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RESEARCH Open Access

Integrative analysis of vascular endothelial
cell genomic features identifies AIDA as a
coronary artery disease candidate gene
Simon Lalonde1†, Valérie-Anne Codina-Fauteux1,2†, Sébastian Méric de Bellefon1,2, Francis Leblanc1,2,
Mélissa Beaudoin1, Marie-Michelle Simon3, Rola Dali3, Tony Kwan3, Ken Sin Lo1, Tomi Pastinen4 and
Guillaume Lettre1,2*

Abstract

Background: Genome-wide association studies (GWAS) have identified hundreds of loci associated with coronary
artery disease (CAD) and blood pressure (BP) or hypertension. Many of these loci are not linked to traditional risk
factors, nor do they include obvious candidate genes, complicating their functional characterization. We hypothesize
that many GWAS loci associated with vascular diseases modulate endothelial functions. Endothelial cells play critical
roles in regulating vascular homeostasis, such as roles in forming a selective barrier, inflammation, hemostasis, and
vascular tone, and endothelial dysfunction is a hallmark of atherosclerosis and hypertension. To test this hypothesis, we
generate an integrated map of gene expression, open chromatin region, and 3D interactions in resting and TNFα-
treated human endothelial cells.

Results: We show that genetic variants associated with CAD and BP are enriched in open chromatin regions identified
in endothelial cells. We identify physical loops by Hi-C and link open chromatin peaks that include CAD or BP SNPs
with the promoters of genes expressed in endothelial cells. This analysis highlights 991 combinations of open
chromatin regions and gene promoters that map to 38 CAD and 92 BP GWAS loci. We validate one CAD
locus, by engineering a deletion of the TNFα-sensitive regulatory element using CRISPR/Cas9 and measure the
effect on the expression of the novel CAD candidate gene AIDA.

Conclusions: Our data support an important role played by genetic variants acting in the vascular endothelium to
modulate inter-individual risk in CAD and hypertension.

Keywords: Vascular endothelium, Endothelial dysfunction, Coronary artery disease, Blood pressure, Hypertension,
Genome-wide association study, Hi-C, AIDA, CRISPR/Cas9

Background
Genetic discoveries in humans have the potential to un-
ravel novel pathophysiological mechanisms and to pin-
point promising drug targets [1]. However, to meet our
expectations, these discoveries ought to be supported by
mechanistic studies to decipher how genetic variation

modulates disease risk. For genome-wide association
study (GWAS) discoveries, the design of such functional
experiments is particularly challenging as the vast major-
ity of the associated variants are non-coding. Further-
more, we often ignore in which organ(s) or cell type(s)
the variants act. Methods have been developed by which
we can quantify the enrichment of GWAS variants
within regulatory elements identified by transcriptomic
or epigenomic profiling of human samples [2–4]. Al-
though powerful, such methods remain probabilistic and
further experiments are required to test their predic-
tions. As a consequence, only a few association signals
have been resolved at the molecular level [5–7].
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GWAS have identified hundreds of variants associated
with coronary artery disease (CAD) [8–10] and blood
pressure (BP) or hypertension [11, 12]. Many of these as-
sociation signals implicate excellent candidate genes and
independently confirm some of the biology previously
known to influence these diseases, such as the role that
blood lipid levels play in CAD risk or the importance of
smooth muscle contraction in controlling BP. But for
many loci, we ignore how they might contribute to the
development of these diseases, either because there are
no obvious candidate genes nearby or because the vari-
ants are not associated with known risk factors. For in-
stance, for CAD, it is estimated that nearly half of the ~
140 loci identified by GWAS do not associate with the
traditional risk factors (e.g., blood lipids, type 2 diabetes,
blood pressure) [13].
Annotation of GWAS discoveries for CAD and BP has

revealed an enrichment of associated variants near genes
implicated in endothelial functions [9, 12]. Vascular
endothelial cells form the inner layer of blood vessels
and play a critical role in the etiology of CAD and
hypertension. Indeed, healthy endothelial cells form a se-
lective barrier between the blood and the intima for
many macromolecules, respond to hemodynamic
changes, control the vascular tone, and regulate platelet
functions, inflammatory responses, and smooth muscle
cell growth and migration [14]. Despite their patho-
physiological importance and the noted overlap with
GWAS findings, endothelial cells have not been studied
extensively to provide further insights into genotype-
phenotype associations for CAD and BP/hypertension.
Here, we profiled the transcriptome, epigenome, and 3D
chromosome conformation of vascular endothelial cells
and integrate these results with CAD- and BP-associated
genetic variants. Because the effect of genetic variation
can be specific to certain pathological states [15], we
characterized not only resting endothelial cells, but also
cells activated with the inflammatory cytokine tumor ne-
crosis factor-α (TNFα). Finally, we used our datasets to
generate mechanistic hypotheses and tested one such
prediction at a CAD locus using the CRISPR/Cas9 gen-
ome editing system.

Results
Transcriptomic and epigenomic changes in endothelial
cells upon activation
To develop a tractable endothelial cellular system to
study the molecular mechanisms that contribute to the
etiology of vascular diseases such as atherosclerosis and
hypertension, we characterized the response of telo-
HAEC to the potent pro-inflammatory cytokine TNFα.
We selected TNFα to activate teloHAEC because it gen-
erates a very robust and reproducible inflammatory re-
sponse [16]. TeloHAEC are immortalized human aortic

endothelial cells with many of the cardinal features of
endothelial cells (e.g., expression of cell surface marker
(CD31/PECAM1), angiogenesis potential, LDL-cholesterol
uptake) and a normal karyotype (46,XX; confirmed by
cytogenetics and whole-genome DNA sequencing). We
treated teloHAEC with TNFα for 4 and 24 h and com-
pared gene expression levels between unstimulated (NT)
and stimulated cells by RNA-sequencing (RNAseq). In
total when considering all replicates and timepoints, we
identified 1316 differentially expressed genes (false discov-
ery rate (FDR) < 0.1% and absolute log10 fold-change
(|LFC|) > 0.3)(Fig. 1a for the comparison of NT vs. 4 h
TNFα treatment, Additional file 1 for all other compari-
sons, and Additional file 2 for the complete list of differen-
tially expressed genes). Not surprisingly, many of the most
upregulated genes are well-known markers of endothelial
dysfunction (e.g., SELE, ICAM1, SOD2, IL8, IL1B) (Add-
itional file 2). Pathway analyses confirmed that most of the
transcriptional changes due to TNFα treatment are cap-
tured by inflammatory pathways such as TNFα signaling,
cytokine-cytokine receptor interaction, and NF-κB signal-
ing (Additional file 3). In parallel, we also treated primary
human coronary artery endothelial cells (HCAEC) with
TNFα and measured transcript levels by RNAseq. The
transcriptional response to TNFα stimulation was highly
concordant between immortalized teloHAEC and primary
HCAEC in all timepoint comparisons (Pearson’s r > 0.6, P
value < 2.2 × 10−16, Fig. 1b), suggesting that teloHAEC
represents a good cellular model to study vascular endo-
thelial cell activation.
To correlate changes in gene expression with chroma-

