
Children's Mercy Kansas City Children's Mercy Kansas City 

SHARE @ Children's Mercy SHARE @ Children's Mercy 

Manuscripts, Articles, Book Chapters and Other Papers 

4-19-2019 

Epigenome-wide Analysis Identifies Genes and Pathways Linked Epigenome-wide Analysis Identifies Genes and Pathways Linked 

to Neurobehavioral Variation in Preterm Infants. to Neurobehavioral Variation in Preterm Infants. 

Todd M. Everson 

Carmen J. Marsit 

T Michael O'Shea 

Amber Burt 

Karen Hermetz 

See next page for additional authors 

Let us know how access to this publication benefits you 

Follow this and additional works at: https://scholarlyexchange.childrensmercy.org/papers 

Recommended Citation Recommended Citation 
Everson TM, Marsit CJ, Michael O'Shea T, et al. Epigenome-wide Analysis Identifies Genes and Pathways 
Linked to Neurobehavioral Variation in Preterm Infants. Sci Rep. 2019;9(1):6322. Published 2019 Apr 19. 
doi:10.1038/s41598-019-42654-4 

This Article is brought to you for free and open access by SHARE @ Children's Mercy. It has been accepted for 
inclusion in Manuscripts, Articles, Book Chapters and Other Papers by an authorized administrator of SHARE @ 
Children's Mercy. For more information, please contact hlsteel@cmh.edu. 

https://scholarlyexchange.childrensmercy.org/
https://scholarlyexchange.childrensmercy.org/papers
https://forms.office.com/r/pXN2VA1t4N
https://scholarlyexchange.childrensmercy.org/papers?utm_source=scholarlyexchange.childrensmercy.org%2Fpapers%2F2666&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hlsteel@cmh.edu


Creator(s) Creator(s) 
Todd M. Everson, Carmen J. Marsit, T Michael O'Shea, Amber Burt, Karen Hermetz, Brian S. Carter, 
Jennifer Helderman, Julie A. Hofheimer, Elisabeth C. McGowan, Charles R. Neal, Steven L. Pastyrnak, 
Lynne M. Smith, Antoine Soliman, Sheri A. DellaGrotta, Lynne M. Dansereau, James F. Padbury, and Barry 
M. Lester 

This article is available at SHARE @ Children's Mercy: https://scholarlyexchange.childrensmercy.org/papers/2666 

https://scholarlyexchange.childrensmercy.org/papers/2666


1Scientific Reports |          (2019) 9:6322  | https://doi.org/10.1038/s41598-019-42654-4

www.nature.com/scientificreports

Epigenome-wide Analysis Identifies 
Genes and Pathways Linked to 
Neurobehavioral Variation in 
Preterm Infants
Todd M. Everson1, Carmen J. Marsit1, T. Michael O’Shea2, Amber Burt   1, Karen Hermetz1, 
Brian S. Carter3, Jennifer Helderman4, Julie A. Hofheimer2, Elisabeth C. McGowan5, 
Charles R. Neal6, Steven L. Pastyrnak7, Lynne M. Smith8, Antoine Soliman   9, 
Sheri A. DellaGrotta10, Lynne M. Dansereau10, James F. Padbury5 & Barry M. Lester5,10,11

Neonatal molecular biomarkers of neurobehavioral responses (measures of brain-behavior 
relationships), when combined with neurobehavioral performance measures, could lead to better 
predictions of long-term developmental outcomes. To this end, we examined whether variability in 
buccal cell DNA methylation (DNAm) associated with neurobehavioral profiles in a cohort of infants 
born less than 30 weeks postmenstrual age (PMA) and participating in the Neonatal Neurobehavior 
and Outcomes in Very Preterm Infants (NOVI) Study (N = 536). We tested whether epigenetic age, age 
acceleration, or DNAm levels at individual loci differed between infants based on their NICU Network 
Neurobehavioral Scale (NNNS) profile classifications. We adjusted for recruitment site, infant sex, PMA, 
and tissue heterogeneity. Infants with an optimally well-regulated NNNS profile had older epigenetic 
age compared to other NOVI infants (β1 = 0.201, p-value = 0.026), but no significant difference in age 
acceleration. In contrast, infants with an atypical NNNS profile had differential methylation at 29 CpG 
sites (FDR < 10%). Some of the genes annotated to these CpGs included PLA2G4E, TRIM9, GRIK3, and 
MACROD2, which have previously been associated with neurological structure and function, or with 
neurobehavioral disorders. These findings contribute to the existing evidence that neonatal epigenetic 
variations may be informative for infant neurobehavior.

Preterm birth is a significant global public health problem. In the United States one in eight children are born less 
than 37 weeks of gestation1. Survival of infants born very preterm, prior to 30 weeks postmenstrual age (PMA), 
has improved due to technological and medical advancements2,3. These youngest infants are more likely to suffer 
from chronic illnesses, potentially devastating brain injuries, and adverse neuromotor, cognitive, and behavio-
ral outcomes that persist through adulthood4–15. These consequences of premature birth often require extensive 
healthcare, educational and psychosocial community resources, in addition to increased burden on the families 
and caregivers of these children, emotionally and financially.
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In addition to immaturity, premature infants vary widely in the health complications they experience. As such, 
assessments prior to discharge from the neonatal intensive care unit (NICU) are needed to identify the earliest 
risks for adverse neurodevelopmental outcomes, and to maximize the potential benefits of interventions aimed 
at ameliorating long term deficits. There is growing evidence that neonatal neurobehavior (the relationships 
between the nervous system and behavior), as measured by the NICU Network Neurobehavioral Scale (NNNS)16, 
predicts developmental deficits in infants born preterm and others at risk, beyond what can be predicted based 
on the assessment of medical risk factors throughout the newborn’s hospital stay17–20. Latent profiles of NNNS 
summary scores have been used to classify infants into groups with similar responses across the overall NNNS 
assessment. These neurobehavioral profiles in infants have been associated with prenatal exposures (prenatal 
drugs21,22 and perfluorooctanoic acid23), birth outcomes (gestational age and birth weight21), and with behavioral 
and cognitive outcomes in childhood21,22,24. Poorer performance on the NNNS has also been shown to be predic-
tive of non-optimal developmental outcomes through early childhood21. Beyond the neurobehavioral and med-
ical assessments, molecular biomarkers may provide insights into how the environment and experiences of the 
preterm newborn are internalized and may hold additional value as predictive tools useful in risk stratification.

