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RESEARCH ARTICLE Open Access

New insights into DNA methylation
signatures: SMARCA2 variants in
Nicolaides-Baraitser syndrome
Eric Chater-Diehl1†, Resham Ejaz2†, Cheryl Cytrynbaum1,10,17, Michelle T. Siu1, Andrei Turinsky1,26, Sanaa Choufani1,
Sarah J. Goodman1, Omar Abdul-Rahman3, Melanie Bedford4,5, Naghmeh Dorrani6, Kendra Engleman7,
Josue Flores-Daboub8, David Genevieve9, Roberto Mendoza-Londono1,10,11, Wendy Meschino4, Laurence Perrin12,
Nicole Safina13,14,15, Sharron Townshend16, Stephen W. Scherer1,17,18,19, Evdokia Anagnostou20,21, Amelie Piton22,23,
Matthew Deardorff24,25, Michael Brudno1,26,27, David Chitayat10,17,28 and Rosanna Weksberg1,10,17,29*

Abstract

Background: Nicolaides-Baraitser syndrome (NCBRS) is a neurodevelopmental disorder caused by pathogenic
sequence variants in SMARCA2 which encodes the catalytic component of the chromatin remodeling BAF complex.
Pathogenic variants in genes that encode epigenetic regulators have been associated with genome-wide changes
in DNA methylation (DNAm) in affected individuals termed DNAm signatures.

Methods: Genome-wide DNAm was assessed in whole-blood samples from the individuals with pathogenic
SMARCA2 variants and NCBRS diagnosis (n = 8) compared to neurotypical controls (n = 23) using the Illumina
MethylationEPIC array. Differential methylated CpGs between groups (DNAm signature) were identified and used to
generate a model enabling classification variants of uncertain significance (VUS; n = 9) in SMARCA2 as “pathogenic”
or “benign”. A validation cohort of NCBRS cases (n = 8) and controls (n = 96) demonstrated 100% model sensitivity
and specificity.

Results: We identified a DNAm signature of 429 differentially methylated CpG sites in individuals with NCBRS. The genes
to which these CpG sites map are involved in cell differentiation, calcium signaling, and neuronal function consistent with
NCBRS pathophysiology. DNAm model classifications of VUS were concordant with the clinical phenotype; those within
the SMARCA2 ATPase/helicase domain classified as “pathogenic”. A patient with a mild neurodevelopmental NCBRS
phenotype and a VUS distal to the ATPase/helicase domain did not score as pathogenic, clustering away from cases and
controls. She demonstrated an intermediate DNAm profile consisting of one subset of signature CpGs with methylation
levels characteristic of controls and another characteristic of NCBRS cases; each mapped to genes with ontologies
consistent with the patient’s unique clinical presentation.

(Continued on next page)
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Conclusions: Here we find that a DNAm signature of SMARCA2 pathogenic variants in NCBRS maps to CpGs relevant to
disorder pathophysiology, classifies VUS, and is sensitive to the position of the variant in SMARCA2. The patient with an
intermediate model score demonstrating a unique genotype-epigenotype-phenotype correlation underscores the
potential utility of this signature as a functionally relevant VUS classification system scalable beyond binary “benign” versus
“pathogenic” scoring. This is a novel feature of DNAm signatures that could enable phenotypic predictions from
genotype data. Our findings also demonstrate that DNAm signatures can be domain-specific, highlighting the precision
with which they can reflect genotypic variation.

Keywords: SMARCA2, NCBRS, DNA methylation, Signature, Epigenomics, Chromatin remodeling, BAF complex, SWI/SNF,
VUS

Background
Hundreds of genes encoding epigenetic regulators,
known as epigenes, are critical for normal development
[1]. Specific types of epigenes, such as chromatin remo-
delers and histone modifying enzymes, initiate and
maintain numerous developmental processes by target-
ing cell-type-specific regulatory genes [2]. Pathogenic se-
quence variants in many epigenes cause a variety of
genetic disorders characterized by intellectual disability
(ID) and disruption of normal growth [1, 3–5]. Our
group has demonstrated that many of the disorders
caused by pathogenic variants in epigenes are associated
with functionally relevant DNAm signatures i.e. charac-
teristic gene-specific changes in DNAm in blood cells.
These signatures have been particularly informative for
elucidating the pathophysiology of each disorder and for
classifying sequence variants as pathogenic or benign. A
variety of epigenes have now been identified to demon-
strate such signatures including Nuclear Receptor Bind-
ing SET Domain Protein 1 (NSD1) in Sotos syndrome
[6], Lysine Methyltransferase 2D (KMT2D) in Kabuki
syndrome [7, 8], Chromodomain-helicase-DNA-binding
protein 7 (CHD7) in CHARGE syndrome [8], Lysine-
Specific Demethylase 5C (KDM5C) in non-syndromic
intellectual disability [9], Chromodomain Helicase DNA
Binding Protein 8 (CHD8) in autism spectrum disorders
(ASD) [10], and DNA Methyltransferase 1 (DNMT1) in
adult-onset autosomal dominant cerebellar ataxia with
deafness and narcolepsy (ADCA-DN) [11]. Gene-specific
DNAm signatures are likely to exist for many disorders
caused by dysregulation of the epigenetic machinery.
Elucidation of DNAm signatures has significant poten-

tial for clinical translation. Whole-exome and targeted
diagnostic sequencing can identify sequence variants in
genes known to be associated with specific disorders.
While some variants are clearly identified as pathogenic
or benign, a significant proportion are reported as variants
of uncertain significance (VUS). Establishing the patho-
genicity of these variants can be challenging. In rare disor-
ders this is particularly difficult as many variants have not

previously been reported. In silico tools can be used to
predict the effects of novel genomic variants on protein
function, but they have many limitations. The accuracy of
these predictions is impacted by the location of the variant
in certain protein domains [12], the strength of evolution-
ary conservation of the genomic position [13], and overfit-
ting by using the same variant in both training and
evaluation of these tools [13]. In this context, DNAm sig-
natures provide a novel functional classification method
with significant potential to improve the output of the
genome diagnostics.
Nicolaides-Baraitser syndrome (NCBRS; [MIM#

