTQ read data of all pairs were analyzed using the Omixon
Explore program version 1.2.0 (Omixon, Budapest, Hungary) to
assign alleles at third field resolution level (i.e., allelic level) for
HLA-A, -B, -C, -DRB1, -DQB1, -DPB1.

Exome Sequencing
Exome sequencing and quality control was performed as
described previously (23). Briefly, a custom sequencing panel
targeting the whole exome, full MHC region and active
immunoregulatory regions was applied (25). The sequencing was
performed with Illumina HiSeq 2000 instrument at the McGill
Genome Center (McGill University, Montreal, Canada). The
resulting reads were aligned against the human reference genome
GRCh37/hg19 (25). Variant calling and quality filtering steps

were carried out using the Genotype Analysis Tool Kit (GATK)
v3.2–2 (26, 27), and further quality filtering was implemented
by applying a hard cutoff on approximate read depth (DP)
and genotype quality (GQ) parameter values obtained through
comparing genotype similarities between technical replicates.

Experimental HLA Ligand Data
HLA ligand assay data was downloaded from the Immune
EpitopeDatabase (IEDB)website (www.iedb.org) (12) inOctober
2016. Assay results were filtered to include only ligands that
originated from H. sapiens, had qualitative measure of “positive”
or “positive-high” and had HLA allele information available.
Duplicated peptides were removed. Minor histocompatibility
antigen data set was obtained from published literature (13).
Peptides longer than 9 amino acids were transformed into 9-
mer format by extracting all 9-mer frames. Duplicated entries
were removed.

Peptide Data Analyses
The analysis pipeline is summarized in Figure 1. Variant
positions annotated as locating in a protein coding region and
having a missense, insertion, deletion, frameshift, or stop relative
to the GRCh37 reference genome were extracted from the sample
VCF files. The GRCh37.75 fasta-formatted coding sequences
were downloaded from the Ensembl FTP server (ftp://ftp.
ensembl.org/pub/release-75/fasta/homo_sapiens/cds/Homo_
sapiens.GRCh37.cds.all.fa.gz) (28, 29) and filtered by including
only entries starting with the canonical ATG codon and having a
length of at least 50 nucleotides. The non-synonymous variants
in each sample were mapped to the filtered GRCh37 reference
coding sequences followed by translation of the generated
individual transcriptome of each subject into protein sequences.
The in silico proteomes between each HSCT donor-recipient pair
were compared to exclude identical protein sequences. Proteins
with at least one amino acid difference were split into 9-mer
peptides from all frames, and peptides unique to the recipient
were extracted and included in further analyses.

HLA class I immunogenicity prediction on the peptides was
performed with the IEDB (12) Immunogenicity-1.1 tool (30)
without HLA type specification. Peptides with immunogenicity
score >0.2 were selected for further analysis.

Expression levels for the filtered peptides were acquired from
the Human Protein Atlas (HPA) database (31) v18/Ensembl
v88.38. The data were filtered to include only proteins for which
reliability was classified as supportive in skin, intestine, lung,
liver or bone marrow tissue. The HPA data were mapped to
the peptide sequence data based on Ensembl transcript and
gene IDs.

The HLA-A and -B receptor binding affinity predictions to
the unique peptides of the HSCT recipients were performed
with the IEDB tool predict_binding.py v2.17 using the
IEDB_recommended option which combines the results
of multiple prediction algorithms (32–37). The consensus
percentile rank with cutoff values of ≤4 or ≤6 were used in
further analyses as a measure of number of high-affinity peptides
in each recipient.
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FIGURE 1 | Schematic diagram of the analysis pipeline. (A) The vertical arrows in top-down direction in the diagram show the processing steps for translating whole

exome sequencing data into recipient-mismatched peptide sets. The horizontal arrows in left-to-right direction show the analysis steps involved in sub-setting the

mismatched peptides into sets relevant for alloreactivity; in the first step the peptides are filtered for epithelial expression and immunogenicity, and in the second step

they are intersected with experimental HLA ligand databases or HLA affinity predictions according to each pair’s HLA class I type. Finally, the obtained HLA-presented

peptide count estimates from the four analysis approaches (labeled as M1–M4; Table 2) are examined for possible association with chronic GvHD. (B) Euler diagram

showing the analysis methods M1–M4 as intersections between peptide sets.

TABLE 2 | Computational approaches for estimating HSCT alloreactivity.