Epigenetics refers to mitotically and meiotically heritable changes in gene expression potential that are not 
explained by changes in DNA sequence. The most thoroughly studied epigenetic mechanism is DNA methylation 
(DNAm), particularly in the context of cytosine-phosphate-guanine (CpG) motifs and islands. These methylation 
marks can be inherited across cell divisions, established in-utero and/or affected by the environment through-
out life, thus representing a truly integrated measure of exposure and disease susceptibility. In preterm infants, 
variability in DNAm of candidate genes have been related to medical complications such as sepsis25, pain related 
stress26,27, medical and neurobehavioral risk28,29, and as a potential moderator of NICU environment stress on 
serotonergic tone and temperament30. We have also used an epigenome-wide scan of DNAm in the placenta to 
demonstrate relationships between methylation of the FHIT and ANDKR11 genes, which had been previously 
linked to neurodevelopmental and behavioral outcomes, and performance on the NNNS attention scale in a 
cohort of term newborns31. Additionally, DNAm can be used to estimate epigenetic age, which is thought to be a 
marker of underlying biological aging32. In children and adolescents, epigenetic age acceleration has been associ-
ated with physical development33, pubertal development, internalization and thought problems34, and increased 
cortisol production34,35. These studies have begun to elucidate the potential role for epigenetic aging in develop-
mental processes but has not been thoroughly studied in relation to neonatal neurobehavioral responses.

Incorporating molecular biomarkers, such as DNAm and epigenetic age, with performance measures may 
improve long-term predictions of health outcomes in preterm infants. Before this can be done, it is important to 
demonstrate whether variability in DNAm and epigenetic age, measured from accessible tissues, are associated 
with behavioral measures in newborns. In this study, we hypothesized that infants with the most atypical or opti-
mal neurobehavioral profiles, measured via the NNNS, will exhibit unique patterns of DNAm. In a U.S. multisite 
cohort of infants born less than 30 weeks PMA, we profiled genome-wide DNAm from buccal swab samples using 
the Illumina MethylationEPIC array platform. We estimated epigenetic age and tested for differences in epige-
netic age and in DNAm among infants with neurobehavioral profiles, ranging from most optimal to atypical, as 
determined via NNNS latent profile classification.

Methods
Study Population.  The Neonatal Neurobehavior and Outcomes in Very Preterm Infants (NOVI) Study was 
conducted at 9 university-affiliated NICUs in Providence, RI, Grand Rapids, MI, Kansas City, MO, Honolulu, HI, 
Winston-Salem, NC, and Torrance and Long Beach CA from April 2014 through June 2016. These NICUs were 
also Vermont Oxford Network (VON) participants. All participating mothers provided written informed consent. 
Enrollment and consent procedures for this study were approved by the institutional review boards of Women 
and Infants Hospital, Spectrum Health, Children’s Mercy Office of Research Integrity, Wake Forest University 
Health Sciences, John F. Wolf, MD Human Subjects Committee at Los Angeles BioMed, Emory University and 
Western Institutional Review Board (WIRB); all methods employed in the study were performed in accordance 
with the relevant guidelines and regulations. Eligibility was determined based on the following inclusion criteria: 
(1) birth at <30 weeks’ gestation; (2) parental ability to read and speak English, Spanish, Japanese, or Chinese; 
and (3) residence within 3 hours of the NICU and follow-up clinic. Infants were excluded if their medical record 
indicated presence of a major congenital anomaly, including central nervous system, cardiovascular, gastroin-
testinal, genitourinary, chromosomal, and nonspecific anomalies36. Parents of eligible infants were invited to 
participate in the study at 31–32 weeks PMA, or when survival to discharge was determined to be likely by the 
attending neonatologist. Demographic variables, including infant gender, race, ethnicity, maternal education and 
partner status were collected from the maternal interview. Socioeconomic status (SES) was assessed using the 
Hollingshead Index, with Hollingshead level V indicating low SES37. Neonatal medical variables including birth-
weight, gestational age, length of NICU stay, weight at discharge, and gestational age at discharge were abstracted 
from medical records. Overall, 709 infants were enrolled, 679 from whom complete neurobehavioral assessment 
data were obtained, and buccal cells were collected on 624 of these infants for epigenomic screening.

