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Metabolomic Patterns

in Adolescents

With Mild to Moderate CKD

To the Editor: Metabolomics of patients with chronic
kidney disease (CKD) can provide a unique perspective
on subclinical metabolic perturbations relative to the
glomerular filtration rate (GFR) because the kidneys
have a major role in maintaining metabolic homeosta-
sis.1 Examination of metabolomics in CKD has largely
focused on adults in advanced stages and centered on
risk of mortality.2 However, metabolic alterations in
children and adolescents with mild-moderate CKD
presents a significant risk of secondary morbidities
because they are undergoing periods of rapid growth
and development and would otherwise not normally
experience untoward issues with nutrient catabolism.

The goal of this study was to use targeted metab-
olomics to identify altered biochemical pathways in
adolescents with mild to moderate CKD (stages 2 and
3b) in 2 cohorts matched by age, gender, and CKD
etiology.3 Metabolites and their ratios were selected a
priori due to previously documented alterations in
CKD.4–9

For this investigation, CKD etiology was categorized
as glomerulopathy (G) or nonglomerular urologic
anomalies (NG), the latter of which is defined as
congenital abnormalities of the kidney and urinary
tract and includes the largest proportion of the pedi-
atric CKD population. Therefore, the 2 cohorts (CKD-2
and -3b) had equal numbers with G and NG.

Forty plasma specimens and data, including directly
measured GFR (mGFR, determined by plasma iohexol
clearance)10 were selected from a large heterogeneous
population of children and adolescents in the ongoing,
prospective, observational Chronic Kidney Disease in
Children (CKiD) study in North America.4 By closely
matching the cohorts, an unbiased approach to the
metabolomics of mild to moderate CKD was achieved.

We posited that abnormal metabolic findings would
be present in early (mild) CKD (stage 2), with some
significant differences observed between CKD stages 2
and 3b (moderate).

RESULTS

Two cohorts (CKD-2 and -3b) were defined by their
respective median and interquartile range mGFR that
matched the National Kidney Foundation’s Kidney
Disease Outcomes Quality Initiative criteria for stages 2
and 3b.3 The CKD-2 and -3b mGFR medians and

interquartile ranges were 74.3 (67.4, 82.9) and 32.8
(24.3, 35.5) ml/min per 1.73 m2 (P < 0.001), respec-
tively. Median age was also matched between the co-
horts. The racial compositions of both cohorts were
70% White, 5% Native American, and 5% “other,”
whereas CKD-2 and -3b were 20% and 5% African
American, respectively. Carbohydrate, total fat, and
protein intake (grams per day) by food frequency did not
differ appreciably between the cohorts (P ¼ 0.19–0.63).

The cohorts (n ¼ 20/cohort) were compared by stage
for metabolites using a discrete t-test. Subgroups (n ¼
10/subgroup), defined by CKD stage and etiology, were
analyzed using 1-way analysis of variance and post hoc
testing (Table 1).

Five metabolites and ratios were significantly different
between the cohorts, comprising a biogenic amine,
phosphatidylcholine; metabolites, tryptophan (Trp),
kynurenine (Kyn), and creatinine (Cr); and an acylcarni-
tine (P# 0.001). Ratios included tyrosine/creatinine (Tyr/
Cr), ornithine/citrulline (Orn/Cit), Kyn/Trp, proline/Cit
(Pro/Cit), phenylalanine/Trp (Phe/Trp), and symmetric
dimethylarginine/asymmetric dimethylarginine (SDMA/
ADMA) (P # 0.0012) (Figure 1a–j).

Three metabolites and 5 ratios were identified as
different between the subgroups (P ¼ 0.004–0.02).
Subgroup and cohort results reflected metabolite dif-
ferences, whereas ratio findings were identical. Dis-
tinctions between the subgroups were consistent with
biochemical pathways, catabolic alterations from
declining mGFR, and disease etiology (Supplementary
Material).