Method label Description

M1 The number of recipient-mismatched peptides shared with

experimental 9-mer HLA class I ligands from IEDB

M2 The number of recipient-mismatched peptides filtered by

immunogenicity prediction and HPA data and shared with

experimental 9-mer HLA class I ligands from IEDB

M3 The number of recipient-mismatched peptides shared with

known 9-mer HLA class I mHAs

M4 The number of the recipient-mismatched peptides filtered by

immunogenicity prediction and HPA data having HLA class I

affinity prediction consensus rank 4 or less

The sets of recipient-specific peptides obtained as described
above were intersected with the filtered IEDBHLA ligand peptide
sequences and published mHA peptide sequences to calculate
the numbers of these HLA ligands in each recipient. Table 2
summarizes the four methods for estimating alloreactivity based
on the above analyses of the peptide sets.

Statistical Methods
Statistical tests were carried out in R v3.4.4 (38) with custom
scripts. Association between estimated ligand count measures
and the chronic GvHD grades “none” vs. “extensive” was tested
with logistic regression using the R function glm. P-values were
calculated using the default Wald test. Three variables that
could confound the estimates of the number of HLA-presented
peptides were included as covariates in the regression analyses.
The rationale was that rare HLA types may not be as well-
covered as more common ones in the HLA ligand databases
or HLA binding affinity training data, and can thus lead to
under-representation of ligands in these types. Similarly, the total
number of mismatches could mask the possible effect of HLA-
presented peptides. Thus, the used covariates were: the sum of
cohort frequencies of uniqueHLA types present in each recipient,

the number of unique HLA types in each recipient, and the total
number of mismatched peptides in each recipient. Furthermore,
transplantation year, donor age and transplant direction (female-
to-male vs. others) and the extent ofmatching over six HLA genes
(HLA-A, -B, -C, -DRB1, -DQB1, -DPB1) for each HSCT pair
were also included as covariates as these can be relevant for allo-
HSCT outcome (22, 39). Each numerical predictor variable was
centered and scaled. Benjamini–Hochberg adjusted p-value of
<0.05 was considered significant. Data management and plotting
were carried out using the R libraries tidyverse v1.2.1 (40), ggpubr
v0.1.6 (41), seqminer v6.0 (42), data.table (43), and Biostrings
v2.42.1 (44).

Code Availability
The analysis code is available in GitHub (https://github.com/
FRCBS/HSCT-peptide).

RESULTS

The results of the exome sequencing genotype calling and
quality filtering steps have been described previously (23).
To summarize, the obtained mean depth of read mapping
coverage was 32.8 with standard deviation of 7.0 over all
the samples. The donors had in total 468,426 quality filtered
variants and the recipients had 470,135. The numbers of all
9-mer peptides generated from the recipient-mismatched non-
synonymous variants had a mean of 872,895, standard deviation
of 179,627, minimum of 281,009, and maximum of 1,583,366.
Numbers of 9-mer peptides filtered for immunogenicity andHPA
data had amean of 28,146, standard deviation of 6,205, minimum
of 8,523, and maximum of 51,425. On average, the number of
unique peptides per sample with predicted high binding affinity
was 39.5, ranging between 0 and 302 with a standard deviation of
46.9. Further details are given in Table 1.

HLA matching measured as the number of identical alleles
between the donor-recipient pairs over the six genes (HLA-A, -B,
-C, -DRB1, -DQB1, -DPB1) had a mean of 11.73 and a standard
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FIGURE 2 | Alloimmunity estimates and associations with chronic GvHD. (A) Boxplots showing the distributions of the four different HLA ligand estimates (M1–M4)

based on recipient-mismatched peptides (see the Methods section and Table 2 for a detailed description). The y-axis shows the estimated ligand count, and the

x-axis shows the cGvHD grades. (B) Logistic regression coefficient estimates with ± 1S.E. (top) and p-values (bottom) from the models testing the associations for

cGvHD grades “no” (n = 77) vs. “extensive” (n = 51) in the four methods M1–M4. The coefficients are calculated based on scaled and centered ligand count values to

make them comparable between M1–M4. The FDR < 0.05 threshold is shown by the dashed horizontal line in the lower panel. (C) Estimated probabilities for severe

chronic GvHD vs. the number of mismatched ligands as given by the fitted logistic regression models for M1–M4. The shaded areas visualize the 95% confidence

intervals for prediction.

deviation of 1.31. 147, 3 2, and 5 patients had 12, 11, 10, and 9
or less matched alleles, respectively. To evaluate the HLA allele
overlap between our data and the utilized external data sources,
the HLA class I allele representation in the IEDB and mHA data
sets was explored. For HLA-A, 96.8% of alleles in our cohort
were found in the IEDB data and 78.7% in the mHA data. For
HLA-B, the figures were 99.8 and 31.8%, respectively. 89.5% of
HLA-C alleles were found in the IEDB data, and HLA-C was not
represented in the mHA data.