NICU Network Neurobehavioral Scale (NNNS).  Neonatal neurobehavior was assessed using the 
NNNS. The NNNS is a 20–30 minute standardized procedure that includes measures of active and passive tone, 
primitive reflexes, items that reflect physical maturity, social and behavioral functioning including visual and 
auditory tracking, cuddling and soothability, and a checklist of stress signs organized by organ system38. The 
NNNS was administered during the week of NICU discharge (+/− 3 days) by site examiners who were trained 
and certified by a central NOVI NNNS trainer. The exam was conducted 45 minutes prior to a scheduled feeding 
or routine care in order to maximize alertness and avoid disrupting NICU routines that facilitate sleep patterns. 
Individual items were converted to 12 summary scores: attention, handling, self-regulation, arousal, excitability, 
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lethargy, hypertonicity, hypotonicity, non-optimal reflexes, asymmetric reflexes, quality of movement and stress 
abstinence. A higher summary score does not necessarily reflect better performance, but instead more of the 
construct. Summary scores were converted to NNNS profiles, which are mutually exclusive, discrete categories 
representing the infant’s pattern of performance across the summary scores, and which have been shown to be 
related to future behavioral and cognitive performance21,22,24.

DNA Methylation (DNAm) Analysis.  Genomic DNA was extracted from buccal swab samples, collected 
near term-equivalent age, using the Isohelix Buccal Swab system (Boca Scientific), quantified using the Quibit 
Fluorometer (Thermo Fisher, Waltham, MA, USA) and aliquoted into a standardized concentration for subse-
quent analyses. DNA samples were plated randomly across 96-well plates and provided to the Emory University 
Integrated Genomics Core for bisulfite modification using the EZ DNA Methylation Kit (Zymo Research, Irvine, 
CA), and subsequent assessment of genome-wide DNAm using the Illumina MethylationEPIC Beadarray 
(Illumina, San Diego, CA) following standardized methods based on the manufacturer’s protocol. Samples with 
more than 5% of probes yielding detection p-values > 1.0E-5 (74 samples), with mismatch between reported and 
predicted sex (7 samples), or incomplete covariate data (7 samples) were excluded. Additionally, probes with 
median detection p-values < 0.05 were excluded. Array data were normalized via functional normalization, then 
standardized across Type-I and Type-II probe designs with beta-mixture quantile normalization39. Probes that 
measured methylation on the X and Y chromosomes, probes that had single nucleotide polymorphisms (SNP) 
within the binding region, that could cross-hybridize to other regions of the genome40, or probes that had low 
variability (range of beta-values < 0.05)41 were excluded. After exclusions, 690,781 probes were available from 
536 samples for this study. We used gaphunter to flag probes that had outliers or distributional issues that may 
be related to genetic effects on DNAm measurement42. These data are accessible through NCBI Gene Expression 
Omnibus (GEO) via accession series GSE128821.

Estimate of Epigenetic Age.  We estimated epigenetic age using the online (https://horvath.genetics.ucla.
edu/html/dnamage/) [Accessed 01/15/2019] epigenetic clock calculator43. This method utilizes DNAm levels at 
previously identified CpGs that are predictive of chronological age and has been shown to be highly accurate 
across a wide range of different cell and tissue types32. This clock also calculates two measures of age acceleration: 
the difference between epigenetic and chronological age, and the residuals when epigenetic age is regressed on 
chronological age in a linear model. We investigated the age acceleration residuals and epigenetic age in this study.

Estimates of Tissue Heterogeneity.  DNAm differs between cell-types, and cellular heterogeneity pre-
sents a likely source of confounding in epigenome-wide association studies of mixed cell samples44. Thus, we 
estimated the proportions of epithelial, fibroblast, and immune cells (including B-cells, natural killers, CD4+ 
T-cells, CD8+ T-cells, monocytes, neutrophils, and eosinophils) in our cheek swab samples using reference 
methylomes45. For 95% of our samples, epithelial cells made up 95.7% of the cells (Supplemental Fig. 1), while 
immune cells made up the majority of the remaining cell types. Due to very strong inverse correlations between 
immune cell proportions and epithelial cell proportions (Supplemental Fig. 2), we adjusted for cellular heteroge-
neity by including the proportions of epithelial cells as covariates in the statistical models.

Statistical Analyses.  Latent profile analysis (LPA, Mplus version 8.1) was used to group infants into mutu-
ally exclusive categories using 12 NNNS summary scores based on previous work21. Membership in categorical 
latent profiles that represent heterogeneous subgroups was inferred from the 12 NNNS variables. LPA models 
with different numbers of profiles were fitted. We identified the model containing the optimal number of profiles 
using criteria outlined by Nylund et al.46. Determination of the best model fit was assessed via Bayesian informa-
tion criteria (BIC) adjusted for sample size, whereby the smallest BIC value indicates the best fit as well as minimi-
zation of cross classification probabilities, the bootstrapped likelihood ratio test, and the number of cases in each 
profile. As the number of profiles increased from 2 to 6, the sample-size adjusted BIC values decreased, suggesting 
improvement in the goodness of fit (Supplemental Table 1). Infants in Profile 6 had a pattern of responses (lowest 
scores for attention, self-regulation and quality of movement, average scores for lethargy, hypotonicity, nonop-
timal reflexes and asymmetric reflexes, combined with the highest scores for arousal, excitability, hypertonicity 
and the most stress abstinence) that was consistent with a latent profile identified by Liu et al. (2010) that had the 
most extreme negative scores and was most predictive of nonoptimal developmental outcomes in childhood21. 
Whereas infants in Profile 1 exhibited the most optimal responses, and provided the greatest contrast to Profile 6, 
thus we focused on these two profiles for the EWAS and epigenetic age analyses.