tin activity, we also profiled open chromatin regions by
Assay for Transposase-Accessible Chromatin using se-
quencing (ATACseq) in teloHAEC treated or not with
TNFα for 4 or 24 h. By combining data from these dif-
ferent time points, we identified 95,491 ATACseq peaks,
including 3138 peaks (3.3%) that are differentially
opened or closed (FDR < 0.1% and |LFC|) > 0.3) upon
TNFα stimulation (Fig. 1c for the comparison of NT vs.
4 h TNFα treatment, Additional file 1 for all other com-
parisons, and Additional file 4 for the complete list of
differentially opened or closed ATACseq peaks). Al-
though results in Fig. 1c seem to indicate that most
ATACseq peaks open upon TNFα treatment, a density
analysis of these data points shows that most ATACseq
peak LFC are centered at 0 (Additional file 5). As for the
transcriptional response, the magnitude of open chroma-
tin regions defined by ATACseq was highly concordant
between teloHAEC and HCAEC (Fig. 1d). We employed
an in silico footprinting method to determine which
transcription factor binding motifs are over-represented
within differentially opened teloHAEC ATACseq peaks
following TNFα treatment (Additional file 6) [17]. Many
of these transcription factors are involved in
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inflammatory responses (e.g., JUN, FOS, NFKB1/2) (Add-
itional file 7). To further characterize our ATACseq open
chromatin dataset, we generated histone H3 lysine 27
acetylation (H3K27ac) data in NT and TNFα-treated telo-
HAEC using chromatin immunoprecipitation followed by
sequencing (ChIPseq). H3K27ac marks highlight regions
of active transcription and are found at enhancers and
promoters [18]. Within each condition (NT or with
TNFα), we found that 70–74% of the ATACseq peaks
intersected with H3K27ac peaks.
Most genetic variation associated with complex human

traits by GWAS is in non-coding regions [19, 20]. To
evaluate the relevance of our teloHAEC TNFα-
stimulated system to study vascular diseases, we mea-
sured the enrichment of single nucleotide polymor-
phisms (SNPs) associated with CAD or BP in ATACseq
peaks identified in teloHAEC. For comparison, we also

retrieved ATACseq data from 27 different tissues from
the ENCODE Project. For these analyses, we considered
CAD- and BP-associated SNPs (as well as their linkage
disequilibrium (LD) proxies) obtained from recent large-
scale meta-analyses: we tested 175 sentinel (5117 LD
proxies) CAD and 357 sentinel (13,970 proxies) BP SNPs
[8, 11]. We also used 97 SNPs (3953 proxies) associated
with body mass index (BMI) as control genetic variants
not associated with a vascular phenotype [21]. The frac-
tion of ATACseq peaks that included CAD-associated
SNPs was similar between teloHAEC and coronary ar-
teries, although the enrichment was higher for the
esophagus muscularis mucosa and the right atrium aur-
icular region (Fig. 2). For BP-associated SNPs, teloHAEC
had the strongest enrichment when compared to all
other tested tissues (Fig. 2). Furthermore, the fraction of
teloHAEC ATACseq peaks with CAD or BP SNPs was

Fig. 1 Transcriptomic and epigenomic profiling of teloHAEC. a RNAseq of teloHAEC non-treated (NT) or treated with TNFα identified 1316
differentially expressed (DE) genes (FDR < 0.1% and absolute log10-fold-change > 0.3) among three comparisons (NT vs. 4 h, NT vs. 24 h, 4 h vs. 24
h). Of these 1316 genes, 836 genes were DE in the NT vs. 4 h comparison. b Gene expression fold-change for DE genes are highly correlated
between transformed teloHAEC and primary HCAEC. All three comparisons are highly significant (P < 2.2 × 10−16), but for simplicity we only show
the NT vs. 4 h comparison. c ATACseq of teloHAEC NT or treated with TNFα identified 95,491 peaks, including 3138 differentially opened (or
closed) (DO) peaks (FDR < 0.1% and absolute log10-fold-change > 0.3) among three comparisons (NT vs. 4 h, NT vs. 24 h, 4 h vs. 24 h). Of these
3138 peaks, 2654 peaks were DO in the NT vs. 4 h comparison. d Open chromatin regions (raw number of reads), identified by ATACseq, are
highly correlated between teloHAEC and HCAEC. Results shown are for the 4 h TNFα treatment. Results are consistent for the NT and 24 h
timepoints. The distribution falls under the diagonal because the coverage of the ATACseq teloHAEC libraries was higher than the coverage of
the HCAEC libraries
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higher than for BMI variants (Fig. 2). Enrichments of
CAD- and BP-associated SNPs in ATACseq peaks in tel-
oHAEC were highly significant when controlling for the
genome-wide distribution of these peaks, although they
were not markedly stronger when focusing on differen-
tially opened/closed ATACseq peaks (Additional file 8)
[22]. We obtained highly concordant enrichments when
we overlapped CAD and BP SNPs with the location of
ChIPseq peaks for the histone mark H3K27ac generated
in teloHAEC without or with TNFα (Additional file 8).
We identified 263 sentinel or proxy SNPs associated
with CAD or BP that map onto a transcription factor
binding motif found in a teloHAEC ATACseq peak
(Additional file 9).

