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Abstract

Objectives

Independently, physical activity (PA), sedentary behavior (SB), and sleep are related to the

development and progression of chronic diseases. Less is known about how rest-activity

behaviors cluster within individuals and how rest-activity behavior profiles relate to health. In

this study we aimed to investigate if adult women cluster into profiles based on how they

accumulate rest-activity behavior (including accelerometer-measured PA, SB, and sleep),

and if participant characteristics and health outcomes differ by profile membership.

Methods

A convenience sample of 372 women (mean age 55.38 + 10.16) were recruited from four

US cities. Participants wore ActiGraph GT3X+ accelerometers on the hip and wrist for a

week. Total daily minutes in moderate-to-vigorous PA (MVPA) and percentage of wear-time

spent in SB was estimated from the hip device. Total sleep time (hours/minutes) and sleep

efficiency (% of in bed time asleep) were estimated from the wrist device. Latent profile anal-

ysis (LPA) was performed to identify clusters of participants based on accumulation of the

four rest-activity variables. Adjusted ANOVAs were conducted to explore differences in

demographic characteristics and health outcomes across profiles.
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Results

Rest-activity variables clustered to form five behavior profiles: Moderately Active Poor

Sleepers (7%), Highly Actives (9%), Inactives (41%), Moderately Actives (28%), and Actives

(15%). The Moderately Active Poor Sleepers (profile 1) had the lowest proportion of whites

(35% vs 78–91%, p < .001) and college graduates (28% vs 68–90%, p = .004). Health out-

comes did not vary significantly across all rest-activity profiles.

Conclusions

In this sample, women clustered within daily rest-activity behavior profiles. Identifying 24-

hour behavior profiles can inform intervention population targets and innovative behavioral

goals of multiple health behavior interventions.

Introduction

Low levels of physical activity (PA) and high levels of sedentary behavior (SB) have been iden-

tified as major modifiable risk factors for chronic diseases such as diabetes, obesity, and cardio-

vascular disease [1–3]. Similarly, sleep is increasingly seen as an important determinant of

overall health, with evidence suggesting a link between total sleep time and all-cause mortality

and the development of chronic diseases [4–6].

Previous research has primarily examined these rest-activity behaviors (PA, SB, and sleep)

individually and their associations with relevant health outcomes (variable-centered analyses).

In reality, these rest-activity behaviors do not occur in isolation, and time spent in PA, SB, and

sleep aggregates to make up the finite 24-hour day. Variable-centered analyses do not allow for

us to develop an understanding of how rest-activity behaviors aggregate within individuals to

impact their health. Further, evidence indicates that daily rest-activity activity behaviors are

interrelated, suggesting that an individual’s engagement in one activity is associated with

engagement in another. In an NHANES sample of 2,989 adults, lower levels of daily PA was

associated with higher self-reported sleep disturbance scores [7]. Little research has been con-

ducted to move beyond studies focused on one or two daily activities, to explore how 24-hour

rest-activity behaviors cluster within individuals to form patterns in 24-hour behavior (per-

son-centered analyses) [8].

The clustering analysis (person-centered analyses) approach has been widely used to

explore daily activity behavior profiles in youth and adolescent samples and their associations

to health outcomes [9–12]. In an analysis of 5710 children from 12 countries, Dumuid et al.

found that distinct cluster profiles in health behaviors emerged globally for children and that

cluster membership was associated with differences in BMI for both boys and girls. The chil-

dren clustered in the “sitters” profile were more likely to be obese/overweight than those in the

other profile groups [9]. Latent Profile Analysis, one clustering analysis approach, allows for

the identification of naturally occurring subsets of individuals based on how their rest-activity

behaviors cluster and allows for the exploration of differences between these behavior profiles.

Despite its common use in adolescent and child samples, the clustering approach has not yet

been used extensively to examine rest-activity behavior profiles in adult samples. Further, in

the few existing studies applying clustering analyses in adult samples, results have been limited

by the use of self-reported measures of PA, SB, and sleep [13] which may bias clustering analy-

ses, as individuals will tend to have similar reporting biases across behaviors [14]. There is a
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need for more studies using objective measures of rest-activity behaviors to examine 24-hour

behavior profiles in adults. Identifying 24-hour behavior profiles in adults and differences in

demographic characteristics across profiles could inform behavior change intervention targets

and target population groups in greatest need of lifestyle activity interventions.