Statistical analyses of epigenomic data were performed in R version 3.5. We tested for differences in epigenetic 
age and age acceleration between the atypical NNNS profile (Profile 6) and optimal NNNS profile (Profile 1) 
versus those in the other NNNS profiles using robust linear models via the MASS package. Standard errors and 
p-values for robust regressions were estimated using White’s sandwich estimator to protect against potential het-
eroscedasticity. Epigenetic age and age acceleration were included as continuous dependent variables, the NNNS 
profiles were included as a three-level factor for the independent variable, while adjusting for sex, recruitment 
site, and cellular heterogeneity. The epigenome-wide association study was performed with robust linear regres-
sions for each CpG site that passed QC, regressing methylation beta-values (dependent variable) on the NNNS 
profiles (independent variable), while adjusting for sex, PMA, and proportions of epithelial cells and fibroblasts. 
QQ-plots and Manhattan plots were produced using the qqman package. To account for multiple testing, we 
implemented a false discovery rate (FDR) and considered those associations that were within a 10% FDR to be 
statistically significant. We report all results from models that yielded suggestive associations (p-value < 0.0001) 
in the Supplemental Materials.
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We performed sensitivity analyses to examine the impacts of other potential confounders on the associations 
between NNNS profiles and DNAm. For these analyses, we included additional variables in the linear models, and 
compared the parameter estimates before and after these additional adjustments. We assessed the confounding 
effects of sample plate as a batch variable (7-level factor), maternal socioeconomic status (2-level factor), mater-
nal educational attainment (2-level factor), proportions of fibroblasts and immune cells (B-cells, natural killers, 
CD4+ T-cells, CD8+ T-cells, monocytes, neutrophils, and eosinophils), race (white, black, Asian, Hawaiian/
Pacific Islander, and other), and birth weight (grams).

To gain insights into the biological functions of the NNNS-associated CpG sites, we performed 
over-representation analyses with ConsensusPathDB (CPDB)47,48. We utilized CPDB to examine our gene 
lists for enrichment with neighborhood-based entity sets (NESTs) with a radius of one, pathway-based gene 
sets from KEGG, Biocarta, and Reactome with minimum overlap with our gene-set of 2, and gene-ontology 
(GO) terms. Over-representation results within a 10% FDR were determined to be statistically significant. For 
over-representation analyses, we utilized a gene-list containing the genes annotated to the top 250 CpG sites 
from the EWAS that were associated with the atypical NNNS profile. We also aimed to examine whether our 
NNNS-associated CpGs were within genes that have been linked with phenotypes related to neurodevelopment 
or neurodegeneration. Thus, we annotated the top 250 CpGs with traits that have been linked to genes via the 
NHGRI-EBI genome-wide association study catalog (GWAS catalog)49.

Results
Study Population and NNNS Profile Results.  We identified six distinct NNNS profiles representing 
groups of infants with similar neurobehavioral responses (Fig. 1 and Table 1); two of these profiles stood out as 
particularly distinctive. Infants in Profile 1 had the most optimal performance, with the best attention and regu-
lations scores, an average requirement for handling, typical motor tone and movement, and few signs of stress. 

Figure 1.  Patterns of NNNS z-scores across individual assessments for all six latent profiles among all NOVI 
infants that were assessed for the NNNS (N = 679); Profile 6 represents the atypical profile (black) and Profile 1 
represents the optimal profile (green).

Assessment

Profiles ANOVA 
p-val.1 (n = 62) 2 (n = 176) 3 (n = 61) 4 (n = 83) 5 (n = 118) 6 (n = 36)

Attention 7.27 (1.14) 5.04 (1.22) 4.89 (0.90) 6.04 (1.18) 4.43 (1.36) 4.36 (1.25) <0.001

Handling 0.37 (0.25) 0.29 (0.22) 0.61 (0.25) 0.55 (0.22) 0.37 (0.26) 0.62 (0.27) <0.001

Quality of Movement 5.06 (0.55) 4.89 (0.45) 4.9 (0.59) 4.58 (0.58) 4.23 (0.49) 3.4 (0.64) <0.001

Self Regulation 6.69 (0.60) 5.82 (0.45) 5.04 (0.53) 6.09 (0.58) 5.21 (0.51) 4.44 (0.72) <0.001

Non-Optimal Reflexes 4.18 (1.61) 4.83 (1.52) 4.84 (1.67) 4.1 (1.50) 7.47 (1.70) 6.22 (1.93) <0.001

Stress Abstinence 0.11 (0.06) 0.09 (0.06) 0.14 (0.07) 0.17 (0.06) 0.16 (0.06) 0.22 (0.08) <0.001

Arousal 3.18 (0.48) 3.55 (0.37) 4.59 (0.51) 3.91 (0.50) 3.47 (0.50) 4.61 (0.51) <0.001

Hypertonicity 0.34 (0.75) 0.27 (0.55) 0.8 (1.15) 0.25 (0.49) 0.23 (0.53) 0.97 (1.18) <0.001

Hypotonicity 0.05 (0.22) 0.15 (0.36) 0.13 (0.39) 0.06 (0.29) 0.52 (0.72) 0.25 (0.44) <0.001

Asymmetrical Reflexes 1.69 (1.52) 0.43 (0.73) 0.25 (0.54) 2.05 (1.51) 0.94 (1.15) 0.97 (1.44) <0.001

Excitability 1.42 (1.15) 1.16 (0.93) 4.77 (1.27) 2.52 (1.35) 2.18 (1.13) 7.22 (1.61) <0.001

Lethargy 3.77 (1.58) 4.8 (1.87) 3.64 (1.53) 3.17 (1.58) 6.17 (2.15) 3.97 (1.92) <0.001