3D chromosomal architecture in endothelial cells
One outstanding challenge in gaining biological insights
from GWAS discoveries is to connect variants located in
non-coding regulatory elements with their target genes.
When cells or tissues from many human donors are pro-
filed, it is possible to use the covariance between open
chromatin regions and expression levels of nearby genes
to infer that connection. As an alternative solution to
link genes and regulatory elements in the context of
endothelial dysfunction, we generated genomic contact
maps by Hi-C using untreated and TNFα-stimulated (4
h) teloHAEC. For each condition, the contact matrices
were highly concordant across biological replicates

(Pearson’s correlation r > 0.95 for the contact matrices at
10-kb resolution across all replicates), allowing us to
combine datasets to increase the signal-to-noise ratios of
our analyses.
The genome is divided between active and repressed

regions, often referred to as A and B compartments [23].
Using principal component analysis on the Hi-C data-
sets, we identified A and B compartments and compared
their distribution genome-wide between NT and TNFα-
stimulated teloHAEC. Compartments were highly corre-
lated between conditions, with only 2.1% of the genome
that switched following exposure to TNFα (Fig. 3a, b).
We compared gene expression (RNAseq) and open
chromatin region (ATACseq) changes in teloHAEC (NT
vs. 4 h TNFα) with the A/B switching compartments
defined by Hi-C. Upregulated genes were enriched in B-
to-A compartments (61.4% of genes in B-to-A compart-
ments are upregulated vs. 43.5% of all genes expressed
upon TNFα treatment; enrichment = 1.4; Pbinomial = 1.5 ×
10−6), and downregulated genes were enriched in A-to-B
compartments (82.9% of genes in A-to-B compartments
are downregulated vs. 56.5% of all genes expressed upon
TNFα treatment; enrichment = 1.5; Pbinomial = 4.8 ×
10−6)(Fig. 3c). ATACseq peaks with higher coverage
(opening chromatin) after TNFα stimulation were over-
represented in B-to-A switching compartments (90.8%
of ATACseq peaks in B-to-A compartments are more
open vs. 79.7% of all ATACseq peaks upon TNFα treat-
ment; enrichment = 1.1; Pbinomial = 7.6 × 10−6) (Fig. 3d).
We could not detect a significant enrichment of ATAC-
seq peaks with lower coverage (closing chromatin)
among A-to-B compartments (Pbinomial = 0.57) (Fig. 3d),
potentially because there are fewer ATACseq peaks that
close after TNFα treatment for 4 h (Fig. 1c).
Topologically associated domains (TADs) are defined

by a high density of interactions between non-adjacent
chromosomal regions and represent functional units of
genome organization important for gene regulation [24].
We identified 4148 and 4078 TADs in our Hi-C data
from NT and TNFα-stimulated teloHAEC, respectively
(Fig. 3b). TADs were highly correlated between NT and
TNFα-treated endothelial cells, and only 7.7% of TAD
boundaries changed upon TNFα treatment. Previous
studies have shown that TAD boundaries are enriched
with binding motifs for the transcription factor CTCF
and the promoters of expressed genes [23, 25]. To valid-
ate the TADs that we identified, we retrieved from the
ENCODE Project CTCF ChIPseq data from human um-
bilical vein endothelial cells (HUVEC) and showed that
the ENCODE HUVEC CTCF peaks are enriched at telo-
HAEC TAD boundaries (Fig. 4a and Additional file 10).
We also confirmed that transcriptional start sites (TSSs)
defined using our teloHAEC RNAseq data were enriched
at TAD boundaries (Fig. 4a and Additional file 10).

Fig. 2 Enrichment of blood pressure (BP) and coronary artery disease
(CAD)-associated SNPs in open chromatin regions. We compared overlap
in endothelial cells (teloHAEC) and all available tissues from ENCODE. Each
biological replicate is identified by a different point. We called all ATACseq
peaks with the same bioinformatic pipeline. To account for the different
coverage of each ATACseq library, we present the relative fraction of
ATACseq peak that overlap with a BP or CAD SNP. We used body mass
index (BMI)-associated SNPs as controls, since BMI is not a vascular
phenotype. The gray box highlights results generated in this study in non-
treated (NT) or TNFα-stimulated (4 or 24 h) teloHAEC
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Fig. 3 Gene expression and open chromatin regions in switching A/B compartments. a Correlation of principal component 1 (PC1) calculated on
the Hi-C contact matrices from non-treated (NT) or TNFα-stimulated (4 h) teloHAEC. b B-to-A compartment switch at the E-selectin (SELE) locus
on chromosome 1q24 following TNFα treatment in teloHAEC for 4 h. TNFα treatment strongly induces SELE expression (RNAseq NT vs. 4 h) and
opens several elements at the locus (ATACseq NT vs. 4 h, differentially opened ATACseq peaks (ATACseq DO 4 h)). The 2 vertical dashed lines
indicate the boundaries of a compartment that switch from the repressed B state in NT teloHAEC (red) to the active A state (blue) after 4 h of
TNFα treatment. c Genes with down-regulated expression after 4 h of TNFα treatment are enriched in active-to-repressed (A-to-B) switching compartments,
whereas up-regulated genes are enriched in B-to-A switching compartments. d ATACseq peaks that are more opened after TNFα treatment for 4 h are
significantly enriched in B-to-A switching compartments

Fig. 4 Topologically associated domains (TADs) in teloHAEC endothelial cells treated with TNFα. a Because TADs have different sizes across the
genome, we normalized them after adding 35 kb on either side to define boundaries. From ENCODE Project data in HUVECs, we retrieved CTCF
binding sites from ChIPseq and enhancers defined with histone marks. We used our own RNAseq data in teloHAEC to define transcription start
sites (TSS). In b and c, we map the relative position of coronary artery disease (CAD)- and blood pressure (BP)-associated SNPs into teloHAEC
TADs. For comparison, we also added the distribution of relative positions for non-associated, matched (control) SNPs. Similar results were observed for
TADs in non-treated teloHAEC (Additional file 10)
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These orthogonal datasets attest to the quality of our
Hi-C experiments.
Given the central role that TADs play in the regulation

of gene expression, we next asked where within TADs
are located ENCODE enhancers predicted by histone
marks [18]. In contrast to TSSs, we found that en-
hancers defined in HUVEC by ENCODE were more uni-
formly distributed with a slight enrichment in the
middle of teloHAEC TADs as opposed to the boundaries
(Fig. 4a and Additional file 10). Finally, we mapped
CAD- and BP-associated SNPs into TADs and compared
their physical distance from the closest TAD boundary
with the distance of non-associated matched SNPs. Be-
cause of the relatively small number of CAD and BP
sentinels SNPs (175 and 357 variants, respectively), the
distributions of their position relative to the TAD
boundaries were uneven (Fig. 4b, c and Additional file 10).
For both CAD and BP, associated SNPs tended to be
closer from the nearest TAD boundary than matched
SNPs (median distance 75 kb for associated SNPs vs.
103 kb for matched SNPs, empirical P values ≤ 0.04), al-
though a larger number of sentinel variants would be
needed to provide a definitive answer to this question.