601358]), is a rare (prevalence < 1/1,000,000) epigene
disorder characterized by coarse facial features, sparse
hair, seizures, microcephaly, small stature, prominent in-
terphalangeal joints, and ID. NCBRS was first reported
as a distinct clinical entity in 1993 by Paola Nicolaides
and Michael Baraitser, and soon after was identified in
other patients [14–16]. NBCRS is caused by pathogenic
missense variants in SMARCA2 (SWI/SNF Related,
Matrix Associated, Actin Dependent Regulator of Chro-
matin, Subfamily A, Member 2; GenBank NG_032162.2)
[17], the core catalytic subunit of the mammalian BAF
(BRG1- or HBRM-associated factors) chromatin remod-
eling complex, also known as the SWI/SNF complex.
The BAF complex is a key regulator of neurological de-
velopment and is also involved in maintenance of neur-
onal function [18–20]. SMARCA2 hydrolyzes ATP,
facilitating nucleosome remodeling at target sites, allow-
ing recruitment of other transcriptional regulators [21,
22]. An exome sequencing study of 10 patients with
NCBRS established the etiological role of SMARCA2
missense variants in the disorder [17]. The authors
noted that all pathogenic sequence variants were de
novo heterozygous missense variants in the ATPase/heli-
case domain, indicating that these changes may not im-
pair BAF complex assembly but rather disrupt ATPase
function possibly acting in a dominant negative manner
[17]. To date, the vast majority of SMARCA2 pathogenic
variants in individuals with NCBRS have mapped to the
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ATPase/C-terminal helicase domain [17]; only two cases
with typical NCBRS phenotypes have been reported to
harbor missense variants distal to this domain [23, 24].
Sequence variants in other BAF complex genes are asso-
ciated with other neurodevelopmental disorders includ-
ing SMARCC1/2, PBRM1, ARID1A/B and SMARCA4 in
ASD, PBRM1 and ARID1B in schizophrenia, SMARCB1
in Kleefstra syndrome, and ARID1A/B, SMARCA4,
SMARCB1, and SMARCE1 Coffin-Siris syndrome (CSS)
[19, 21]. CSS has substantial clinical overlap with
NCBRS [22, 25–27]; due to this overlap some individuals
with NCBRS have been misclassified as CSS [28]. More
functional and cost-effective diagnostics would greatly
aid in differential diagnosis of these cases, ending the
diagnostic odyssey for these families.
Here, we generated a DNAm signature associated with

NCBRS by comparing patient samples with pathogenic
variants in the SMARCA2 gene to neurotypical controls.
We then used the signature to generate a model facilitat-
ing classification of VUS in SMARCA2 as “pathogenic”
or “benign”. Gene ontology analysis of the genes overlap-
ping the signature CpG sites identified functions and
pathways relevant to NCBRS pathophysiology. Most im-
portantly, we found one case of NCBRS with classic syn-
dromic features but mild neurodevelopmental findings
demonstrating a partial DNAm signature. This partial
signature was composed of two subsets of CpG sites,
one with methylation values characteristic of controls
and the other typical of NCBRS profiles. Further the
genes these CpG subsets mapped to were consistent
with the patient’s specific clinical phenotype.

Methods
Research participants
Informed consent was obtained from all research partici-
pants according to the protocol approved by the Research
Ethics Board of the Hospital for Sick Children (REB#
1000038847). Cases were recruited through the Division
of Clinical and Metabolic Genetics at the Hospital for Sick
Children, Toronto, Ontario; Children’s Hospital of Phila-
delphia, Pennsylvania, USA; North York General Hospital,
Toronto, Ontario; Primary Children’s Hospital, Salt Lake
City, Utah; Children’s Mercy Hospital, Kansas City, Kan-
sas; Hôpitaux Universitaires de Strasbourg, Strasbourg,
France; and Prevention Genetics, USA.
Our study cases consisted of individuals with

SMARCA2 variants (n = 17) of whom 12 had a clinical
diagnosis of NCBRS. Clinically, the NCBRS cases
encompassed the variable spectrum of disorder sever-
ity (detailed clinical data found in Additional file 2:
Table S1). SMARCA2_5 and SMARCA2_11 have been
previously published as NBS24 and NBS26 [17],
SMARCA2_1 has also been previously described by
our group [29]. Unique features noted in the cohort

included ophthalmologic abnormalities, such as uni-
lateral retinal detachment in SMARCA2_1, bilateral
infantile glaucoma in SMARCA2_4 and myopia in
SMARCA2_12 and SMARCA2_14. SMARCA2_12 was
different from other reported cases in the mild degree
of ID; she is a 16-year-old with normal growth pa-
rameters, seizures, learning disability and attention
deficit-hyperactivity disorder, who is enrolled to begin
college with good social functioning. Clinical photos
of SMARCA2_12 are not available as per parental
wishes, but she displayed facial coarsening with full
lips, a wide mouth and lower lip eversion. Hair was
not sparse but rather slow-growing, curly and coarse
in quality.

NCBRS-SMARCA2 DNAm signature cases
Individuals with pathogenic missense variants in the
SMARCA2 ATPase/helicase domain (as determined by
ACMG guidelines by the referring clinical laboratory)
and a clinical diagnosis of NCBRS (n = 8) were used to
generate the DNAm signature (Table 1). The eight indi-
viduals in the signature derivation cohort had classic fea-
tures of NCBRS, with progressive facial coarsening with
age (Fig. 1). Sparse hair and malar hypoplasia were par-
ticularly evident in infancy (Fig. 1d) with eversion of the
lower lip and prognathism emerging more in adulthood
(Fig. 1a). Apart from the craniofacial characteristics,
poor growth and feeding, seizures, absent or delayed
speech, variable ID, and behavioral disturbances (ex. de-
creased inhibitions, self-aggression, compulsive behavior,
and sensory sensitivities in some patents) continue to be
common features of the syndrome in the cohort. ASD
and ADHD were formally diagnosed in two individuals
(Additional file 2: Table S1).

SMARCA2 variant classification cases
Individuals with SMARCA2 variants (VUS [n = 5]; be-
nign [n = 4]) were classified using the DNAm signature.
Four individuals had a clinical diagnosis of NCBRS with
VUS in SMARCA2. The remaining five cases (VUS [n =
1]; benign [n = 4]) had no obvious phenotypic features of
NCBRS and were identified through exome sequencing.
Available phenotypic details can be found in Additional
file 2: Table S1.

Signature controls
The DNAm signature was derived using age- and sex-
matched neurotypical controls (n = 23) (Additional file 2:
Table S2) obtained from the POND Network, The Hos-
pital for Sick Children, and The University of Michigan
(Dr. Greg Hanna) [30]. Neurotypical was defined as
healthy and developmentally normal by using formal
cognitive/behavioral assessments (samples from POND
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and The University of Michigan) or via physician/paren-
tal screening questionnaires (Hospital for Sick Children).