This study aimed to leverage a free-living cohort of middle aged to older women across the

US, including working adults, nurses, and breast cancer survivors. Using objectively measured

rest-activity behavior data we will apply clustering analyses to explore: 1) whether women clus-

ter into rest-activity behavior profiles based on how they accumulate total sleep time, sleep effi-

ciency, PA, and SB, and if 2) if demographic characteristics and health outcomes vary

according to rest-activity behavior profiles.

Methods

Sample

Our convenience sample included 372 adult women participating in studies across four uni-

versity sites in the US (University of California, San Diego (UCSD), Washington University in

St. Louis (WUSTL), Harvard University (Harvard), and University of Pennsylvania (UPenn))

involved in the NCI-funded Transdisciplinary Research in Energetics and Cancer (TREC) ini-

tiative [15]. Across institutions, participants were recruited from existing studies and/or poten-

tial study participant rosters. For this cross-sectional analysis, data were obtained from women

participating in cross-sectional observation studies at Harvard, UPenn and WUSTL and a

UCSD weight loss intervention. All data were collected at baseline and therefore there was no

need to account for intervention effect. The resulting aggregate sample includes working

adults living in San Diego, CA (UCSD; N = 73) and Saint Louis, MO (WUSTL; N = 78), nurses

throughout the US participating in the Nurses’ Health Study II (Harvard; N = 93), and breast

cancer survivors living in Philadelphia, PA (UPenn; N = 128). For the UCSD study, partici-

pants initially screened as ineligible for the intervention study were contacted for the current

study and if interested were included in analyses. To be included in the present study, all par-

ticipants completed a new consent form and additional study measures following a standard

protocol. At all sites, women had to meet the following eligibility criteria: be between 21–75

years old, have a self-reported BMI between 21–39.9 kg/m2, have the ability to ambulate unas-

sisted, not be pregnant or breast-feeding, and be willing to wear monitoring devices for 7 days.

Site-specific eligibility criteria included: current full or part-time employment (WUSTL) and a

previous breast cancer diagnosis (UPenn). The Harvard sample was selected to evenly repre-

sent all Census regions of the US (African American were oversampled).

Data collection was conducted remotely for the Penn, Harvard, and WUSTL sites and in

person for the UCSD site. In the remote data collection scenarios, accelerometers were mailed

to 87% of participants with instructions, a link to an instructional video, and a paper survey.

Paper surveys were completed by participants and returned via mail. For the remaining partic-

ipants at UCSD, accelerometers were received and returned in person. Study protocols specific

to the collection of accelerometer data and survey completion were identical across all sites

and all data used in these analyses were centrally pooled and uniformly processed at UCSD

[16]. The accelerometer protocol included providing participants with reminder cards to place

by their bed and a paper log to track device wear days. Additionally, reminder calls were made

to the participant twice over the course of their wear period. The institutional review boards at

the University of California, San Diego, Washington University in St. Louis, Harvard Univer-

sity, and University of Pennsylvania approved the study protocol and consent forms.
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Measures and data processing

Physical activity & sedentary behavior. Moderate-to-vigorous physical activity (MVPA)

and sedentary behavior were measured objectively using a hip-worn Actigraph GT3X+ (Acti-

Graph, LLC; Pensacola, FL), a lightweight triaxial accelerometer. The ActiGraph device has

been validated and calibrated for physical activity and sedentary behavior measurement in the

field and in controlled conditions [17]. The accelerometer measures duration, frequency and

intensity of activity. Participants were asked to wear the device during waking hours for 7 con-

secutive days. In order for a day of accelerometer data to be considered a valid wear day, the

participant had to wear the device for at least 10 hours. Participants with fewer than five valid

days of wear time were not included in analyses. Non-wear time was defined as 90 consecutive

minutes of zero counts and was removed from all analyses [18]. The following cut-points were

used to calculate daily times in each activity intensity level: sedentary 0–99 counts/min;

MVPA� 2020 counts/min [19]. All other counts were categorized as light activity and not

used in the present analysis. To adjust for the relationship between daily wear-time and seden-

tary behavior time, sedentary behavior was calculated as a percentage of wear-time. Daily levels

of MVPA minutes and percent sedentary time were aggregated to compute an average daily

value and a standard deviation (SD) of these daily values.