Linking GWAS SNPs and regulatory elements with genes
We used the Hi-C contact matrices to call loops be-
tween regulatory elements that contain CAD- or BP-
associated variants and the promoter of genes expressed
in teloHAEC. To further refine this list, we applied sev-
eral criteria: we considered 3D loops supported by ≥ 20
Hi-C reads, we excluded genes that are not expressed or
expressed at low levels (bottom 10 percentile) in telo-
HAEC, and we prioritized open chromatin regions that
contain CAD or BP SNPs that are expression quantita-
tive trait loci (eQTL) for the linked genes in the GTEx
dataset (P value < 0.001) [26]. After filtering, this analysis
identified 991 combinations of open chromatin regions
and genes linked by physical 3D interactions and eQTL
results (Additional files 11, 12, and 13). These combina-
tions map to 38 CAD and 92 BP GWAS loci. The aver-
age physical distance between these regulatory elements
and gene promoters is 154 ± 158 kb (Additional file 11).
We attempted to validate one of our molecular predic-

tions, focusing on interactions where the open chroma-
tin region and the linked gene are modulated by TNFα
treatment and where the variant is a strong eQTL
(GTEx P value < 1 × 10−5). Such additional stringent fil-
tering criteria highlighted two combinations of SNP,
open chromatin region and gene at the AIDA and
TRAF1 loci (Additional file 11). We selected the AIDA
locus for further functional characterization because it is
associated with CAD; the TRAF1 SNP is associated with
BP (Fig. 5a). Using the CRISPR/Cas9 system in telo-
HAEC, we engineered a 1022 base pair deletion in the

MIA3 gene that contains a TNFα-sensitive open chro-
matin element that physically interacts with the pro-
moter of the differentially expressed gene AIDA. This
deletion encompasses rs17163363, a strong proxy for the
sentinel CAD SNP rs67180937 (r2 = 1 in European popu-
lations from the 1000 Genomes Project) that is also an
eQTL for AIDA in GTEx esophagus muscularis samples
(PeQTL = 1.4 × 10−6). Although we could not retrieve
homozygous clones for the deletion, we obtained three
independent heterozygotes and tested the induction of
AIDA expression following TNFα treatment using two
different qPCR assays (Fig. 5a and Additional file 14).
Whereas TNFα could induce a robust AIDA expression
response in cells without a deletion (+ 29%, PqPCR1 =
0.0013 and PqPCR2 = 0.012), the increase in AIDA expres-
sion was roughly half that induction level in heterozy-
gous teloHAEC (+ 15%, PqPCR1 = 0.16 and PqPCR2 =
0.026), likely because one allele is still functional (Fig. 5b,
c). This result is consistent with our model by which this
regulatory element—and presumably the genetic vari-
ant(s) that it contains—can control the expression of
AIDA only upon endothelial cell activation.

Discussion
GWAS have identified hundreds of variants robustly as-
sociated with CAD and BP/hypertension. Despite recent
efforts, the causal variants, genes, and tissues/cell types
remain largely unknown at these loci. In this study, we
tested the hypothesis that some of these genetic associa-
tions are mediated through the activity of DNA se-
quence variants that control gene expression upon
vascular endothelial cell activation. We profiled the tran-
scriptome (RNAseq) and open-chromatin genome
(ATACseq) of resting and TNFα-activated immortalized
human aortic endothelial cells (teloHAEC). We focus on
these transformed cells in order to develop a system
amenable for efficient genome editing experiments, an
essential component of any GWAS follow-up program.
We confirmed the RNAseq and ATACseq results from
teloHAEC in primary human coronary artery endothelial
cells. Furthermore, we generated and characterized
genome-wide chromosome conformation Hi-C contact
matrices from NT and TNFα-treated teloHAEC cells to
physically link regulatory elements and expressed genes.
By integrating our results with publicly available epige-
nomic datasets from ENCODE, eQTL results from
GTEx, and GWAS discoveries for CAD and BP, we cre-
ated a dynamic regulatory map of vascular endothelial
cells. Through this map, we identified CAD and BP vari-
ants that overlap with open chromatin regions which
themselves physically interact with often distant gene
promoters in a specific cellular inflammation/non-in-
flammation context (Additional file 11).
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To support our results, we tested one prediction by
deleting a TNFα-induced ATACseq open chromatin re-
gion in teloHAEC using CRISPR/Cas9. In heterozygous
clones that carry this ~ 1 kb deletion, the expression of
AIDA induced by TNFα treatment was strongly hin-
dered (Fig. 5b, c). This is a promising result given that
AIDA is differentially expressed in teloHAEC following
TNFα treatment (NT vs. 4 h, LFC = 0.49, FDR = 5.2 ×
10−19; Additional file 2) and the AIDA promoter inter-
acts with the ATACseq peak as determined by Hi-C
(Additional file 11). This locus, defined by the sentinel
GWAS variant rs67180937, is associated with CAD and
includes 33 other variants in strong LD (r2 > 0.8 in Euro-
pean populations from the 1000 Genomes Project). Our
deletion, however, only encompasses one of these 34
SNPs, rs17163363, which is an eQTL for AIDA in GTEx
(P = 1.4 × 10−6). rs17163363 does not overlap perfectly
with transcription factor binding motifs, although it is
located 14 and 23 base pairs away, respectively, from
NKX2-5 and MEF2A binding sites. MEF2 transcription
factors have previously been implicated in CAD [27].