DISCUSSION

Methylated arginine derivatives, SDMA and ADMA,
elevated concentrations result from increased protein
catabolism. SDMA increases in early CKD because it is
largely excreted through the kidneys unmetabolized.
Conversely, ADMA has a pronounced rise that is syn-
onymous with advanced CKD decline in the enzyme,
dimethylarginine dimethylaminohydrolase (DDAH 1) and
increased oxidative stress.6, 11–13 Therefore, we expected
and did observe higher concentrations of SDMA and
SDMA/ADMA ratio in CKD-3b and 3b-G, respectively.

Amino acid losses in late-stage kidney disease are
known and anticipated secondary to acidosis, albeit there
is limited literature on mild-moderate CKD.13 Our results
demonstrated some important differences in amino acid
concentrations between the cohorts, whereas macronu-
trient intake data were not significantly different. It is
well-known that there are age-dependent variations in
plasma amino acid concentrations in healthy children
aged 0 to 18 years, and as such emphasize the value of
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matching age and gender between our CKD cohorts in
this investigation.14

Kyn and Kyn/Trp levels have been associated with
CKD severity and known to be elevated in patients on

chronic hemodialysis.5 Kyn has been suggested to infer
the coexistence of proinflammatory processes. Thus,
our observations of increased Kyn and Kyn/Trp in
glomerulopathy (Figure 1a–j) and CKD-3b, respectively,

Table 1. Subject characteristics and significant differences in plasma metabolites and metabolite ratios by CKD cohort (median and
interquartile range)
Variables CKD stage 2 (n[20) CKD stage 3b (n[20) P

mGFR (ml/min per 1.73 m2) 74.3 (67.4, 82.9) 32.8 (24.3, 35.5) < 0.001a

Age, yr 15.0 (12.7, 15.7) 14.8 (11.7, 16.1) 0.59

Body mass index (BMI) Z 0.95 (-0.07, 1.63) 0.34 (-0.10, 0.82) 0.79

Serum PTH (pg/ml) 33.0 (26.0, 50.2) 60.0 (37.3, 197.0) 0.03a

Urine Pro/Cr ratio 0.34 (0.14, 1.76) 0.63 (0.16, 1.58) 0.56

Metabolites CKD stage 2 CKD stage 3b T statistic P FDR

SDMA [ �5.6057 1.98E-06 3.09E-04

PC ae (C32:1) [ 4.4398 7.50E-05 5.85E-03

Kynurenine [ �4.2039 1.54E-04 7.98E-03

Creatinine [ �3.9549 3.23E-04 1.26E-02

C4:1 [ 3.5496 1.05E-03 3.27E-02

Metabolite ratios

Tyr/Cr [ 5.3733 4.12E-06 2.47E-05

Orn/Cit [ 4.2933 1.17E-04 3.52E-04

Kyn/Trp [ �4.112 2.02E-04 4.05E-04

Pro/Cit [ 3.7856 5.30E-04 7.96E-04

SDMA/ADMA [ �3.5173 1.15E-03 1.38E-03

Body mass index (weight in kg/height in meters2) corrected for gender and age. The arrows indicate which metabolites and ratios were higher in CKD Stage 2 or 3b cohort.
ADMA, asymmetric dimethylarginine; Cit, citrulline; CKD, chronic kidney disease; Cr, creatinine; C4:1, butenoylcarnitine (fatty acylcarnitine); FDR, false discovery rate (5% of significant
tests will result in false positives); Kyn, kynurenine; mGFR, measured glomerular filtration rate; Orn, ornithine; PCae (C32:1), phosphatidylcholine with acyl-akyl residue; Pro, proline; PTH,
parathyroid hormone; SDMA, symmetric dimethylarginine; Trp, tryptophan; Tyr, tyrosine.
aDifferences between the CKD cohorts were considered to be significant when P < 0.001.