Based on the sets of recipient-mismatched peptides, four
approaches to estimating cGvHD related alloreactivity in sibling
HSCT were evaluated as given in Table 2. The estimated
ligand counts as given by the four approaches (termed M1–
M4) are shown by the boxplots in Figure 2A. The results of
logistic regression analysis between the estimates and cGvHD
grades “no” vs. “extensive” (n = 77 and n = 51, respectively)
are summarized by Figure 2B. The logistic regression model
probabilities for severe cGvHD vs. recipient-mismatched ligand
counts are shown by Figure 2C. Full logistic regression results

are given in Table 3. The obtained nominal p-values for methods
M1–M4 were 0.00976, 0.0234, 0.0366, and 0.36, respectively.
After Benjamini–Hochberg FDR adjustment the values were 0.04,
0.046, 0.0493, and 0.36, respectively. Thus, M1–M3 remained
significant (FDR < 0.05). The obtained regression coefficients
(log odds) and their 95% confidence intervals, respectively, were
0.639 (0.392–0.886), 0.507 (0.283–0.731), 0.457 (0.238–0.676),
and 0.206 (−0.019–0.431), Thus, the methods M1–M4 were
all consistent in their positive effect direction (Figure 2B). To
evaluate the robustness of the M4 approach to parameter value
selection, a less stringent cutoff value of ≤6 was also used. This
did not significantly change the result as the obtained regression
coefficient was 0.196.

DISCUSSION

Collectively, the results of the present study assessing the
alloimmunity capacity in a sibling allo-HSCT setting suggest that
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TABLE 3 | Logistic regression results for chronic GvHD by analysis methods

M1–M4.

Method Variable Estimate Std. deviation Z-value P-value

M1 (Intercept) −2.97 3.54 −0.84 0.4

Ligand count 0.64 0.25 2.58 0.01

Number of

mismatched

peptidesa

−0.06 0.22 −0.28 0.78

Sum of HLA

frequencies

−0.44 0.25 −1.78 0.07

Tr direction −0.89 0.48 −1.87 0.06

Donor age 0.33 0.21 1.54 0.12

Number of

unique HLAs

0.13 0.21 0.62 0.53

Tr year 0.13 0.23 0.59 0.56

HLA matching 0.27 0.29 0.93 0.35

M2 (Intercept) −3.19 3.43 −0.93 0.35

Ligand count 0.51 0.22 2.27 0.02

Number of

mismatched

peptidesb

0.02 0.21 0.1 0.92

Sum of HLA

frequencies

−0.38 0.24 −1.6 0.11

Tr direction −0.87 0.47 −1.85 0.06

Donor age 0.27 0.21 1.27 0.2

Number of

unique HLAs

0.14 0.21 0.65 0.52

Tr year 0.11 0.23 0.5 0.62

HLA matching 0.29 0.29 1.02 0.31

M3 (Intercept) −3.11 3.62 −0.86 0.39

Ligand count 0.46 0.22 2.09 0.04

Number of

mismatched

peptidesa

0.04 0.2 0.2 0.85

Sum of HLA

frequencies

−0.32 0.23 −1.4 0.16

Tr direction −0.8 0.46 −1.73 0.08

Donor age 0.34 0.21 1.6 0.11

Number of

unique HLAs

0.18 0.21 0.84 0.4

Tr year 0.13 0.22 0.6 0.55

HLA matching 0.28 0.3 0.93 0.35

M4 (Intercept) −2.8 3.58 −0.78 0.43

Ligand count 0.21 0.23 0.92 0.36

Number of

mismatched

peptidesb

0.11 0.2 0.55 0.59

Sum of HLA

frequencies

−0.21 0.21 −1 0.32

Tr direction −0.76 0.46 −1.65 0.1

Donor age 0.32 0.21 1.56 0.12

Number of

unique HLAs

0.26 0.26 1 0.32

Tr year 0.02 0.22 0.11 0.92

HLA matching 0.25 0.3 0.84 0.4

aThe numbers of all recipient-mismatched peptides.
bThe numbers of recipient-mismatched peptides filtered by immunogenicity

and expression.