Despite several attempts, we failed to identify telo-
HAEC clones that are homozygous for the ATACseq
peak deletion at the AIDA locus. This might indicate
that baseline expression levels of AIDA, MIA3, and/or
potentially other genes controlled by this regulatory
element are essential for teloHAEC cell survival. An ex-
tension of this observation is that complete bi-allelic de-
letion of regulatory elements by CRISPR/Cas9, an
approach now routinely attempted to functionally
characterize GWAS loci, will often fail or generate nega-
tive results that are difficult to interpret. This highlights
the importance to develop efficient and high-throughput
protocols to combine genome editing and homology-
directed repair to precisely replace candidate functional
alleles in human cells [28]. Although rs17163363 is the
only variant in LD with the CAD sentinel variant
rs67180937 within the CRISPR/Cas9 deletion generated
at the AIDA locus, we cannot conclude that it is causal
as other unknown variants in the deleted region could
mediate the effect on AIDA expression. To address the
potential causal role of rs17163363 in CAD, we propose

Fig. 5 AIDA upregulation by TNFα is controlled by a regulatory element that includes one coronary artery disease-associated SNP. a Graphical representation
of the transcriptomic, epigenomic, and 3D conformation data at the AIDA coronary artery disease (CAD)-associated locus. The CRISPR/Cas9 deletion is
indicated in red and both qPCR assays are represented in green. We added gray vertical bars to highlight the TNFα-sensitive open chromatin peak (left) and
the AIDA promoter (right). To improve visualization, we also increased the width of the arcs linking both elements (purple). b Relative AIDA expression in
teloHAEC without or with TNFα treatment for 4 h with qPCR assay #1. Data was obtained from two independent experiments (circles in blue and cyan
indicate the different biological replicates). For the non-deleted (Non-Del) and CRISPR/Cas9 heterozygote (Del) data points, we pooled data from three
independent clones. Mean and standard deviation are plotted (black). For statistical analysis, we used linear regression correcting for batch effects and report
two-tailed P values. c As for b, AIDA transcript quantification performed with qPCR assay #2
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that an allele replacement experiment, potentially medi-
ated by CRISPR/Cas9 homology-directed repair, is
needed.
Our results implicate AIDA in an inflammatory re-

sponse that promotes atherosclerosis and CAD. Axin
interaction partner and dorsalization antagonist, or
AIDA, was first identified in a yeast-two-hybrid screen
for interaction with the scaffold protein Axin [29]. AIDA
homodimerizes but can also physically interact with
NFκB inhibitor-α (NFKBIA) and TNFα-induced protein
3 (TNFAIP3) [30], two genes that are highly over-
expressed in teloHAEC following TNFα treatment (Add-
itional file 2). In zebrafish, aida over-expression in em-
bryos inhibits the dorsalizing activity of Axin by
interfering with the activation of the c-Jun N-terminal
kinase (JNK) [31]. JNK are multifunctional kinases that
are activated by stresses and cytokines, including TNFα,
and that can control several cellular stress responses
such as apoptosis [32]. In endothelial cells, JNK is also
activated in response to pro-inflammatory stimuli [33].
Although it remains speculative, our data leads us to
hypothesize that endothelial cell dysfunction mediated
by the antagonizing effect of AIDA on JNK contributes
to inter-individual variation in CAD risk in humans.

Conclusions
We anticipate that our integration map of vascular
endothelial cell transcriptomic, epigenomic, and 3D con-
formation datasets, when combined with statistical fine-
mapping of GWAS loci, will provide sufficient resolution
to pinpoint causal variants and genes implicated in CAD
and BP/hypertension. This map will allow further inves-
tigation into the roles that endothelial cell dysfunction
plays in modulating the risk to develop these important
chronic diseases. We illustrated our strategy by charac-
terizing a TNFα-responsive regulatory element that con-
trols the expression of the novel CAD candidate gene
AIDA. Encouragingly, a recent report identified another
CAD-associated regulatory variant of PLPP3 that resides
within a vascular endothelial enhancer activated by shear
stress [34], suggesting that many CAD- and BP-
associated variants may influence vascular endothelial
phenotypes. Finally, our results underscore the critical
importance of characterizing both resting and activated
cells and lead us to propose a context-dependent, TNFα-
induced dysregulation of endothelial AIDA expression as
a novel candidate mechanism for CAD.

Methods
Cell culture
Immortalized human aortic endothelial cells (teloHAEC)
(ATCC, CRL-4052) were grown in vascular cell basal
media (VCBM) (ATCC, PCS-100-030) supplemented
with endothelial cell growth kit-VEGF (ATCC, PCS-100-

041) and 200 U/mL penicillin and 200 μg/mL of strepto-
mycin (ThermoFisher, 15140122). Primary human cor-
onary artery endothelial cells (HCAEC) from a single
male donor (ATCC, CC-2585) were grown in EGM-
2MV (Lonza, CC-3202) supplemented with 200 U/mL
penicillin and 200 μg/mL of streptomycin. TeloHAEC
and HCAEC were maintained under a 5% CO2 atmos-
phere at 37 °C and subcultured to 90% and 70–85% con-
fluency, respectively. Both cell lines were used below
three passages after thawing for all experiments.

Endothelial dysfunction induction
Endothelial cells were treated with concentrations ran-
ging from 0.1 to 10 ng/mL of TNFα (PeproTech, 300-
01A) prepared in culture media for 4 h and 24 h periods.
Treatment with 10 ng/mL induced the most substantial
endothelial dysfunction related alterations in both telo-
HAEC and HCAEC without significantly altering cell
proliferation and viability. Two independent biological
replicates of 10 ng/mL, 4 h only (Hi-C) or 4 and 24 h
(RNAseq, ATACseq, ChIPseq) TNFα treatments for each
cell line were used for data generation unless stated
otherwise. Non-treated (NT) cells grown in parallel were
used as control.