DNAm microarray data processing
Whole-blood DNA samples were bisulfite converted using
the EpiTect Bisulfite Kit (EpiTect PLUSBisulfite Kit,

QIAGEN). The sodium bisulfite converted DNA was then
hybridized to the Illumina Infinium Human Methylatio-
nEPIC BeadChip to interrogate over 850,000 CpG sites in
the human genome at The Center for Applied Genomics
(TCAG), SickKids Research Institute, Toronto, Ontario,
Canada. Sample groups were divided equally among chips,

Table 1 Variant information and selected clinical data for samples with SMARCA2 sequence variants

Sample ID Variant Inheritance PolyPhen
Prediction Effect
(score)

SIFT
prediction
effect

Mutation Taster
prediction
effect

CADD
score

ExAC Total
frequency

Diagnosis ACMG
classification

NCBRS-
SMARCA2
score

SMARCA2_
1

c.3493C > A,
p.Gln1165Lys

de novo Probably
damaging
(0.924)

Deleterious Disease causing 22.9 – NCBRS Pathogenic 0.37

SMARCA2_
2

c.3209 T > A,
p.Leu1070Gln

– Probably
damaging
(0.998)

Deleterious Disease causing 29.3 – NCBRS Likely
pathogenic

0.27

SMARCA2_
4

c.2639 C > T,
p.Thr880Ile

– Probably
damaging
(0.999)

Deleterious Disease causing 28.2 – NCBRS VUS 0.25

SMARCA2_
5

c.2648C > T,
p.Pro883Leu

– Probably
damaging
(0.999)

Deleterious Disease causing 28.9 – NCBRS Likely
pathogenic

0.24

SMARCA2_
6

c.2486C > T,
p.Thr829Ile

de novo Probably
damaging
(0.999)

Deleterious Disease causing 29.1 – NCBRS Pathogenic 0.22

SMARCA2_
7

c.2264A > G,
p.Lys755Arg

– Probably
damaging
(0.997)

Deleterious Disease causing 33.0 – NCBRS Pathogenic 0.36

SMARCA2_
8

c.3623C > G,
p.Ser1208Cys

de novo Probably
damaging
(0.999)

Deleterious Disease causing 27.0 – NCBRS Likely
pathogenic

0.32

SMARCA2_
9

c.2348C > G,
p.Ser783Trp

de novo Probably
damaging (1.0)

Deleterious Disease causing 34.0 – NCBRS Likely
pathogenic

0.22

SMARCA2_
10

c.2564G > C,
p.Arg855Pro

de novo Probably
damaging
(0.999)

Deleterious Disease causing 28.7 – NCBRS VUS 0.24

SMARCA2_
11

c.2255G > C,
p.Gly752Ala

– Probably
damaging
(0.999)

Deleterious Disease causing 27.9 – NCBRS Likely
pathogenic

0.27

SMARCA2_
12

c.3849G > T,
p.Trp1283Cys

de novo Probably
damaging
(0.999)

Tolerated Disease causing 34.0 – NCBRS VUS −0.04

SMARCA2_
14

c.2558G > T,
p.Gly853Val

– Probably
damaging (0.83)

Deleterious Disease causing 29.7 – NCBRS VUS 0.29

SMARCA2_
15

c.400G > A,
p.Val134Ile

– Probably
damaging (0.84)

Tolerated Disease causing 22.3 0.00001648 – VUS −0.25

SMARCA2_
16

c.674A > C,
p.Gln225Pro

– Benign (0) Tolerated Benign 14.7 0.0001821 – Benign −0.32

SMARCA2_
17

c.689A > C,
p.Gln230Pro

– Benign (0) Tolerated Polymorphism 12.7 0.0003702 – Benign −0.31

SMARCA2_
18

c.695A > C,
p.Gln232Pro

– Benign (0) Tolerated Polymorphism 12.7 0.0006005 – Benign −0.30

SMARCA2_
19

c.1878-3 T >
C, p.Gly626,

– – – – - - – Benign −0.24

Cases used to generate the NCBRS-SMARCA2 DNAm signature are in bold. CADD score > 20 indicates a variant in the top 1% of deleterious variants in the human
genome, > 30 in the top 0.1%. ACMG classification was made by the referring clinical laboratory for each sample. NCBRS-SMARCA2 score was generated in this
study based on the DNAm signature (see Methods). Detailed clinical data are presented in Additional file 2: Table S1
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then randomly assigned a chip position. All signature-
derivation cases and controls were run in the same batch
of chips and reagents. The minfi Bioconductor package in
R was used to preprocess data including quality control,
Illumina normalization and background subtraction
followed by extraction of β values. Standard quality con-
trol metrics in minfi were used, including median intensity
QCplots, density plots, and control probe plots: all
showed good data quality for all samples. Probes were re-
moved with detection flaws (n = 801), probes near SNPs
with minor allele frequencies above 1% (n = 29 958),
cross-reactive probes [31] (n = 41 975), probes with raw
beta = 0 or 1 in > 0.25% of samples (n = 15), non-CpG
probes (n = 2 925), X and Y chromosome probes (n = 57
969) for a total of n = 774 521 probes remaining for differ-
ential methylation analysis. The accession number for the
DNAm data for the cases, controls, and test variants re-
ported in this paper is GEO: GSE125367.