Sleep. Sleep was measured using a wrist-worn Actigraph GT3X+ accelerometer, in con-

junction with a self-reported sleep log. Participants were instructed to wear the wrist acceler-

ometer for 24 hours per day during the monitoring period, and to record their in-bed and out-

of-bed times for each sleep period in the sleep log. Sleep was scored using the log-reported in

bed and out of bed time to define the major sleep period, adhering to SBSM actigraphy use

guidelines [20]. A validated algorithm was used to categorize each minute of the identified

sleep period as either “awake” or “asleep” [21]. This algorithm has been previously validated

for use in GT3x accelerometer devices [22]. Total sleep time was derived as the total number of

minutes categorized as “sleep” during each sleep period. Sleep efficiency was defined as the

percentage of the in-bed period that was categorized asleep. Hip and wrist accelerometers were

worn on concurrent days. Nightly levels of sleep time and sleep efficiency were aggregated to

compute an average nightly value.

Self-report measures. All participants completed a study survey when they received their

measurement devices. The survey assessed age (years), race/ethnicity, marital status, educa-

tion, self-rated health, and disease diagnoses. Race/ethnicity was dichotomized into white or

racial/ethnicity minority (including Hispanic/Latino, Asian, Black or African American,

American Indian or Alaska Native, Native Hawaiian or Pacific Islander, or Other). Marital sta-

tus was dichotomized into married (or living with a partner) or non-married (never married,

divorced or separated, or widowed). Education was dichotomized into having a college degree

(bachelor or graduate degree) or not (grade school or some high school, high school diploma

or G.E.D., or some college or Associate Degree). BMI (kg/m2) was calculated using self-

reported height and weight. Self-rated health was rated on a 1 (“Poor”) to 5 (“Excellent”) scale.

Health conditions were assessed via the question “Do you currently have, or has a physician

told you that you have any of the following health conditions?” A count of health conditions

was created from a list of 16 possibilities, and participants were grouped categorically as: 0, 1,

2, or� 3. Physical functioning was measured using a subset of the Short Form-36 Health Sur-

vey [23]. Participants were asked about the extent to which their health limited in daily activi-

ties including but not limited to: vigorous exercise, carrying groceries, climbing multiple

flights of stairs, walking several blocks, and bathing one’s self, etc. Scores are converted to a

0–100 scale, with a higher score indicating better physical functioning.

Latent profile analysis of health behaviors in women
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Statistical analyses

Analyses were conducted at the participant level. The four rest-activity behaviors of interest

(nightly sleep time, nightly sleep efficiency, MVPA min/day, and percent time spent sedentary)

were assessed at the daily level. Two participant-level variables were created for each behavior

by taking the mean and standard deviation (SD) of each daily-level variable across days. Bivari-

ate Pearson’s correlations were used to investigate associations among the four daily mean

variables.

Latent profile analyses were conducted on the four participant-level daily mean variables to

derive mutually exclusive classes (clusters) that maximize between-group variance while mini-

mizing within-group variance. The model uses the distributional assumptions to find classes.

This approach was chosen over a regression model approach, with the intention of going

beyond examining if two of the four rest-activity behavior variables are related to one another

to examine if multiple rest-activity behaviors cluster together within individuals. This

approach has the potential to generate participant behavior profiles that will allow for the fur-

ther exploration of differences in demographics and health outcomes across behavior profile

groups.