Table 1.  Means and standard errors of individual NNNS assessment scores across the NNNS profile groupings 
identified by LPA (N = 536). ANOVA: analysis of variance, LPA: latent profile analysis, NNNS: NICU network 
neurobehavioral scale.

https://doi.org/10.1038/s41598-019-42654-4
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Infants in Profile 6 showed atypical performance with poor attention, a substantial requirement for handling, poor 
regulation, exceptionally high arousal and excitability, hypertonia, poor quality of movement, and substantial signs 
of stress. Thus, Profile 1 represents an optimal profile characterized by generally positive, well-modulated neurobe-
havioral responses, while Profile 6 represents infants with atypical neurobehavioral responses. These findings are 
similar to profiles observed previously by others21 and in our own research29. To limit the number of tests being 
performed, the current study focused on the most optimal (Profile 1) and atypical (Profile 6) profiles, while using 
the combination of Profiles 2–5 as the referent category in downstream analyses. Average PMA at birth, PMA at 
buccal cell collection, and maternal age did not substantially differ between the different NNNS profile groupings 
(Table 2). On the other hand, we did find that a larger proportion of infants with atypical profiles had caregivers 
with lower socioeconomic status (SES) (16.7%) and lower educational attainment (22.2%), compared to those in 
the optimal group (4.8% and 6.5% respectively). We also observed significant differences in NNNS profile assign-
ment by recruitment site, and thus recruitment site was controlled for in all downstream analyses.

Epigenetic Age and Age Acceleration Associations with NNNS Profiles.  Epigenetic age negatively 
correlated with gestational age at birth (R2 = 0.06, p-value < 0.0001), but positively correlated with age since birth 
(R2 = 0.15, p-value < 0.0001) and PMA (R2 = 0.14, p-value < 0.0001) (Supplemental Fig. 3). In a linear model 
with epigenetic age regressed on both gestational age at birth and PMA at exam date, the relationship with PMA 
remained strong while the associations with gestational age was heavily attenuated. Thus, PMA appeared to be 
the appropriate age variable to include in models when testing for age acceleration. We examined differences in 
epigenetic age and age acceleration that associated with the optimal (n = 62) and atypical (n = 36) NNNS profiles, 
by comparing them to the rest of the NOVI infants (n = 438). We found that the infants in the optimal profile 
tended to have significantly older epigenetic age (β1 = 0.201, p-value = 0.026) whereas the atypical profile exhib-
ited no difference in epigenetic age (β1 = −0.022, p-value = 0.84) when compared to the rest of the NOVI infants 
(Fig. 2A). However, age acceleration did not significantly differ when comparing the optimal or atypical profiles 
to the rest of the NOVI infants (Fig. 2B). These models were adjusted for sex, recruitment site, postmenstrual age, 
and estimated proportions of epithelial cells and fibroblast cells.

Epigenome-Wide Association Study of NNNS Profiles.  We then performed an EWAS of these two 
NNNS profiles to examine whether underlying patterns of epigenetic regulation measured in buccal cells dif-
fered among infants within the NNNS profiles. We report all results for the EWAS of the optimal and atypical 
NNNS profiles that yielded associations with p-values < 0.0001 in the Supplemental Materials (Supplemental 
Tables 2, 3, respectively). Thirty CpGs were differentially methylated (at a 10% FDR) with either of the NNNS 
profile groupings (Table 3). The only CpG associated with the optimal NNNS profile was cg03046148. Infants 
with this profile had higher DNAm levels (β1 = 0.0145, p-value = 1.43E-07). On the other hand, we identified 29 
epigenetic loci that were associated with the atypical NNNS profile after FDR-adjustment, which were located 

Sample Characteristics
Profiles 2,3,4,5 
(N = 438)

Profile 1 (Optimal) 
(N = 62)

Profile 6 (Atypical) 
(N = 36)

Infant Gender: Male 55.3% (242/438) 56.5% (35/62) 61.1% (22/36)

Recruitment Site:

  WIH 19.4% (85/438) 3.2% (2/62) 19.4% (7/36)

  SHD 22.6% (99/438) 1.6% (1/62) 0.0% (0/36)

  KMC 16.0% (70/438) 17.7% (11/62) 19.4% (7/36)

  CMH* 14.8% (65/438) 8.1% (5/62) 0.0% (0/36)

  WFU* 14.6% (64/438) 67.7% (42/62) 22.2% (8/36)

  LAB* 12.6% (55/438) 1.6% (1/62) 38.9% (14/36)

PMA at Buccal Collection (weeks) 38.930 ± 3.150 39.415 ± 4.012 40.210 ± 3.462

PMA at Birth (weeks) 27.091 ± 1.881 26.756 ± 1.954 26.452 ± 2.154

Birth Weight (grams) 969.0 ± 281.4 903.8 ± 265.0 861.9 ± 291.4

Maternal Age at childbirth (years) 29.171 ± 6.297 29.095 ± 6.972 27.972 ± 6.396

Maternal Smoking During Pregnancy 16.3% (71/436) 14.8% (9/61) 8.3% (3/36)

Education: less than High School/GED 14.6% (62/426) 6.5% (4/62) 22.2% (8/36)

Low SES 8.2% (35/427) 4.8% (3/62) 16.7% (6/36)

Maternal Race:

   White 55.0% (236/429) 52.5% (32/61) 27.8% (10/36)

   Black 21.9% (94/429) 29.5% (18/61) 19.4% (7/36)

   Asian 7.0% (30/429) 9.8% (6/61) 11.1% (4/36)

   Hawaiian or Pacific Islander 6.8% (29/429) 6.6% (4/61) 13.9% (5/36)