RNA extraction and quantitative PCR
TeloHAEC cells were seeded at 2 × 105 cells per well in
6-well plates, grown for 3 days (refreshed media at day
2) until reaching 95–100% confluency and subjected to
TNFα treatment as described above. In order to guaran-
tee the reliability and reproduction of the results, RNA
extraction, cDNA synthesis, and qPCR experiments were
conducted in accordance to the Minimum Information
for Publication of Quantitative Real-Time PCR Experi-
ments (MIQE) guidelines [35]. Total RNA was extracted
using RNeasy Plus Mini kit (Qiagen) and analyzed with
an RNA 6000 Nano kit (Agilent Technologies) to assess
its concentration and integrity on an Agilent 2100 Bioa-
nalyzer. Also, no contamination was found within RNA
extracts as assessed by spectrophotometry using Take3
Micro-Volume plates (Biotek) or BioDrop μLite with ab-
sorbance ratio of 260/280 nm in a range of 2.0–2.15 for
all samples. cDNAs were then generated by reverse tran-
scription from 1 μg of total RNA (with RNA integrity
number of 10 for all samples) using 1 U of MultiScribe
Reverse Transcriptase, 100mM dNTPS, 20 U of RNase
inhibitor and 1× Random Primers (Applied Biosystems,
4,374,966) in a 20 μL volume reaction. Reverse transcrip-
tion reaction was carried in three steps: 10 min at 25 °C,
120 min at 37 °C, and 5min at 85 °C. qPCR reactions
were set up with 1.25 μL of cDNA (1/50 dilution based
on dynamic range of previously done standard curve for
all target genes), 5 μL of Platinum SYBR Green qPCR
SuperMix-UDG (ThermoFisher, 11733046), and 3.75 μL
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of primer pair mix at 0.8 μM each. qPCR reaction for
each gene was performed in triplicates and carried out
in a CFX384 Touch Real-Time PCR Detection System
(Bio-Rad, 1855485) with the following thermal profile: 2
min at 50 °C, 15 min at 95 °C and a three-step cycle of
10 s at 95 °C, 15 s at 55 °C, and 15 s at 72 °C repeated 40
times. Following the amplification process, a melting
curve analysis was performed to ensure the specificity of
the amplified products. Also, resulting amplification
products from previous qPCR standard curve experi-
ments were run on 1% agarose gel and purified prior to
Sanger sequencing in order to validate amplification of
the desired target. To assert the absence of undesired
contamination, qPCR reactions with no template con-
trols for each gene were carried out simultaneously with
no fluorescence detected. Cq values corresponding to the
number of cycles to reach quantification threshold were
determined with the CFX Manager 3.1 (Bio-Rad) software
for all genes. Relative expression level for the axin interac-
tor, dorsalization associated (AIDA) gene were calculated
by the ΔΔCT method [36] normalized with the three ref-
erence genes glyceraldehyde 3-phosphate dehydrogenase
(GAPDH), hypoxanthine phosphoribosyltransferase 1
(HPRT1), and TATA-binding protein (TBP). Based on
geNORM principles for accurate normalization of real-
time quantitative RT-PCR data by geometric averaging of
multiple internal control genes, a mean M value always
below 0.35 was generated from the GAPDH, HPRT1, and
TBP genes for all qPCR experiments. All primers were ob-
tained from IDT Technologies. The primers sequences
are listed in Additional file 15.

RNAseq and differential gene expression analysis
Stranded cDNA libraries prepared from quality-controlled
RNA (see above) were sequenced using Illumina 100-bp
paired-ends on a HiSeq 4000 platform, generating 50–60
million reads per condition per biological replicate. Reads
were mapped to hg19 using hisat2 (http://ccb.jhu.edu/
software/hisat2/index.shtml). Samtools was used to sort
the reads and convert to the BAM format. Transcripts
were first identified for each sample, and then pooled to-
gether using stringtie (http://ccb.jhu.edu/software/string-
tie/index.shtml). Transcript abundance was estimated by
stringtie, and a fragments per kilobase of transcript per
million (FPKM) count table was generated. Differential
analysis of gene expression was performed using DESeq2
[37]. All possible comparisons for NT, TNFα 4 h, and 24 h
treatments were performed using the analysis of deviance
function with default parameters. Genes with a false dis-
covery rate (FDR, Benjamini & Hochberg correction) <
0.1%, and log10 fold-change > 0.3 or < − 0.3 in any of the 3
possible comparisons (NT vs. 4 h; NT vs. 24 h; 4 h vs. 24
h) were considered differentially expressed. Corresponding
biological replicates output were merged using UCSC

BigWig and BigBed tools [38] for visualization purposes in
the WashU Epigenome Browser [39].

Assay for transposase-accessible chromatin with high
throughput sequencing (ATACseq)
TeloHAEC and HCAEC cells were seeded at 2 × 105

cells per well in 6-well plates, grown for 3 days
(refreshed media at day 2) until reaching 95–100% con-
fluency and subjected to TNFα treatment as described
above. Adherent cells were detached using Trypsin-
EDTA (ATCC, PSC-999-003) and subsequently neutral-
ized by Trypsin Neutralizing Solution (ATCC, PSC-999-
004). Following endothelial cell activation, ATACseq li-
braries were prepared as previously described [40] with
the following specifications and modifications: 5 × 104

cells were spun down at 500 g for 5 min at 4 °C. Whole
cell pellets were subjected to a first round of cell mem-
brane lysis using 50 μL of ice-cold hypotonic buffer
(0.1% Sodium citrate tribasic dehydrate (Sigma-Aldrich,
C8532); 0.1% Triton X-100 (Sigma-Aldrich, X100)) and
incubating on ice for 30 min. The hypotonic buffer was
removed by centrifugation at 500 g for 5 min at 4 °C, and
we subsequently discarded the supernatant. Crude nuclei
lysates were prepared by resuspending cells in lysis buf-
fer (10 mM Tris-HCl pH 7.4 (Fisher Scientific, BP-153-
1); 10 mM NaCl (Fisher Scientific, BP-358-212); 3 mM
MgCl2 (Sigma-Aldrich, M8266); 0.1% Igepal CA-630
(Sigma-Aldrich, I8896) and incubating for 30 min on ice.
Following the removal of lysis buffer by centrifugation at
500g for 5 min at 4 °C, transposase reaction of open
chromatin was achieved by resuspending free nuclei in
tagmentation mix (22.5 μL Tagment DNA Buffer; 2.5 μL
Tagment DNA enzyme; 25 μL H2O) (Illumina, FC-121-
1030) and incubating at 37 °C for 30 min. Purification of
DNA was performed with MinElute (Qiagen, 28004) ac-
cording to the manufacturer’s protocol. Barcoding and
amplification was prepared using Nextera Index Kit
(Illumina, FC-121-1011) as previously described [40]
with the following thermal profile: 30 s at 98 °C and a
three-step cycle of 10 s at 98 °C, 30 s at 63 °C, and 1min
at 72 °C repeated 12 times followed by 5 min at 72 °C.
Amplified ATACseq libraries were purified using Gene-
Read Size Selection Kit (Qiagen, 180514) according to
the manufacturer’s protocol. Quality and quantity of
final ATACseq libraries were assessed with the High
Sensitivity DNA kit (Agilent, 5067-4626) ran on an Agi-
lent 2100 Bioanalyzer. ATACseq libraries were se-
quenced using Illumina 125-bp paired-ends sequencing
on a HiSeq2500 platform with, generating between 38
and 43 million reads per condition per biological
replicate.
ATAC library reads were processed through the