NCBRS-SMARCA2 DNAm signature
We defined a DNAm signature of differentially methyl-
ated sites in whole-blood DNA of NCBRS cases with
pathogenic SMARCA2 variants (n = 8) compared with
age- and sex-matched control samples (n = 23). We
termed this an NCBRS-SMARCA2-specific DNAm sig-
nature since it was derived specifically on SMARCA2
pathogenic variant samples within the ATPase/helicase
domain with an NCBRS clinical diagnosis. We used the
cell-type proportion estimation tool in minfi based on
Illumina EPIC array data from FACS sorted blood cells
[32]. This indicated a significant decrease in CD4+ T
cells and a significant increase in monocytes in the sig-
nature cases (Additional file 2: Table S3). Since these cell
types are highly correlated, we used only estimated
monocyte proportion in the regression model as it was
the more significantly different. As there is a substantial
effect of age on DNAm [33], we used only cases and

Fig. 1 Clinical photographs of selected study patients with a clinical diagnosis of Nicolaides-Baraitser syndrome. SMARCA2_1 (a), SMARCA2_2 (b)
and SMARCA2_6 (c) were part of the signature derivation case group and share the coarse facial features, thick eyebrows, progressive eversion of
the lower lip and prognathism associated with NCBRS. These features are most pronounced in the eldest individual, SMARCA2_1 (a), and are
known to progress with age. SMARCA2_10 (d), SMARCA2_14 (e), and SMARCA2_4 (f) also show phenotypic features consistent with NCBRS, have
variants of uncertain significance in SMARCA2 and were part of the SMARCA2 test variant group
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controls older than 2 years of age to generate the
NCBRS signature. We verified that the signature could
classify controls under 2 years using four one-year-old
neurotypical controls. CpG sites with significantly differ-
ent methylation values between signature cases and con-
trols were identified using limma regression, with age,
sex, and estimated monocyte proportion as covariates.
We identified a DNAm signature with a Benjamini-
Hochberg adjusted p-value< 0.05 and a |Δβ| > 0.10 (10%
methylation difference) comprised of 429 probes (Add-
itional file 2: Table S4).

NCBRS-SMARCA2 score
We developed a classification model using the NCBRS-
SMARCA2 DNAm signature. At each of the 429 signature
CpGs, a median DNAm level was computed across the
NCBRS cases (n = 8) used to generate the signature,
resulting in a reference profile. Similarly, a robust median-
DNAm reference profile for the signature controls (n =
23) was created. The classification of each test variant or
control DNAm sample was based on extracting a vector
Bsig of its DNAm values in the signature CpGs, and com-
paring Bsig to the two reference profiles computed above.
NCBRS-SMARCA2 score was defined as: NCBRS-
SMARCA2 score = r(Bsig, NCBRS profile) – r(Bsig, control
profile) [1] where r is the Pearson correlation coefficient.
A classification model was developed based on scoring
each new DNAm sample using the NCBRS-SMARCA2
Score: a test sample with a positive score is more similar
to the NCBRS reference profile based on the signature
CpGs, and is therefore classified as “pathogenic”; whereas
a sample with a negative score is more similar to the
control-blood reference profile, and is classified as “be-
nign”. The classification is implemented in R. To test spe-
cificity, EPIC array data from 94 additional neurotypical
controls were scored and classified. To test sensitivity,
publically available EPIC array data from NCBRS cases
with different variants [34] (GSE116992) were scored and
classified. All were classified correctly, demonstrating
100% sensitivity and specificity of the signature. Publicly
available sorted blood cell type data [32] (GSE110554)
were also scored and classified.

Pathway analysis
The list of 429 DNAm signature CpG sites was submitted
to GREAT (Genomic Regions Enrichment of Annotations
Tool) for gene ontology (GO) enrichment analysis [35].
Enrichment of the gene list in each GO term is calculated
using a foreground/background hypergeometric test over
genomic regions; we used the set of CpG sites after minfi
probe quality control (n = 774 521) as a background set.
Terms with two or more gene hits were reported (Add-
itional file 2: Tables S5-S8).

Differentially methylated regions in the signature-
derivation cohort
The bumphunting [36, 37] design matrix accounted for
the potential confounding effects of sex, age, and blood
cell-type factors (estimated monocyte proportion). The
analysis considered CpGs with |Δβ| > 10% between cases
and controls as candidates for the DMRs, with gaps <
500 bp between neighboring CpGs. Statistical signifi-
cance was established using 1,000 randomized bootstrap
iterations, as is recommended. The resulting DMRs were
post-filtered to retain only those with p-value< 0.01 and
a length (number of consecutive CpGs) of a least four.

DNAm validation by sodium bisulfite pyrosequencing
An independent analysis of DNAm was performed for
NCBRS-SMARCA2 signature cases (n = 8) and a subset
of matched controls (n = 8) using sodium bisulfite pyro-
sequencing. Controls 2, 4, 10, 13, 14, 17, 18, and 24 were
used, as they mostly closely matched the age and sex of
the NCBRS cases. These assays were designed using
QIAGEN Assay Design Software v1.0.6 to target-specific
CpGs identified by the microarray experiment (Add-
itional file 1: Table S5). Pyrosequencing was done using
the PyroMark Q24 system and Pyrosequencing Gold Re-
agents (QIAGEN).

Results
NCBRS-SMARCA2 DNA methylation signature
To define a gene-specific DNAm profile of SMARCA2
variants associated with NCBRS, we compared genome-
wide DNAm in NCBRS patients harboring pathogenic
SMARCA2 sequence variants, according to ACMG guide-
lines (n = 8), with matched neurotypical controls (n = 23;
Fig. 1). A DNAm signature of 429 significantly differen-
tially methylated CpG sites was identified (adjusted p-
value< 0.05, |Δβ| < 10% [10% methylation difference];
Additional file 2: Table S4). Hierarchical clustering of
DNAm values at the signature sites clearly distinguished
NCBRS cases from neurotypical controls (Fig. 2).

SMARCA2 variant classification
We derived an NCBRS-SMARCA2 score based on the
DNAm signature to classify a validation cohort of inde-
pendent cases and controls as well as SMARCA2 query
variants (Additional file 2: Table S6). Negative scores
were assigned to 94/94 independent neurotypical
pediatric controls classifying them as benign, demon-
strating 100% specificity of the signature (Fig. 2). Positive
scores were assigned to 8/8 independent NCBRS cases
with different pathogenic variants in the ATPase/helicase
domain from a previous study [34], demonstrating 100%
sensitivity of the signature. Three VUS in SMARCA2
were assigned positive scores, classifying them as “patho-
genic” using our DNAm model (Fig. 2). Five SMARCA2
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variant samples demonstrated negative scores classifying
them as “benign” using our DNAm model (Fig. 2).
One sample from a patient with a clinical diagnosis

of NCBRS (but only mild neurodevelopmental issues)
and a VUS distal to the ATPase/helicase domain
(SMARCA2_12) was assigned a model score less than
0 (classifying as “benign”); however, the sample did
not clearly cluster with either cases or controls
(Fig. 2). This sample demonstrated a DNAm profile
between that of NCBRS cases and controls (Fig. 2).
The unique DNAm profile of SMARCA2_12 arises
from the fact that at some CpG sites DNAm aligns
with NCBRS cases whereas at others it aligns with
controls (Additional file 1: Figure S1). We defined
subsets of CpG sites at which the DNAm value
SMARCA2_12 was typical of either controls or
NCBRS cases in this study. To include signature CpG
sites conservatively, we restricted defining sites similar
to NCBRS cases as those within the range of β-values
observed in the signature-derivation NCBRS cases