Model fits were compared to derive the number of profiles that best fit the data [24], using

the Akaike information criterion (AIC) statistic for model fit, a Lo-Mendell-Rubin adjusted

likelihood ratio test (LMRT) [25], the Bayesian information criteria (BIC) which assesses the

relative quality of the model in each successive iteration [26], as well as the sample size adjusted

BIC and the interpretability of the profiles. Due to the large proportion of participants in one

profile from the latent profile analysis, a second latent profile analysis was conducted on the

participants in this large profile. Resulting behaviour profiles were labelled according to meet-

ing or not meeting the 2018 national PA guidelines [27] and the National Sleep Foundation

sleep duration recommendations [28].

Once the continuous rest-activity behavior profiles were identified, we investigated whether

we could identify differences in social demographic characteristics across the profile groups.

Analysis of variance (ANOVA) with Bonferroni post-hoc tests were used to compare differ-

ences in age, race/ethnicity, and education across the latent profiles (separate models). To

account for the differences in sample populations, these models adjusted for study site and

additional demographic characteristics (i.e. the model comparing age adjusted for race/ethnic-

ity and education). Additional ANOVA models were then used to assess differences in partici-

pant health characteristics previously associated in the literature with daily rest-activity

variables (including: BMI, self-rated health, physical functioning, and number of health condi-

tions) across behavior profiles. Health conditions were grouped categorically as: 0, 1, 2, or�3.

Models adjusted for covariates selected a priori including: age, race/ethnicity, education, and

site.

MPlus 6.12 was used for all of the statistical analyses.

Results

Of the 402 people recruited to the study, 368 (92%) returned both wrist and hip accelerometers

with valid wear, and an additional 4 people returned accelerometers with valid data after

requesting a re-wear, resulting in a final analytic sample of 372 participants. The all-female

study sample had an average age of 55.38 (SD = 10.16) years (Table 1). Participants were

mostly white (78%), married (71%), employed (74%), and college educated (68%). All of the

participants from University of Pennsylvania were breast cancer survivors (n = 128, 34%). Par-

ticipants achieved an average of 21.14 (SD = 18.92) minutes of daily MVPA, while 62% percent

of their daily time was spent being sedentary. The mean nightly sleep time was 408.88

Latent profile analysis of health behaviors in women
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(SD = 55.74) minutes or 6 hours and 49 minutes. On average, participants’ estimated sleep effi-

ciency was 86%.

Univariate Pearson’s correlations were run to examine possible correlations between the

rest-activity behavior variables. As expected, percent sedentary time (SB) and daily MVPA

showed a moderate inverse correlation (r = -0.31, p< 0.01). Of note, nightly sleep time and

sleep efficiency were only moderately correlated (r = 0.47, p< 0.01). Neither MVPA nor SB

were significantly correlated with either sleep behavior variable.

The model fit indices for the latent profile analyses are available in Table 2. The reduction

in the AIC and BIC supports a 3, 4 or 5-class solution over the 6-class solution. When all of the

indices and the LMRT (p< 0.001) were considered, the 3-class solution appeared to be the

overall best fit. Latent class probabilities for each class were 7% (n = 27) in class 1, 9% (n = 34)

in class 2, and 80% (n = 312) in class 3. We conducted an additional LPA of the largest profile

which captured 80% of participants. Similar to the first LPA, the model fit indices and inter-

pretation of the data supported the 3-class solution fit. Respective to the entire sample, latent

class probabilities for these classes were 41% (n = 151) for class 3.1, 28% (n = 105) for class 3.2,

and 15% (n = 55) for class 3.3.

Table 3 present the behavioral characteristics for the five observed profiles. Profile 1 was

labelled “Moderately Active Poor Sleepers” due to a mean daily MVPA (19.30 minutes) below

the 2018 national PA guidelines of 30 minutes of daily MVPA, and a mean total sleep time

(328.93 minutes /5.5 hours per night) that does not meet National Sleep Foundation sleep

Table 1. Demographic characteristics of sample (N = 372).