ATACseq pipeline (https://github.com/kundajelab/atac_
dnase_pipelines). Adapters were removed using Cut-
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adapt. Reads were then mapped to hg19 using Bowtie2.
Peak calling from BAM files was performed using
MACS2 [41]. To create a “masterBED” peak file across
conditions, peak files generated for each condition were
merged using the merge function from BEDTools [42].
Mean scores from bedGraphs for each individual bio-
logical replicate were assigned to masterBED peak files
using intersect (default parameters) and merge (-o mean)
and used as input for differential analysis using DESeq2
[37]. All comparisons for NT, TNFα 4 h, and 24 h treat-
ments were performed using the analysis of deviance
function with default parameters in DEseq2. ATACseq
peaks with a false discovery rate (FDR, Benjamini &
Hochberg correction) < 0.1%, and log10 fold-change > 0.3
or < − 0.3 in any of the 3 possible comparisons (NT vs.
4 h; NT vs. 24 h; 4 h vs. 24 h) were considered differen-
tially opened or closed. Corresponding biological repli-
cates bedGraphs output from MACS were merged using
UCSC BigWig and BigBed tools [36] for visualization
purposes in the WashU Epigenome Browser [39]. For in
silico footprinting, we used CENTIPEDE with default
parameters [17]. For the enrichment analyses of CAD,
BP and BMI SNPs in open chromatin regions, we re-
trieved sentinel variants from published large-scale
GWAS [8, 11, 21]. We identified proxy variants in link-
age disequilibrium (r2 > 0.8) using populations of Euro-
pean ancestry from the 1000 Genomes Project [43].

Chromatin immunoprecipitation of H3K27 acetylation
(H3K27ac) combined with high throughput sequencing
(ChIPseq)
TeloHAEC were seeded at 1.4 × 105 cells per 100 mm
plates (1 plate per condition, 3 independent biological
replicates), grown to 90–100% confluency (refreshed
media every 2–3 days) and subjected to TNFα treatment
as described above. Cells were washed with HBSS
(Gibco, 14170161) and fixed in paraformaldehyde (PFA)
1% (Fisher Scientific, 15710) for 10 min at room
temperature (RT). PFA was quenched in 134 mM glycine
for 5 min at RT. Fixed cells were washed with ice-cold
PBS and collected with a cell scraper in ice-cold PBS.
Cells were pelleted by centrifugation, washed in ice-cold
PBS, and pelleted again before snap freezing in liquid ni-
trogen. Fixed cells were subject to lysis in 5mM PIPES-
pH 8.5, 85 mM KCl, 1% (v/v) IGEPAL CA-630, 50 mM
NaF, 1 mM PMSF, 1 mM Phenylarsine Oxide, 5 mM So-
dium Orthovanadate and protease inhibitor cocktail
(Sigma, 04693159001). Nuclei were then lysed in 50mM
Tris-HCl pH 8.0, 10 mM EDTA, 1% (w/v) SDS, 50 mM
NaF, 1 mM PMSF, 1 mM phenylarsine oxide, 5 mM so-
dium orthovanadate and protease inhibitor cocktail.
Chromatin immunoprecipitation was performed as pre-
viously described using 3.7 μg of H3K27ac antibody
(Diagenode; C15410196) per samples containing ~ 500,

000 cells [44]. ChIPseq libraries were sequenced using
Illumina 100-bp paired-end read sequencing on a Nova-
Seq 6000 instrument for approximately 150 million
reads per sample. H3K27ac ChIPseq library raw reads
were filtered for quality (phred33 ≥ 30) and length (n ≥
32), and adapter sequences were removed using Trim-
momatic [45]. Filtered reads were aligned to hg19 using
BWA and peaks subsequently called using MACS2 [41]
with non-IP input DNA as control. Corresponding bed-
Graphs output of biological replicates and input controls
from MACS were merged using UCSC BigWig and
BigBed tools [38] for visualization purposes in the
WashU Epigenome Browser [39].

In situ Hi-C library preparation and analysis
TeloHAEC were seeded at 1.4 × 105 cells per 100 mm
plates (4 plates per condition), grown to 90–100% con-
fluency (refreshed media every 2–3 days) and subjected
to the 4 h TNFα treatment as described above. In situ
Hi-C libraries were prepared as previously described
[46] with the following specifications and modifications:
approximately 8 × 106 cells per sample were crosslinked,
pelleted and washed in ice-cold PBS prior to lysis and
chromatin digestion with DpnII. Reverse crosslinking
was performed in two subsequent 16 and 2 h incuba-
tions with 500 μg of proteinase K prepared at 10 mg/mL
in 5 mM Tris-HCl pH 7.5, 50% glycerol, 1 mM CaCl2 for
each step. DNA purification was performed using 15mL
MaXtract High Density tubes (Qiagen, 129,065). Pre-
NGS Hi-C DNA was quantified and quality-controlled
with a DNA 7500 kit (Agilent, 5067-1506) ran on an
Agilent 2100 Bioanalyzer. Prior to next-generation DNA
sequencing (NGS), DNA extractions for quality control
of chromatin integrity, digestion efficacy were performed
with the following procedure: 1 volume of Phenol:
Chloroform:Isoamyl Alcohol (25:24:1 v/v) (Invitrogen,
15593031) was added to lysate, vortexed and transferred
to pre-spun Phase Lock Gel (VWR, 10847-800) and cen-
trifuged for 5 min at 16,000g. The aqueous phase was
kept, concentrated by speed-vacuum and subjected to
0.8% agarose gel electrophoresis. Quality-control 3C-
PCR of pre-NGS Hi-C libraries was performed in the
ENr313 region using 800 ng of template DNA, PfuUltra
II Fusion HotStart DNA Polymerase (Agilent, 600672),
400 nM ENr313_DpnII_Anchor1 primer #1, 400 nM
ENr313_DpnII_Anchor1_Near primer #2 and 250 μM
dNTPs with the following thermal profile: 2 min at 95 °C
and a three-step cycle of 30 s at 95 °C, 30 s at 60 °C and
30 s at 72 °C repeated 35 times followed by 8 min at
72 °C [46]. For NGS preparation, between 20 and 40 μg
of purified Hi-C DNA was used as starting material for
all subsequent steps. Sonication to 200-300 bp fragments
was carried in an S2 Focused-ultrasonicator with no al-
terations to the suggested parameters. Biotin pulldown
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was performed with 200 μg of Dynabeads MyOne Strep-
tavidin C1 (Invitrogen, 65001) per sample. Production
PCR was carried out with 9 cycles of PCR to obtain suffi-
cient quantity for NGS while limiting PCR duplicates.
Quality and quantity of final Hi-C libraries were assessed
on High Sensitivity DNA kit (Agilent, 5067-4626) ran on
an Agilent 2100 Bioanalyzer. Final Hi-C libraries were
sequenced using Illumina 100-bp paired-ends sequen-
cing on a Novaseq 6000, generating between 0.72 and
0.88 billion reads per condition per biological replicate.
Hi-C reads were processed using the Juicer pipeline