and not in the range of controls (n = 106; Additional
file 2: Table S4). Similarly, control-overlapping sites
were defined as those within the observed range of
signature-derivation control β-values and not the
range of NCBRS cases (n = 204; Additional file 2:
Table S4). At 204/429 (48%) of the signature CpG
sites the β-value of SMARCA2_12 overlapped con-
trols in that they were both within the control range
and outside of the NCBRS range (Additional file 2:
Table S4). At 118/429 (28%) of the signature sites the
β-value of SMARCA2_12 overlapped the NCBRS
methylation values. Gene ontology analysis of these
CpG sites is presented below. No overlap of DNAm
status between either cases or controls occurred at
21/429 (5%) signature sites for SMARCA2_12 (Add-
itional file 2: Table S4). At the remaining 86/429
(20%) sites, DNAm status of SMARCA2_12 over-
lapped both NCBRS and control β-value ranges.
There were no differences in the proportion of hyper-
vs. hypo-methylated probes; however, DNAm levels

Fig. 2 NCBRS-SMARCA2 DNAm signature classifies variants of uncertain significance. a The heatmap shows the hierarchical clustering of NCBRS
cases (n = 8) and age- and sex-matched neurotypical controls (n = 23) using 429 differentially methylated CpG sites specific to SMARCA2
pathogenic variants. The color gradient indicates the β (DNAm) value ranging from 0.0 (blue) to 1.0 (yellow). DNAm profiles fall into two separate
clusters corresponding to NCBRS cases (orange) and controls (cyan). Euclidean distance metric is used in the clustering dendrogram. b
Classification model based on DNAm signature. The median-methylation profile for signature-derivation NCBRS cases (n = 8) and controls (n = 23)
were calculated at the CpG sites comprising the NCBRS-SMARCA2 DNAm signature. The Pearson correlation of each sample with the median
profile of controls and that of NCBRS cases are plotted on the x- and y-axes respectively. The difference of these correlations constitute the
NCBRS-SMARCA2 score. Positive NCBRS-SMARCA2 scores (pathogenic) fall above the decision boundary (red line) and negative (benign) fall below
it. Additional neurotypical control whole-blood samples (n = 94; Control Validation) all classified as benign. Additional NCBRS cases with
pathogenic SMARCA2 variants (n = 8; NCBRS Validation; GSE116992) classified as pathogenic. SMARCA2 variant test cases (n = 9; grey squares with
SMARCA2_IDs denoted) were scored: three were classified as pathogenic (SMARCA2_4, SMARCA2_10, and SMARCA2_14), five were classified as
benign (SMARCA2_15–19, IDs not shown), and one was classified as benign but its score was near 0, falling close to the decision boundary
(SMARCA2_12). c Schematic of the SMARCA2 amino acid sequence with NCBRS signature cases and SMARCA2 test variants indicated. Numeric
labels indicate sample IDs corresponding to those in (b)
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across probes in the same gene tended overlap with
either cases or controls (Additional file 2: Table S4;
Additional file 1: Figure S2).

Variant classification is independent of blood cell type
composition and age
We assessed our samples for possible differences in
blood cell proportions using our DNAm data. We found
a significant (p < 0.001, Students t-test) reduction in pre-
dicted CD4+ T cell proportion in the NCBRS cases used
to derive the signature versus signature controls and a
significant increase (p < 0.05, Students t-test) in pre-
dicted monocyte proportion (Additional file 1: Table S3).
Therefore, we accounted for monocyte cell proportion
in our regression model. To further ensure that signa-
ture classification was not affected by cell-type propor-
tion, we used the NCBRS-SMARCA2 score to classify
DNAm data from sorted cell populations; all cell types
were assigned negative scores paralleling whole-blood
controls more than NCBRS cases (Additional file 1: Fig-
ure S2). Since the NCBRS-SMARCA2 signature was de-
rived using cases and controls greater than 3 years of
age, we classified four additional whole-blood samples
from one-year-old controls; all were assigned negative
scores classifying as benign (Additional file 1: Figure S3).
We also scored DNAm data for three technical repli-
cates that were run using the same DNA sample in a dif-
ferent batch of reagents and microarrays: two cases used
to derive the signature (SMARCA2_1 SMARCA2_2) and
one test variant (SMARCA2_4). All three demonstrated
highly similar scores differing by less than 1% from their
replicate samples (Additional file 2: Table S6; Additional
file 1: Figure S3).

Genes with differential DNAm in the SMARCA2-specific
signature
The 429 CpG sites in the NCBRS-SMARCA2 DNAm sig-
nature were located in the promoters or gene bodies of 225
RefSeq genes (Additional file 2: Table S4). We performed
gene ontology analysis of the 429 signature sites using
GREAT [35]. GREAT identified 547 genes associated with
the 429 CpG sites. We assessed GO terms enriched in the
signature CpG sites for molecular function (Additional
file 2: Table S7), biological processes (Additional file 2:
Table S8), cellular components (Additional file 2: Table S9),
and human phenotypes (Additional file 2: Table S10). Path-
ways and processes involved in brain function/development
as well as cellular growth and development were identified
across these GO analyses. Finally, we performed an add-
itional analysis looking for differentially methylated regions
(DMRs) in the signature derivation cases versus controls
using bumphunting [36] which defines consistent patterns
of DNAm gain or loss in the vicinity of several genes. The

top hits included GJA8, CACNA1H, and HCG4P6 (Add-
itional file 2: Table S11).
Next, we assessed the GO terms enriched for by the

NCBRS-SMARCA2 CpG sites where SMARCA2_12 (the
patient with the intermediate classification score) was
typical of NCBRS cases (n = 106) and controls (n = 204;
Additional file 2: Table S4). The NCBRS-typical probe
list was enriched for few GO terms (Additional file 2:
Table S12); an enriched term was related to digital ab-
normalities (“Short middle phalanx of the 5th finger”);
this term was also enriched in the NCBRS-SMARCA2-
signature (Additional file 2: Table S10). SMARCA2_12
demonstrates digital abnormalities typical of NCBRS
(Additional file 1: Figure S1). CpGs overlapping Runt-
related transcription factor 2 (RUNX2) in part implicated
these terms (Additional file 1: Figure S2). The only
enriched cellular component, “fascia adherens”. The
control-overlapping CpGs in SMARCA2_12’s DNAm
profile were enriched for many of the same GO terms as
the NCBRS-SMARCA2 signature, including Wnt signal-
ing (ex. B Cell CLL/Lymphoma 9 Like [BCL9L]; Add-
itional file 1: Figure S2) and cell adhesion and synaptic
components (Additional file 2: Table S13) all relevant to
neurodevelopment. We also compared each list of genes
to which the control- and NCBRS-overlapping CpGs
map with the SFARI ASD gene list. There was a signifi-
cant (p < 0.001, Chi-square test) enrichment of the
SFARI ASD genes in the control-overlapping gene list
with 12/106 genes shared, while there was non-
significant enrichment for ASD genes in the NCBRS-
overlapping gene list, with 6/66 genes shared.