Mean [SD]

N (%)

Age 55.38 [10.16]

Race/Ethnicity

White non-Hispanic 285 (77)

All other 80 (22)

Marital Status

Married 259 (70)

Not Married 106 (29)

Employment

Not Employed 94 (25)

Employed 266 (72)

Education

Below college 117 (31)

College and above 248 (67)

Daily wear time (min) 872.29 [76.64]

MVPA per day (min) 21.14 [18.92]

Percent wear time sedentary (%) 62 [9]

Nightly sleep time (min) 408.88 [55.74]

Sleep efficiency 85.56 [7.46]

Health Characteristics

BMI 27.79 [6.51]

Physical Functioning (0–100) 87.58 [17.88]

Self-Rated Health (1–5) 3.54 [0.91]

Health Conditions (0, 1, 2, 3+) 1.55 [1.54]

Health Conditions Excluding Sleep Problems (0, 1, 2, 3+) 1.48 [1.47]

https://doi.org/10.1371/journal.pone.0218595.t001
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duration recommendations (7–9 hours of sleep per night). Profile 2 was labelled “Highly

Actives” due to high levels of MVPA (65.37 minutes) that exceed 2018 PA guidelines and a

total sleep time just below sleep duration recommendations (406.70 minutes /6.78 hours per

night). Profile 3.1 was labelled “Inactives” due to a very low mean MVPA (6.77 minutes) that

does not meet PA guidelines, and a mean total sleep that is closely in line with sleep duration

recommendations (415.81 minutes / 6.93 hours per night). Profile 3.2 was labelled “Moderately

Actives” due to their moderate levels of MVPA (19.81 minutes), and a total sleep time that is

also closely in line with sleep duration recommendations (415.96 minutes / 6.93 hours per

night). Profile 3.3 was labelled “Actives” due to a mean daily MVPA (36.06 minutes) that

meets PA guidelines and a total sleep time that nearly meets sleep duration recommendations

(417.60 minutes / 6.96 hours per night).

Table 4 presents the differences in rest-activity behavior means and SEs, demographics, and

health characteristics for the five rest-activity behavior profiles. Rest-activity behavior means

and health characteristics were adjusted for age, race, marital status, education, and site.

The rest-activity behavior profile with the largest number of participants was the Inactives

profile (profile 3.1, n = 151, 41%). Women in this group were close to meeting sleep recom-

mendations but spent more time in SB (66% time) and were the least physically active (7 min-

utes/day of MVPA) compared to women in the other groups.

Overall, sleep characteristics did not vary greatly across all profiles. Profile 1 (Moderately

Active Poor Sleepers) was the only group to have significantly poorer sleep characteristics than

the other four profiles. Additionally, the comparison of SDs of the sleep variables indicates

more night-to-night variability in the sleep of women in Profile 1 compared to the other

behavior profiles. Women in Profile 2 (Highly Actives) did not meet sleep duration guidelines,

but had moderately high sleep efficiency (87%) and overall sleep characteristics did not differ

significantly from profiles 3.1, 3.2, or 3.3.

Only 2 profiles (Profile 2 and 3.3), comprising 24% of women, met daily MVPA recommen-

dations. Mean daily MVPA was as high as 65 minutes/day in the Highly Actives and as low as

6.77 minutes/day for the Inactives. Sedentary time did not vary across behavior profiles to the

extent that MVPA did, as there was only a 10% difference in sedentary time between the pro-

file with the most (profile 3.1: 66% sedentary) and least SB (profile 2: 56% sedentary).

In our additional exploratory analyses demographic characteristics did not differ signifi-

cantly across the behavior profile groups. There were no significant differences in profile

Table 2. Latent profile analysis model fit indices.

Initial Latent Profile Analyses

AIC BIC sBIC LMRT

p-value

1 Class 8950.73 8982.10 8956.72 N/A

2 Class 8789.40 8840.38 8799.14 0.009

3 Class 8691.47 8762.06 8704.95 0.009

4 Class 8664.85 8755.05 8682.08 0.861

5 Class 8624.29 8734.10 8645.26 0.098

6 Class 8647.32 8776.73 8672.03 0.533

Secondary Latent Profile Analyses

3.1 Class 6842.10 6872.04 6846.67 N/A

3.2 Class 6781.05 6829.71 6788.48 < .0001

3.3 Class 6758.71 6826.09 6769.00 0.053

3.4 Class 6743.58 6829.67 6756.72 0.082

https://doi.org/10.1371/journal.pone.0218595.t002
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Table 3. Observed time spent in rest-activity behavior by behavior profile [mean (SD)].