   Other 9.3% (40/429) 1.6% (1/61) 27.8% (10/36)

Table 2.  Means ± standard deviations (continuous) or percentages and frequencies (categorical) of covariates 
by NNNS profile groupings. PMA: Postmenstrual Age, SES: socioeconomic status, GED: General Equivalency 
Diploma, NNNS: NICU network neurobehavioral scale, *enrolled from 2 university-affiliated NICUs.
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throughout the genome (Fig. 3). The most statistically significant relationship was observed at cg23172057 
(β1 = 0.0299, p-value = 5.43E-08) which is within the body of the coagulation factor X (F10) gene. The magni-
tudes of effect among the FDR-significant hits tended to be small, with differential methylation ranging between 
0.42% to 6.53% lower and between 0.31% to 10.61% higher methylation among the atypical NNNS group. The 
CpGs with the largest magnitudes of association among the FDR-significant hits were observed at cg14792155 
(β1 = 0.1061, p-value = 4.04E-06) which is within the body of the phospholipase A2 group IVE (PLA2G4E) gene 
and at cg07850633 (β1 = −0.0653, p-value = 1.49E-06) which is within the body of the MACRO domain contain-
ing 2 (MACROD2) gene.

Based on observed differences in SES, maternal educational attainment, and maternal smoking during preg-
nancy among those with optimal or atypical NNNS profiles, as well as hypothesized potential confounding effects 
of batch (sample plate), immune cell proportions, race, and birth weight, we performed a sensitivity analyses with 
additional adjustment for these variables in our linear models. Additional adjustments for these potential con-
founders did not alter the observed associations between DNAm and atypical NNNS profiles (Supplemental Fig. 4).

Functional and Phenotype Enrichment.  We then used enrichment analyses to examine whether the 
genes annotated to NNNS-associated CpGs have a higher than expected proportion of genes that interact with 
each other, are involved in known biological pathways, or are linked to specific gene ontology terms. For this anal-
ysis, we utilized the top 250 CpGs that associated with the atypical NNNS profiles. We found that this gene-set 
was enriched for one neighborhood-based entity sets (NESTs) (FDR q-value = 0.031), centered on the CRIM1 
gene which has physical interactions with four genes, two of which were also in our gene-set: ATXN7 and MEGF6. 
We also identified 54 pathway-based gene-sets (Supplemental Table 4) many of which may be relevant for neu-
rodevelopment, including synaptic activity, neurotransmitters, and nerve growth factors (Table 4). Additionally, 
our gene-set was enriched for nine gene-ontology (G0) terms (Supplemental Table 5), including neuron projec-
tion (FDR q-value = 0.0371) and neuron part (FDR q-value = 0.0505). Multiple pathway and GO-term enrich-
ments included GRIK3, TRIM9, and PLA2G4E, genes that were annotated to CpGs that yielded FDR-significant 
associations from our EWAS.

Since only one of our CpGs yielded an association with the NNNS profiles at a stricter threshold of statistical 
significance (5% FDR), we focused on this CpG for follow-up analyses examining whether the atypical NNNS 
profile exhibited differential methylation with each of the NNNS profiles. We regressed cg23172057 DNAm lev-
els on a six level factor variable (using the atypical profile as the referent) while adjusting for sex, site, PMA, 
proportions of epithelial cells, and proportions of fibroblasts. The atypical NNNS profile exhibited significantly 
higher DNAm (p-values < 0.05) than each of the NNNS profiles, with the most substantial differential DNAm 
when comparing to Profile 3 (4.0% lower; p-value = 1.242E-07) and Profile 5 (3.4% lower; p-value = 9.76E-08) 
(Supplemental Fig. 5).

CpG Annotation.  Relatively few genes have been studied for their associations with neonatal neurobe-
havioral characteristics. However, it is plausible that the genes that are linked to cognition, neurobehavior, or 

Figure 2.  Relationships between epigenetic age (A) and age acceleration (B) with NNNS profile groupings; 
the x-axis includes the optimal profile (Profile 1), the atypical profile (Profile 6), as well as other NOVI infants 
(Profiles 2–5), while the y-axis represents epigenetic age and age acceleration after adjusting for sex, recruitment 
site, and cell-mixture.

https://doi.org/10.1038/s41598-019-42654-4


7Scientific Reports |          (2019) 9:6322  | https://doi.org/10.1038/s41598-019-42654-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

neurodegeneration at other life stages may also be important in neurobehavioral function in very early life. We 
identified phenotypes or traits that have been associated with the genes annotated to the CpGs associated with 
NNNS profiles at a 10% FDR (Table 5). Importantly, Table 5 also presents 7 of the 11 genes that have been linked 