DNAm validation by sodium bisulfite pyrosequencing
We selected DNAm changes in the promoters of three
genes in the DNAm signature for validation by bisulfite
pyrosequencing (Fig. 3). We selected CpGs overlapping
RUNX2, Centrosomal Protein 85 Like (CEP85L), and
Hypoxia Inducible Factor 3 (HIF3A) based on three cri-
teria: CpG located in the promoter/5’UTR of the gene,
the potential relevance of the gene to the NCBRS
phenotype, and a |Δβ| > 15%. Each assay also covered
one other CpG site which was not in the signature for a
total of six CpGs sites assessed. All six CpGs demon-
strated a significant DNAm change in the signature
cases versus matched controls (Fig. 3). The CpG
cg19109335 was identified as differentially methylated
between cases and controls while an adjacent CpG also
covered by the pyrosequencing assay, cg07069368, was
not. The cg19109335 site was validated to have the same
direction and similar magnitude of DNAm change as de-
termined by the microarray; cg07069368 was also differ-
entially methylated in the pyrosequencing assay, and had
a very similar profile to cg19109335 (Fig. 3); both of
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these displayed increased DNAm in NCBRS cases. Using
another pyrosequencing assay, we also validated reduced
DNAm of cg23548163 in the 5’UTR of HIF3A. This py-
rosequencing assay also covered a CpG at chr19:
46807128 which also demonstrated reduced DNAm in
NCBRS cases (Fig. 3). Finally, we validated increased
DNAm of cg18102862 in CEP85L. The assay also in-
cluded a CpG at chr6:119030323 which demonstrated
increased DNAm in NCBRS cases. CEP85L encodes
Centrosomal Protein 85 Like.

Discussion
Genome-wide analysis identified a set of changes in DNAm
(DNAm signature) associated with pathogenic SMARCA2
variants in the peripheral blood of patients with NCBRS.
The signature allows for classification of SMARCA2 mis-
sense variants in concordance with the clinical phenotype
and predicted pathogenicity of the variant.
Three SMARCA2 VUS samples were assigned posi-

tive model scores classifying them as “pathogenic”.
Each of these samples (IDs: SMARCA2_4, SMARCA2_
10, and SMARCA2_14) has a missense variant in the
SMARCA2 ATPase domain predicted to be damaging

based on in silico tools (Table 1) [17, 38]. Each of these
patients also has a clinical diagnosis of NCBRS and typ-
ical phenotypic features consistent with the disorder in-
cluding sparse hair, typical facial dysmorphism, and
intellectual disability (ID; Additional file 1: Table S14).
Thus, the genome-wide DNAm profiling using the sig-
nature allows for molecular confirmation in individuals
with ambiguous/uncertain diagnostic testing results.
Five patient samples were assigned negative models
scores classifying them as “benign” (Fig. 2). None of
these individuals have features of NCBRS and their var-
iants are proximal to the ATPase domain. Three of
these variants (SMARCA2_16, SMARCA2_17, SMA
RCA2_18) were predicted to be benign based in silico
tools (Table 1) one was a synonymous variant
(SMARCA2_19) and one was a VUS (SMARCA2_15;
Fig. 2) predicted to be “potentially damaging” by in
silico tools (Table 1). The classification of this VUS as
benign using the NCBRS-SMARCA2 DNAm signature
highlights the difficulty in relying purely on in silico
prediction tools.
One of the SMARCA2 test variant samples (SMARCA2_

12) was obtained from a patient with a VUS distal to the

Fig. 3 Targeted sodium bisulfite pyrosequencing validation of DNAm alterations in NCBRS-SMARCA2 signature cases. a-c DNAm was assessed for
three sites in the DNAm signature in the promoters of RUNX2 (cg19109335), HIF3A (cg23548163), and CEP85L (cg18102862); the change in DNAm
across these sites was: + 17%, + 26%, and − 19% respectively. d-f Additional neighboring CpG sites covered by the assays from a-c. The additional
CpG site in the RUNX2 promoter is represented on the EPIC array, those in HIF3A and CEP85L are not; the change in DNAm across these sites
was: + 16%, + 30%, and − 25% respectively. Statistical significance between NCBRS and control groups was assessed using a Student’s t-test, p-
values were corrected for multiple CpG assessed *p < 0.05, **p < 0.01, ***p < 0.001
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ATPase/helicase domain. This patient is a 16-year-old fe-
male with learning disability and a subset of facial and de-
velopmental characteristics consistent with NCBRS
(Additional file 2: Table S1); her mild neurodevelopmental
features are atypical. The SMARCA2 VUS she carries oc-
curs 77 amino acids distal to the C-terminal end of the
ATPase/helicase domain located in exon 27 (Table 1; Fig. 2).
To our knowledge, this is the first report of a patient with a
clinical NCBRS diagnosis and a variant in this exon. There
have been three other reports of patients with neurodeve-
lopmental abnormalities and variants distal to the
SMARCA2 ATPase/helicase. Two of these variants were
proximal to that of SMARCA_12 (i.e. closer to the ATPase/
helicase domain); one just outside the domain [24], the
other approximately 30 amino acids distal to it [23]. Both
of these patients are described to have a typical NCBRS
phenotype (Additional file 1: Table S14). The third patient
had a variant in the SMARCA2 bromo domain. This pa-
tient was described to have a “distinct but overlapping
phenotype with NCBRS”; overlapping features included ID,
seizures, absent speech, and slight prominence of interpha-
langeal joints (Additional file 1: Table S14) [39]. The pheno-
type of these four patients demonstrate variable overlap
with the typical NCBRS features suggesting that the bound-
ary of the ATPase/helicase domain does not strictly define
NCBRS etiology. Therefore the DNAm profile of individ-
uals with features of NCBRS and genomic variants distal to
this domain will be particularly interesting to study. We ex-
pect that functional classification tools including DNAm
signatures will be ideally suited to aid in understanding the
phenotypic impact of these variants. These DNAm data
challenge clinical diagnosis of SMARCA2_12 as NCBRS.
Further, they call into question the issue of definitive cri-
teria for clinical diagnosis of NCBRS. They also raise the
question of whether variants outside the ATPase/helicase
domain cause NCBRS or an NCBRS-like phenotype. The
patient with the bromo domain variant is reasonably de-
fined as related to but not NCBRS based on phenotypic
data; however, in light of her atypical phenotype and partial
DNAm signature profile, the appropriateness of the clinical
classification of NCBRS for SMARCA2_12 is not as
obvious.
GO analysis on the CpG sites comprise the NCBRS-