Figure 1. (a–j) Plasma metabolites and ratios differ significantly between chronic kidney disease (CKD) cohorts (stages 2 and 3b; n ¼ 20/group;
false discovery rate <0.05). ADMA, asymmetric dimethylarginine; Cit, citrulline; Cr, creatinine; C4:1, butenoylcarnitine (fatty acylcarnitine);
FDR, false discovery rate (5% of significant tests will result in false positives); Kyn, kynurenine; Orn, ornithine; PC ae (C32:1), phosphatidylcholine
with acyl-akyl residue; Pro, proline; SDMA, symmetric dimethylarginine; Trp, tryptophan; Tyr, tyrosine.
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are noteworthy.4 As such, our findings suggest
upregulated Trp catabolism in glomerulopathy and
moderate CKD.

The higher Tyr/Cr ratio observed in CKD-2 is consis-
tent with an elevated Cr concentration in CKD-3b. In
normal conditions, substantial conversion of Phe to Tyr
occurs in the kidneys, but as GFR declines, conversion to
Tyr is reduced. This explains our observation of atten-
uated CKD-3b Tyr/Cr levels. This is consistent with
previous findings in adults and infants with CKD.7,15

Moreover, in advanced CKD, gut microbiota metabolize
Tyr into protein-bound p-Cresol, a phenolic compound
and uremic toxin creating a further decline in Tyr, while
Cr continues to rise.9

Cit, a urea cycle intermediary, was also higher in
CKD 3b-G (mGFR median ¼ 32.8 ml/min per 1.73 m2)
(Supplementary Table S1) and is consistent with pre-
vious findings in patients with a GFR <45 ml/min per
1.73 m2.4 Cit has an important function in advancing
CKD as a hydroxyl radical scavenger and is catabolized
to arginine and then nitric oxide.4 However, as renal
dysfunction worsens and plasma ADMA rises, nitric
oxide synthesis declines.4 Cit also can be directly
converted to Orn, or to arginine by addition of a second
amino group, or regenerated to Orn in the urea cycle.
Moreover, Orn can be enzymatically converted into
proline, accounting for the higher Orn/Cit and Pro/Cit
ratios observed in CKD-2 cohort and subgroups (Sup-
plementary Table S2).

Both PC ae C32:1 and C4:1, a phosphatidylcholine
and fatty acylcarnitine (butenoylcarnitine), respec-
tively, had noticeably lower plasma concentrations in
CKD-3b compared with CKD-2. Our findings are similar
to another investigation that identified lower plasma
phosphatidylcholine levels in healthy controls versus
CKD-4.16 So too, acylcarnitines decline in advancing
CKD with relative and absolute carnitine deficiencies in
patients with CKD-5 on chronic dialysis.17 In end-stage
disease, tissue carnitine deficiency impedes fat beta
oxidation, causing generalized weakness, particularly
following hemo- and peritoneal dialysis, which further
deplete carnitine. The fact that lower acylcarnitine
levels already exist in CKD-3b is of importance for
adolescents who have not reached their full stature and
anthropometric maturity.

There are 2 limitations to this pilot investigation. A
small number of subjects were studied (2 cohorts of
n ¼ 20) matched by age, gender, and mGFR (cohorts of
CKD-2 and -3b). Four smaller subgroups (n ¼ 10)
within the cohorts were matched by etiology and
examined for stage by etiology interaction, thereby
limiting the power for determining significant differ-
ences. Also, the targeted metabolite panel

(Supplementary Figures S1A and B and S2A and B) was
preselected, thereby limiting a complete examination of
some biochemical pathways that were of interest from
our results, including the Trp-Kyn catabolism, which
may have provided additional valuable data.

In summary, mild metabolic derangements exist in
CKD-3b (Supplementary Figure S3A–H). In this study,
we were fortunate to include directly measured GFR
data, which permitted us to better interpret our results
in light of quantified kidney function rather than by
estimation. Prospective studies are needed to determine
if the metabolic alterations we have observed may
contribute, in part, to growth limitations (stature and
body composition) or whether they have a role in
accelerating CKD progression.
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of Proliferative
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To the Editor: The examination of urine to diagnose
disease is an age-old practice, dating back thousands
of years in primitive forms, and arguably represents
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