Profile 1

Moderately Active

Poor Sleepers

n = 27 (7%)

Profile 2

Highly Actives

n = 34 (9%)

Profile 3.1

Inactives

n = 151 (41%)

Profile 3.2

Moderately Actives

n = 105 (28%)

Profile 3.3

Actives

n = 55 (15%)

MVPA per day

(min)

19.30 (18.86) 65.37 (14.67) 6.77 (3.95) 19.81 (4.44) 36.06 (5.46)

Percent Wear-Time

Sedentary (%)

64 (11) 56 (10) 66 (7) 59 (7) 62 (8)

Total Sleep Time

(min)

328.93 (58.11) 406.70 (50.31) 415.81 (54.36) 415.96 (47.24) 417.60 (45.77)

Sleep Efficiency (%) 66 (7) 87 (6) 86 (5) 87 (4) 89 (5)

https://doi.org/10.1371/journal.pone.0218595.t003

Table 4. Adjusted means for behaviors, demographics, and health outcomes by behavior profile and Bonferroni test results.

Profile 1

Moderately Active

Poor Sleepers

n = 27

Mean (SE)

Profile 2

Highly Actives

n = 34

Mean (SE)

Profile 3.1

Inactives

n = 151

Mean (SE)

Profile 3.2

Moderately

Actives

n = 105

Mean (SE)

Profile 3.3

Actives

n = 55

Mean (SE)

MVPA per day (min) 19.01 (1.61)b,c,e 65.06 (1.33)τ 7.15 (0.61)τ 19.73

(0.73)b,c,e
35.39 (1.0)τ

Percent Wear-Time Sedentary 64.24 (1.76)b 55.82 (1.45)a,c,e 65.45

(0.67)b,d
59.03 (0.79)c 61.98 (1.09)b

Nightly Sleep Time (min) 336.67 (11.04) τ 402.98 (9.50)a 415.96 (4.29)a 414.93 (5.13)a 416.78

(7.18)a

Sleep Efficiency 68.17 (1.05) τ 86.63 (0.91)a 86.35 (0.41)a 87.33 (0.49)a 88.50 (0.69)a

MVPA Daily SD 10.97 (1.56)b,c,e 32.03 (1.29)τ 5.96 (0.59)τ 14.51

(0.70)b,c,e
21.40 (0.97)τ

Percent Wear-Time Daily SD 7.60 (0.67) 7.29 (0.55) 7.60 (0.25) 7.64 (0.30) 7.89 (0.42)

Nightly Sleep Time SD 80.08 (6.20)τ 53.44 (5.26)a 61.03 (2.38)a 52.53 (2.84)a 52.70 (3.97)a

Nightly Sleep Efficiency SD 10.26 (0.73)τ 5.42 (0.62)a 5.38 (0.28)a 4.42 (0.33)a 4.87 (0.47)a

Age 53.12 (2.04) 53.79 (1.73) 57.97 (0.78)e 54.58 (0.95) 51.81 (1.29)c

Percent White 35.04 (7.76)τ 90.45 (6.83)a 77.90 (3.13)a 84.22 (3.73)a 81.59 (5.16)a

Percent Married 62.48 (9.44) 69.42 (80.14) 68.60 (3.66) 74.25 (4.38) 75.05 (60.25)

Percent College Grad 28.34 (9.31)τ 90.30 (8.01)a 68.32 (3.69)a 65.62 (4.42)a 76.19 (6.07)a

BMI kg/m2 28.89 (1.33) 26.20 (1.12) 29.15 (0.51)d 26.61 (0.61)c 26.71 (0.85)

Physical Functioning (0–100) 78.90 (3.67)d 90.63 (3.11) 85.01 (1.44) 91.22 (1.71)a 90.12 (2.34)