SMARCA2 signature identified genes related to NCBRS
pathophysiology. Many genes and processes involved in
brain function/development were identified, relevant to
the high frequency and degree of ID observed in
NCBRS. There was enrichment of several calcium chan-
nel and synaptic function GO terms in the DNAm signa-
ture (Additional file 2: Table S7 and Additional file 2:
Table S8). Further, there was significant (p < 0.001, Chi-
square test) enrichment of ASD-associated genes with
10% (22/225) of signature-overlapping genes present in
SFARI (Simons Foundation Autism Research Initiative).

Individuals with NCBRS often display ASD-like features
as noted in our cohort and others [38]. We also looked
for genes overlapping the DNAm signature with known
roles in ID. Using a curated list of 484 genes directly im-
plicated in ID (ID Project, University of Colorado Den-
ver) we found two genes: KN Motif And Ankyrin Repeat
Domains 1 (KANK1), associated with cerebral palsy [40],
and Transcription factor 4 (TCF4), associated with Pitt-
Hopkins Syndrome [41]. Alterations in DNAm at these
ASD and ID genes suggest differential regulation in
these individuals, contributing to neurodevelopmental
aberrations in NCBRS. One signature CpG also over-
lapped Calcium Voltage-Gated Channel Subunit Alpha1
H (CACNA1H), which also had a DMR identified using
bumphunting. Variants in CACNA1H are associated
with seizure risk, a key component of NCBRS [42]. Mis-
sense variants in this gene are also implicated in ASD
[43]. The enrichment of neurodevelopmental GO terms
recapitulates a key finding from a previous DNAm study
of NCBRS [34]. Together, these results demonstrate that
neurodevelopmental genes are disproportionately repre-
sented in DNAm changes associated with NCBRS.
The NCBRS-SMARCA2 DNAm signature also overlaps

genes related to growth and development of various cell/tis-
sues types. Several GO biological processes involved in
hematopoietic cell differentiation were enriched. These were
due in part to reduced methylation at Homeobox B4
(HOXB4). HOX genes encode key regulators of early tran-
scriptional programs governing stem cell differentiation
[44]. Wnt pathway genes were also enriched (Additional
file 2: Table S8); these are downstream targets of HOX regu-
lation and important for differentiation of hematopoietic
stem cells into blood cells [45]. Persistent aberrant DNAm
of HOXB4 and Wnt genes in NCBRS cases may indicate al-
terations in the regulation of stem cell differentiation during
development. The longest DMR identified overlapped Gap
Junction Protein Alpha 8 (GJA8) which encodes a trans-
membrane connexin protein involved in lens growth and
maturation of lens fiber cells [46]. Growth and development
GO terms were also highly enriched in a previously reported
NCBRS DNAm study [34], though this study did not iden-
tify Wnt pathway signaling genes.
The NCBRS-SMARCA2 signature shares relatively few

CpGs with other epigene-specific DNAm signatures. We
screened for overlapping CpG sites (same site and direc-
tion of methylation change) between published epigene
signatures developed on the Illumina 450 k array and the
213 NCBRS-SMARCA2 signature sites on the 450 k
array: 17/7085 (0.2%) overlap with the NSD1 signature
[6], 2/113 (1.8%) with the KMT2D signature [8], and 2/
103 (1.9%) the CHD8 signature [10]. There were no
overlaps with the CHD7 or 16p11.2 deletion signatures.
Not surprisingly, we found more overlap between the
NCBRS-SMARCA2 signature and signatures for other
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genes in the BAF complex (also generated on the Illu-
mina EPIC array) with 8/135 (5.9%) shared with the
SMARCB1 signature and 6/146 (4%) with the ARID1B
signature [34]. This is consistent with findings from a re-
cent study showing that BAF complex genes have over-
lapping DNAm profiles [34]. While these overlapping
CpGs may be biologically relevant, they represent a
small percentage of the number of signature probes gen-
erally required for robust variant classification.
We validated six total CpG sites from the promoter re-

gions of three genes in the using sodium bisulfite pyrose-
quencing. Two CpG sites were validated to have increased
DNAm in NCBRS cases in the RUNX2 promoter. RUNX2
encodes a transcription factor involved in osteoblast dif-
ferentiation and cartilage hypertrophy [47]. Pathogenic
variants in RUNX2 have been implicated in skeletal disor-
ders such as cleidocranial dysplasia, dental anomalies, and
brachydactyly [48, 49]. In human phenotype GO analysis,
changes in RUNX2 enriched for abnormalities of the fifth
finger and dental abnormalities (Additional file 2: Table
S10). Differential methylation of RUNX2 is interesting in
the context of NCBRS given the clinical features of prom-
inent interphalangeal joints, delayed dental eruption, and
oligodontia in this condition. SMARCA2_12 retained an
NCBRS-overlapping methylation pattern at this gene, con-
sistent with her digital and craniofacial abnormalities typ-
ical of the disorder.
Next, we validated decreased DNAm at two CpG sites

in the HIF3A promoter. HIF3A encodes the transcription
factor Hypoxia Inducible Factor 3 Subunit Alpha.
Changes in regulation of hypoxia-inducible gene expres-
sion during fetal development are associated with altered
neurodevelopment, and implicated in several neurodeve-
lopmental disorders [49, 50]. DNAm of HIF3A appears
to be functionally important for growth, as it is associ-
ated with body-mass index [51]. Finally, we validated in-
creased DNAm in the promoter of CEP85L. Beyond the
fact that CEP85L acts as a breast cancer antigen, little is
known about the function of this protein. Notably, the
DNAm level of both CEP85L CpG sites did not overlap
between signature cases and controls (Fig. 3).
In line with her atypical NCBRS clinical phenotype, we