[47]. Hi-C libraries for all biological replicates had reads
with the following quality measures: less than 10% below
MAPQ threshold of 30 (average of 9.15%), more than
62% intra-chromosomal interactions (average of 68.5%)
and less than 26% of inter-chromosomal interactions
(average of 20.3%). Correlation between biological repli-
cates was assessed (Pearson’s r, 10 kb resolution > 0.95;
50 kb resolution > 0.97; 100 kb resolution > 0.98) before
merging to increase statistical power. Contacts maps
were normalized with Knight-Ruiz (KR) matrix balan-
cing before all downstream analyses.

A/B compartments calling and analysis
Per chromosome principal component analysis (PCA)
was performed by calling the eigenvector function from
the Juicer pipeline using 50 kb resolution matrices with
KR normalization. Using the R packages TxDb and
Sushi, PC1 values were aligned to gene density in 50 kb
windows. If needed, the sign of PC1 was adjusted to cor-
relate positive PC1 values with gene-rich regions and
negative PC1 with gene-poor regions. Contiguous bins
of positive and negative PC1 were labeled as A and B
compartments, respectively. Switching from A-to-B and
B-to-A compartments upon TNFα treatment was re-
trieved from the differences in A/B compartments called
between NT and TNFα-treated cells. Genes, ATACseq
peaks, BP and CAD SNPs mapping to switching com-
partments were identified using map and merge func-
tions from BEDTools with default parameters.

Topologically associated domains (TADs) calling and
analysis
TAD calling was performed on teloHAEC (NT and 4 h
TNFα). KR normalized sparse matrices of 10 kb resolution
were extracted from .hic files by calling the dump function
from the Juicer pipeline [47]. TAD calling was performed
using the Crane insulation score algorithm [48] Git ver-
sion eecc2c9, with the default parameters (insulation delta
span = 200 kb, insulation square size = 500 kb, insulation
mode = “mean,” boundary margin of error = 3, noise
threshold = 0.1). TADs that overlap with the centromeres,
as well as regions at either end of each chromosome, were
excluded from analyses. To determine if a TAD boundary

overlapped with a feature (e.g., SNPs, ChIPseq, TSS, en-
hancer, promoter), we added a 10 kb outward buffer to the
boundary coordinates. To determine if TADs were stable
or changed following TNFα treatment, we added a 20-kb
outward buffer to the boundary coordinates. The physical
distance of CAD and BP sentinel SNPs with the closest
TAD boundary was compared with the distance of control
SNPs matched based on minor allele frequency, gene
density, gene proximity and the number of LD proxies
using SNPsnap default parameters [49]. To derive empir-
ical P values, we considered the median distances to the
closest TAD boundary of 100 sets of matched SNPs and
compared them to the median distance of the CAD or BP
SNPs.

Loop calling between regulatory regions and promoters
Hi-C reads were processed using the HiC-Pro pipeline
(https://github.com/nservant/HiC-Pro). hichipper (https://
github.com/aryeelab/hichipper) was used to call loops be-
tween promoters and ATACseq peaks that harbor CAD
or BP GWAS SNPs. Gene promoters’ coordinates were
downloaded from the EPDnew database (https://epd.vital-
it.ch/human/human_database.php). The detailed steps
used to integrate and combine the GWAS, RNAseq,
ATACseq, Hi-C, and GTEx data are provided in
Additional file 11.

CRISPR/Cas9 genome editing
Pairs of guide RNAs (sgRNAs) were designed for each
targeted genomic deletion and cloned into the pHKO9
vector under control of the same U6 promoter (Add-
itional file 16). HEK 293 T cells were seeded at 5 × 105

cells/well in 6-well plates for 24 h. Lentivirus were pro-
duced by co-transfecting the envelope and packaging
plasmids pMD2G and psPAX2 respectively with the dual
sgRNA expressing pHKO9 vector in HEK 293 T cells
using Lipofectamine 2000 (ThermoFisher, 11,668,027)
for 4 h then switched to virus-producing media contain-
ing 10 μg/mL of BSA. Viral supernatant was harvested
48 h and 72 h following transfection and filtered through
0.45 μm filters. TeloHAEC cells stably expressing an ac-
tive Cas9 protein were seeded at 2 × 105 cells/well in 6-
well plates and later infected with the virus preparation
and media containing 0.7 μg/mL of polybrene (Sigma,
H9268). Selection with 200 μg/mL of G418 (Fisher,
MT30234CR) was started 48 h post-infection. Antibiotic
selective pressure was maintained for 5–6 days or until
non-infected cells were dead. Sub-populations of 50 cells
were derived and screened via PCR using primers sur-
rounding the expected deletion (out-out PCR) (Add-
itional file 16). Clonal cell lines were then derived from a
PCR-positive deletion sub-population. Another round of
out-out PCR was performed on these select clonal cell
lines and PCR products were purified and cloned into
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pDrive cloning vector system (Qiagen, 231122) or into
the pUC19 vector using In-Fusion HD cloning system
(Takara, 638,909). Genotypes of all possible alleles were
confirmed by gel electrophoresis (Additional file 14) and
Sanger sequencing. Select genome reengineered clones
were then seeded at 9 × 104 cells per well in 12-well
plates, grown to 90–100% confluency (refreshed media
every 2–3 days) and subjected to a 4-h TNFα treatment
as described above. Total RNA was then extracted,
quantified, quality controlled and reverse transcribed as
described above. qPCR was performed for the target
gene anchored at the receiving end of the chromatin
loop with 2 different primer pairs capturing exons in ei-
ther 5′ or 3′ of AIDA.
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