Self-Rated Health (1–5) 3.21 (0.18) 3.75 (0.15) 3.42 (0.07) 3.61 (0.08) 3.80 (0.11)

Number of Health Conditions (Categorical: 0, 1, 2, 3+) 1.86 (0.23) 1.13 (0.19) 1.40 (0.09) 1.33 (0.11) 1.10 (0.15)

Number of Health Conditions Excluding Sleep Problems (Categorical: 0, 1, 2, 3

+)

1.80 (0.23) 1.08 (0.19) 1.34 (0.09) 1.32 (0.11) 1.05 (0.15)

τ: Significant difference from all other Profiles
a: Significant difference from Profile 1
b: Significant difference from Profile 2
c: Significant difference from Profile 3.1
d: Significant difference from Profile 3.2
e: Significant difference from Profile 3.3. differences all p>0.05.

All models adjusted for age, race, marital status, education, and site. Bonferroni post-hoc analyses were performed.

https://doi.org/10.1371/journal.pone.0218595.t004
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membership based on study site (data not shown). Age was largely comparable across rest-

activity behavior profiles, with one significant difference (p = .001) between the Inactives

(57.97 years, SD: 0.78) and the Actives (51.81 years, SD: 1.29). Race-ethnicity and education

did not vary across all of the profiles, however the Inactives had a significantly lower propor-

tion of whites (35% vs 78–91%, p< .001), and a lower proportion of college graduates (28% vs

68–90%, p = .004) than all of the other behavior profiles. Marital status did not differ signifi-

cantly across profiles.

Additionally, health outcomes did not vary significantly across all rest-activity profiles. Sig-

nificant differences in BMI were only observed between the Inactives, who reported the high-

est BMI (28.89 kg/m2, SD: 1.33), and the Moderately Actives (26.61 kg/m2, SD:0.61), but not

the other profiles. Physical functioning was also largely similar among behavior profiles, with

significant differences observed between the Moderately Active Poor Sleepers, who reported

the lowest physical functioning scores (78.90, SD: 3.67), and the Moderately Actives who

reported the highest physical functioning scores (91.22, SD: 1.71). Self-rated health and

reported number of health conditions did not differ significantly across behavior profiles,

however means trended in the expected directions (poorer health in the Moderately Active

Poor Sleepers and the Inactives compared to better self-rated health in the Highly Actives and

the Actives). Additionally, the women in the Moderately Active Poor Sleepers group were

more likely to report working a regular night shift (12% vs. 0–2%) and having a sleep disorder

(14% vs. 7–9%) than members of the other behavior profiles, although these differences were

not statistically significant (data not presented in table).

Discussion

This was one of the first studies to use objectively measured PA, SB, and sleep to explore the

clustering of 24-hour rest-activity behaviors in adult women. Five different rest-activity behav-

ior profiles emerged from our analysis. Demographic characteristics and health outcomes did

not vary significantly across behavior profiles. However, we found the behavior profile with

the least MVPA and highest percent time in SB had the highest mean BMI, and the behavior

profile with the shortest nightly sleep time and lowest sleep efficiency had the poorest physical

functioning. The results of this clustering analysis support future studies further exploring the

interrelationship of 24-hour rest-activity behaviors among adults.

In our sample of adult women, MVPA was the largest discriminator across the resulting

rest-activity behavior profiles. Overall, only 24% of women in our sample achieved mean daily

minutes of MVPA that met the 2018 PA guidelines for adults, which is similar to recent popu-

lation estimates of women meeting PA guidelines in the United States [27]. Additionally, time

spent in SB did not vary across rest-activity behavior profiles in our analysis. If estimates from

our analysis are accurate, women in the US are spending approximately 60% of their time in

SB, equivalent to 14 hours a day. Both the MVPA and SB results from our analysis provide fur-

ther evidence of opportunities for intervention among adult women. However, it is important

to note that in our sample SB estimates were high even in the profiles with higher estimates of

MVPA. Although our study is cross-sectional, these findings may explain why targeting PA

does not necessarily result in decreases in SB [29] and targeting SB does not necessarily lead to

significant increases in MVPA [30]. These results provide support of the numerous lines of evi-

dence establishing the adverse health effects of SB, independent of PA (i.e., these are distinct

behaviors) [31,32].