found that SMARCA2_12 had a partial NCBRS-SMARCA2
DNAm signature with a classification score intermediate
between NCBRS cases and controls. At some of the signa-
ture sites, her methylation level was characteristic of
NCBRS DNAm values, while at others it was characteristic
of controls. The DNAm profile of this patient may reflect
partial functional impairment of the SMARCA2 protein,
leading to partial NCBRS molecular/cellular changes during
development and a milder phenotype. We performed GO
analysis on the CpGs comprising these two subsets of sites.
Using the NCBRS-overlapping sites, we found that enrich-
ment of terms related to digital abnormalities. SMARCA2_

12 displays prominent interphalangeal joints, short meta-
carpals, and facial dysmorphology characteristic of NCBRS.
The only enriched cellular component, “fascia adherens”
contained the gene Junction Plakoglobin (JUP) for which
variants are associated with disorders with hair abnormal-
ities [52]. Interestingly, SMARCA2_12 is noted to have
coarse hair quality. The genes overlapping the DNAm
levels of controls were very similar to the complete
NCBRS-SMARCA2 signature, containing many neuro-
logical, cell adhesion, and synaptic GO terms (Additional
file 2: Table S13). Thus, SMARCA2_12 does not have the
DNAm alterations observed at neurological genes in other
NCBRS patients; this is consistent with her clinical pheno-
type. Further, for SMARCA2_12, the CpGs at the genomic
sites enriched for SFARI ASD genes demonstrated levels of
DNAm parallel to controls and not NCBRS cases. This in-
dicates that at genes relevant to ASD, SMARCA2_12 does
not have the DNAm changes typical of other NCBRS cases.
In summary, the DNAm profile of SMARCA2_12 is dispro-
portionally similar to controls at genes involved in neurode-
velopment in contrast to the altered methylation signals at
these sites in all other NCBRS cases. These results are con-
sistent with the milder neurocognitive deficit of this patient
compared to most NCBRS patients. The concordance of
the DNAm profile of SMARCA2_12 with her clinical
phenotype supports the view that DNAm changes in
NCBRS are functionally relevant to pathophysiology of this
disorder.
We propose that the DNAm signature is a better tool

for NCBRS diagnosis than relying on the location of the
variant in the gene. We demonstrate that a patient with
a variant most distal to the ATPase domain with an
atypical NCBRS clinical presentation has a partial
NCBRS-SMARCA2 DNAm signature profile. It may be
that the degree of clinical overlap of the three other
cases with variants distal to the ATPase/helicase domain
will also be reflected in their concordance with the
DNAm signature. That is, cases with more typical
NCBRS features and variants near the ATPase/helicase
domain may classify as pathogenic. The variant in the
SMARCA2 bromo domain may be associated with its
own unique DNAm signature, and thus its degree of
overlap with the NCBRS-SMARCA2 signature is difficult
to predict. Scoring of such rare cases using our model
would greatly aid in establishing genotype-epigenotype-
phenotype correlations for NCBRS. We propose that the
NCBRS-SMARCA2 DNAm signature can be used to aid
clinical diagnosis and quantify the overlap of patients
with ambiguous phenotypes with typical NCBRS. Be-
cause of the added complexity of partial DNAm profiles,
implementation of our DNAm signature score as a clin-
ical test would require moving from a binary classifica-
tion system to a scoring system. At this time, one
intermediate sample is not sufficient to develop such a
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system. Again, scoring additional patients with variants
distal to the SMARCA2 ATPase/helicase domain using
our approach will be necessary.
The DNAm data we present suggest a genotype-

epigenotype-phenotype correlation for SMARCA2 vari-
ants in NCBRS. Pathogenic variants within the ATPase/
helicase domain lead to a specific DNAm signature asso-
ciated with classic NCBRS clinical features. Variants
proximal to the domain are not associated with the
DNAm signature or NCBRS clinical features. A variant
just distal to the ATPase/helicase domain is associated
with a partial DNAm signature and a mild/atypical
NCBRS clinical phenotype. These finding are important
for understanding NCBRS pathophysiology, but are also
applicable to generating other gene-specific DNAm sig-
natures moving forward. These data are the first report
of a DNAm signature that is associated with a specific
protein domain. This is most likely due to the specificity
of variants in NCBRS for the ATPase/helicase domain;
previous signatures were derived for conditions associ-
ated with mostly loss-of-function variants/deletions oc-
curring across the gene [1, 6–9, 11]. In light of the
domain specificity of the NCBRS-SMARCA2 signature,
moving forward careful consideration should be paid to
the selection of samples for generation of gene-specific
signatures, especially when pathogenic variants are known
to be concentrated in specific domains. Further, the find-
ings we present here demonstrate the importance of de-
tailed clinical data in both choosing samples to generate
DNAm signatures and in interpreting DNAm signature
classifications.

Conclusions
In conclusion, we report a DNAm signature for NCBRS-
associated SMARCA2 pathogenic missense variants that
can be used to classify VUS in SMARCA2. The DNAm
changes in the NCBRS-SMARCA2 DNAm signature
occur in genes that represent novel and highly specific
targets for future studies to elucidate the molecular
pathophysiology of NCBRS and inform the development
of targeted therapies, especially with respect to neurode-
velopment. We report an NCBRS case with a SMARCA2
variant distal to the ATPase/helicase domain with a mild
clinical (especially neurodevelopmental) features who
demonstrates a partial NCBRS-SMARCA2 DNAm signa-
ture. The DNAm profile at genes where this patient re-
sembles other NCBRS patients is consistent with her
clinical phenotype. These findings provide novel insight
into the functional relevance of DNAm signatures, spe-
cifically with regard to the location of variants within
the gene and concordance with clinical phenotype. Use
of this DNAm signature for assessing more patients with
variants outside the SMARCA2 ATPase/helicase domain
will allow refinement of the classification model and

better definition of genotype-phenotype correlations in
NCBRS. Taken together, these data provide the founda-
tion for DNAm-based diagnostics, novel insights into
NCBRS pathophysiology, and a platform for developing
new therapies.
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