CpG Annotations Optimal NNNS Profile Atypical NNNS Profile

CpG Location Gene β1 P-value β1 P-value

cg25755851 chr1:9335794 — −0.013 1.89E-01 −0.032 2.53E-06*

cg22960767 chr1:37422679 GRIK3 (Body) 0.022 1.39E-02 0.036 3.55E-06*

cg26057754 chr1:183774231 RGL1 (Body) −0.001 7.00E-01 −0.004 7.38E-07*

cg23264395 chr1:207096239 FCMR (TSS1500) 0.001 8.50E-01 0.034 2.48E-06*

cg01479768 chr2:731298 — −0.006 6.91E-01 0.045 2.20E-06*

cg08902894 chr2:3142407 — 0.002 7.22E-01 0.029 1.10E-07*

cg05696361 chr2:107108978 — 0.003 7.78E-01 0.048 2.79E-07*

cg17505883 chr2:130552292 — 0.006 2.59E-01 0.021 1.94E-06*

cg03046148 chr3:13695666 LOC285375 (Body) 0.015 1.43E-07* 0.003 4.56E-01

cg07193729 chr4:176031198 — 0.006 5.03E-02 0.014 3.07E-07*

cg02236672 chr5:132449216 — −0.001 9.31E-01 0.037 9.98E-07*

cg00210856 chr5:158466226 EBF1 (Body) 0.001 9.23E-01 0.028 4.29E-07*

cg02057469 chr7:95951623 SLC25A13 (TSS200) −0.001 1.19E-01 −0.004 3.05E-06*

cg04524088 chr7:127847835 MIR129-1 (TSS200) −0.016 1.68E-01 0.045 2.27E-06*

cg17287134 chr7:154959606 — −0.008 4.52E-01 0.040 1.01E-06*

cg21672855 chr8:135614777 ZFAT (Body) −0.002 1.73E-01 0.005 1.71E-06*

cg14632902 chr9:139017648 — 0.012 1.91E-02 0.026 3.49E-06*

cg06846137 chr10:131682939 EBF3 (Body) 0.004 4.20E-01 0.019 1.36E-06*

cg13716458 chr11:28997975 — 0.006 6.38E-02 0.020 5.51E-07*

cg07895260 chr12:55537168 — −0.001 9.37E-01 0.034 3.19E-06*

cg27361636 chr12:120502417 BICDL1 (Body) −0.001 9.20E-01 0.044 2.93E-06*

cg23172057 chr13:113800351 F10 (Body) 0.010 1.55E-01 0.030 5.43E-08**

cg11042421 chr14:42881184 — 0.006 4.29E-02 0.015 2.71E-06*

cg14354244 chr14:51446038 TRIM9 (Body) 0.006 5.04E-01 0.034 3.66E-06*

cg03444659 chr14:94834215 SERPINA2 (TSS1500) −0.002 7.14E-01 0.015 1.43E-06*

cg14792155 chr15:42289618 PLA2G4E (Body) −0.007 7.50E-01 0.106 4.04E-06*

cg02187389 chr16:1247777 CACNA1H (Body) 0.000 9.97E-01 0.024 7.96E-07*

cg02234314 chr19:55986224 ZNF628 (TSS1500) 0.003 7.85E-01 0.059 2.08E-06*

cg07850633 chr20:15795880 MACROD2 (Body) 0.017 3.49E-01 −0.065 1.49E-06*

cg09772858 chr22:49549729 — 0.006 4.15E-01 0.030 2.52E-06*

Table 3.  Epigenome-wide association study results for CpG sites that yielded associations within a 5% (**) 
or 10% (*) FDR for either the optimal or atypical NNNS profile groupings; beta coefficients (β1) represent the 
mean difference in methylation proportion when comparing the optimal or atypical NNNS profiles to the 
rest of the NOVI sample. CpG = cytosine-phosphate-guanine methylation site, FDR = False Discover Rate, 
NNNS = NICU Network Neurobehavioral Scale; For CpGs with no annotated genes, we annotated this with the 
nearest genes within 2500 bp of the CpG.

Figure 3.  Manhattan plot of epigenetic loci associated with the atypical NNNS profile; the x-axis represents 
the genomic location of the individual probes and the y-axis represents the -log10(p-values) from related to the 
Atypical NNNS profile, adjusted for sex, recruitment site, postmenstrual age, and cell-mixture; gene annotations 
for the CpGs yielding associations within the 10% FDR threshold have been added to the plot.
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to neurobehavioral or neurodegenerative traits including autism, attention deficit hyperactivity disorder, cogni-
tive impairment, depression, and psychosis.

Discussion
Our study focused on a comparison of neurobehavioral profiles with DNAm levels and epigenetic age. We used 
the NNNS summary scores to identify a group of infants with an optimal profile and a group with an atypical pro-
file, which are similar to what has been observed previously by others and in our own research including preterm 
infants21,24,29. The infants in the atypical profile had the lowest scores for attention, self-regulation and quality of 
movement, average scores for lethargy, hypotonicity, nonoptimal reflexes and asymmetric reflexes, combined with 
the highest scores for arousal, excitability, hypertonicity and the most stress abstinence. This pattern of NNNS 
responses in our atypical profile was consistent with a latent profile identified by Liu et al. (2010) that was most 
predictive of non-optimal developmental outcomes in childhood21. Whereas the infants in our optimal profiles 
had the most positive responses across the NNNS and provided the greatest contrast to compare with the atypical 
profile. We found that very premature infants in the NOVI cohort with an optimal neurobehavioral profile had 
older epigenetic age than other very premature infants. We also found that age acceleration followed a stepwise 
trend in which infants with the optimal profile had the greatest age acceleration and infants with the atypical 
profile had the least age acceleration, though this finding was not statistically significant and may be driven by the 
differences in age at exam across the NNNS profile groups. Epigenetic age is an estimate of the state of underlying 
physiologic processes, as they relate to biological development and maintenance32, and has been studied in the 
context of health conditions that are linked to the aging process, including frailty50, physical capability51,52, cogni-
tive fitness51, decreased cognitive function and neuropathologies in persons suffering from Alzheimer’s Disease53, 
and all-cause mortality54. In these studies, age acceleration is analogous to biological decline.