the risk of extensive chronic GvHD is increased by a higher
degree of recipient mismatching. Even though the observed
effect was relatively weak, all four of the approaches applied to
estimating the alloimmunity capacity were in agreement with
regard to their effect direction, supporting the authenticity of
the association with chronic GvHD and suggesting that these
methods are able to measure relevant properties of recipient-
mismatching peptides. This result is also consistent with studies
analyzing the presence of sets of known recipient-mismatched
mHAs in chronic GvHD (18, 21). However, a study by Martin
et al. using the total sum of mismatches in coding variants as a
measure of alloimmunity potential (14) reported an association
for acute GvHD in sibling allo-HSCT, but found no association
for chronic GvHD. This discrepancy could be due to differences
in methodology, as in our study we focused solely on HLA-
presentation of mismatching peptides rather than all non-
synonymous mismatches. Synonymous variants in general have
been recognized to affect gene expression through codon usage
bias (45) and in this way may contribute to mismatching in allo-
HSCT as well. In terms of disease mechanisms, it is established
that the acute form of GvHD is triggered by strong cytokine
storm as a result of leakage of lipopolysaccharides of commensal
microbes from the intestinal lumen (46). Moreover, autosomal
mHAs were not found to associate with acute GvHD, except for
Y-chromosomal mHAs in female-to-male HSCT (22). Hence, the
role of alloimmune differences between the donor and recipient
may be secondary for acute GvHD, but could influence the risk
for autoimmune-like chronic GvHD.

Out of the four methods applied for assessing the
alloimmunity capacity, the in silico prediction of HLA peptide
binding affinity and immunogenicity showed the weakest
association. Although prediction of HLA binding for peptides
originating from within known mHA-producing genes has been
shown to allow discovering more potential mHAs in the same
genes and correlate with GvHD risk (20), applied genome-wide,
the computational prediction method did not significantly
associate with clinical outcome. This could be due to the fact
that the process of peptide cleavage and the formation of HLA-
peptide complex are still incompletely understood and cannot be
reliably modeled from sequence alone (47, 48). However, since
in our analysis we did not model proteasomal cleavage or TAP
transport independently of HLA affinity, their contribution to
the overall prediction capacity of HLA presentation of peptides
could not be assessed. In a genome-wide application, this
approach could lead to a relatively high number of false positives
or low sensitivity, and thus may not be ideal for assessing total
alloimmunity capacity. Also, the choice of an inclusion threshold
value for predicted high-affinity peptides could affect the analysis
result, albeit our analysis with lower stringency threshold
suggests that the approach is relatively robust for the choice
of threshold.

Moreover, we were not able to find advantage in limiting
the pool of analyzed recipient-mismatched and IEDB matched
peptides to computationally predicted immunogenic and
hematopoietic and epithelial tissue expressed molecules.
Similarly to current methods of HLA affinity prediction, the
immunogenicity algorithms may not be accurate enough for
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genome-wide application despite that these computational
tools have proven to be useful when combined with an
experimental proteogenomics approach that specifically
targets HLA-associated peptides (47). On the other hand,
the accuracy of immunogenicity estimate may benefit
from masking of certain amino acid positions in particular
alleles which was not implemented in our filtering step.
Furthermore, the observation that utilizing all available
IEDB ligands together with total recipient-mismatched
peptides provided the best estimate suggests that there
may be numerous, presently unknown mHAs relevant for
alloimmunity (49).

While the method employing known mHAs showed an effect
to the same direction as the full IEDB HLA ligand based
approach, the effect was clearly smaller, which could be due to
low numbers of mHA peptides in the set and limited to a few
HLA alleles, reducing the signal-to-noise ratio and leading to
lower statistical power. Our study is also limited by restricting
the analysis exclusively to 9-mer peptides whereby it cannot
address the effect of ligands presented by HLA class II receptors
such as HLA-DR, -DB, and -DP (13). Thus, expanding the
peptide length repertoire could improve particularly the results
of the mHA based analysis, provided that sufficient HLA class
II mHA data are available. Furthermore, the results we obtained
for chronic GvHD may not be directly comparable with non-
European populations owing both to our study cohort and to the
IEDB andmHA data collections’ focus on ligands from European
subjects. Allele frequencies differing between populations (50)
may impact the likelihood of finding matches in HLA ligand
data sets.

In summary, the effects observed by us and others in similar
studies emphasize the need for a comprehensive meta-analysis
and large cohorts to gain further insight into the impact of
non-HLA mismatches in allo-HSCT. In particular, it is essential
to expand the knowledge of the mHA repertoire for the
design of novel treatments and diagnostic tools for allo-HSCT
complications. In this respect, it may be beneficial to employ

computational approaches making use of available experimental
HLA ligand data.
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