In this study, sleep characteristics did not vary significantly across the resulting 24-hour

rest-activity behavior profiles. Overall, the entire sample of women had average nightly sleep

times that were just under meeting the national recommendations of 7–9 hours per night [28].
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Only one profile had significantly less total sleep time and lower sleep efficiency than the other

four profiles. Further, there was essentially no correlation observed between MVPA and

nightly sleep time in this sample. Previous studies that have documented positive associations

between MVPA and sleep time have typically relied on self-report for at least one of the behav-

iors [33], which may explain the difference in findings. A small but positive correlation was

observed between MVPA and sleep efficiency, suggesting that women with more minutes of

MVPA have better sleep efficiency. The profile with the poorest sleep characteristics still

achieved moderate amounts of MVPA. Therefore, experiencing poor sleep may not be related

to the amount of daily MVPA achieved among women [34]. Further, the profile with the

poorer sleep characteristics were more likely to be non-white. The demographic characteristics

of this profile are consistent with studies indicating that racial-ethnic minorities report

experiencing shorter sleep duration sand worst sleep quality than their white counterparts

[35]. Considering the health implications of optimal sleep, this result may be meaningful for

targeting at-risk population subgroups in need of sleep duration and sleep quality interven-

tions [36].

Consistent with previous research, in our study the behavior profile with the lowest minutes

of daily MVPA and highest SB had the highest BMI [27]. The behavior profile with the poorest

physical functioning was the profile with the poorest sleep characteristics, which may have

been a cause and/or consequence of the poor sleep experienced in that group. No other signifi-

cant differences were observed in health characteristics across the behavior profiles, though it

is possible that a larger sample size may be needed to adequately test for differences.

This study has several limitations. While the study data were collected daily allowing for

possible longitudinal assessment, this study was cross-sectional and averages of daily activities

were assessed to answer the research questions. Due to the cross-sectional design examining

causal relationships between profile membership and health conditions was not possible. Acti-

graphy was used to measure PA (gold standard), however this approach is limited in its ability

to capture certain PA modalities, such as swimming and cycling. Accelerometers were also

used to measure sleep rather than the gold standard polysomnography. While our analysis

included a unique sample of women varied in age, health status, and occupation, all partici-

pants were adult women, which limits the generalizability of these findings to US adult men.

Health variables were all self-reported and were limited in scope and severity. While the sam-

ple size of 372 was large enough to discern five distinct profiles, a larger sample size would

have greater statistical power to discern differences between these groups. Lastly, we acknowl-

edge that some of the model fit statistics may support that a 2-class solution better represented

the participants in the second LPA, however we believe that substantive interpretation lends

support for a 3-class solution to this model.

Few studies have investigated how women cluster in rest-activity behavior profiles based on

their accumulation of activity throughout the 24-hour day. This study is one of the first to

explore 24-hour behavior patterns in women using objective measures of 24-hour daily activity

behavior. This study demonstrates that women cluster into distinct behavior profile groups

based on their daily MVPA, SB, and sleep characteristics. Prior studies have relied upon self-

reported measures of these behaviors and have typically examined behaviors individually,

ignoring the possible interrelationships of daily activity behaviors. This analysis supports the

use of future longitudinal studies to further untangle the interrelationships of these behaviors

and understand how behavior profiles may be associated with health outcomes over time.

Additionally, more research is needed to determine whether these behavior profiles generalize

to other population subgroups (e.g., men, youth, older adults) and racial-ethnically diverse

samples. While more research is needed, this study demonstrates the importance of consider-

ing the clustering of rest-activity behaviors in intervention design and population targeting.
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This study provides promising evidence to support the further exploration of multiple behav-

ior change interventions and identifying populations most in need of lifestyle intervention,

including the populations with the lowest MVPA and poorest sleep characteristics [36–38].
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