These relationships may differ in early life, however, when children are still undergoing substantial growth 
and development, and it is unclear whether accelerated aging would be expected to be associated with positive 
or negative developmental characteristics. In fact, if epigenetic aging captures, or is a surrogate for, the activity of 
developmental processes, epigenetic age acceleration throughout early development may be an indicator through 

Pathway ID Pathway Description Total Genes NNNS-Associated Genes P-val. FDR Q-val.

path:hsa04724 Glutamatergic synapse - Homo sapiens 
(human) 114 PLCB1; GRIK3; PRKCB; 

PLA2G4E; ADCY3 0.0020 0.026

R-HSA-112314 Neurotransmitter receptors and 
postsynaptic signal transmission 152 PLCB1; GRIK3; AP2A2; PRKCB; 

ADCY3 0.0069 0.040

R-HSA-416993 Trafficking of GluR2-containing AMPA 
receptors 17 PRKCB; AP2A2 0.0077 0.040

R-HSA-112316 Neuronal System 367 PLCB1; PRKCB; PTPRS; KCNK9; 
ADCY3; GRIK3; AP2A2; KCNA3 0.0082 0.041

ngfpathway nerve growth factor pathway (ngf) 18 PLCG1; NGFR 0.0086 0.043

Table 4.  Pathways involved in neurodevelopment and/or neuronal activity that were significantly (FDR < 0.10) 
over-represented among the genes annotated to the top 250 CpGs that associated with the Atypical NNNS 
profile. NNNS = NICU Network Neurobehavioral Scale; FDR = False Discover Rate.

Gene N Trait Types
Specific Cognitive, Neurobehavioral or 
Neurological Traits

F10 4 Hematopoietic —

EBF1 34 Hematopoietic, Cardiovascular, Immune, Growth & 
Metabolism, Birth Outcomes, Neurobehavior, Cognition

Psychosocial stress measurement, cognitive 
impairment, cognitive decline measurement

RGL1 7 Neurobehavior, Cardiovascular, Environmental Exposures, 
Hematopoietic, Liver

Attention deficit hyperactivity disorder, conduct 
disorder, schizophrenia, response to antipsychotic 
drug, response to antidepressant

CACNA1H 1 Hematopoietic —

EBF3 3 Cancer, Bone, Neurological, Sleep Peripheral neuropathy

SERPINA2 6 Growth, Respiratory, Cardiovascular, Hematopoietic —

MACROD2 31
Neurobehavior, Neurological, Liver, Growth & 
Metabolism, Hematopoietic, Bone, Birth Outcomes, 
Respiratory, Cardiovascular, Environmental Exposures, 
Bone, Immune

Autism, eating disorder, brain connectivity 
measurement, sporadic amyotrophic lateral 
sclerosis, prion disease, mood disorder

ZFAT 12 Growth & Metabolism, Cardiovascular, Cognitive, 
Environmental Exposures, Immune, Respiratory, Other Self-reported educational attainment

GRIK3 6 Neurobehavior, Immune, Respiratory, Environmental 
Exposures

Unipolar depression, neuroticism measurement, 
depressive symptom

TRIM9 5 Growth & Metabolism, Neurobehavior, Immune, Cancer Psychosis

PLA2G4E 1 Environmental Exposures —

Table 5.  Genes annotated to our atypical NNNS-associated CpGs that have been linked to traits from the 
GWASdb. N = number of traits linked to that gene.
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which to track developmental “catch-up”. An epigenetic clock has also been developed to estimate epigenetic ges-
tational age acceleration from cord blood DNAm55. Interestingly, gestational age acceleration has been associated 
with reduced infant respiratory morbidities56, which provides some evidence that older epigenetic age in infancy 
may correlate with positive developmental characteristics. In our analysis, we did not observe a significant rela-
tionships between age acceleration with the optimal or atypical NNNS profiles.

A handful of studies have examined the relationships between epigenetic age and development in children. 
For instance, epigenetic age positively correlates with measures of physical development such as fat mass, height, 
Tanner stages33, pubertal development, internalization and thought problems34, and increased cortisol34,35. One 
study observed interrelationships between age acceleration, cortisol production, and hippocampal volume, 
potentially linking hypothalamic-pituitary-adrenal (HPA) axis activity, neuroanatomy, and epigenetic aging35. 
This topic requires additional study and should ideally be investigated in a longitudinal manner, in which both 
epigenetic age and neurobehavioral assessments are tracked in parallel through early-life development.

Though the infants with the atypical NNNS profile did not have significantly different epigenetic age from the 
other NOVI infants, we did identify multiple differentially methylated CpGs throughout the genome that were 
associated with the group with atypical neurobehavioral responses. Our EWAS revealed 29 epigenetic loci that 
significantly associated (<10% FDR) with the atypical profile. The CpG with the smallest p-value was annotated 
to the (cg2317205) F10 gene and was the only CpG that yielded an association at a stricter threshold for statistical 
significance (<5% FDR). We also found that the average DNAm at cg23172057 was significantly higher among 
the atypical NNNS profile even when comparing to each of the 5 other NNNS profiles individually. Thus, this CpG 
holds promise as a potential marker of problematic neurobehavioral responses in preterm infants. However, the 
gene that this CpG is annotated to (F10) has not been associated with behavioral or cognitive function. Instead, 
F10 is involved in the blood coagulation cascade and primarily associated with hematologic disorders57. On the 
other hand, the other 28 CpGs only met a 10% FDR threshold of statistical significance, and likely do include 
some false positives, but a number of the genes annotated to these CpGs have been linked to cognition or educa-
tional attainment (EBF1 & ZFAT), and neurobehavioral or neurological disorders in GWAS studies (EBF1, RGL1, 
EBF3, MACROD2, GRIK3, and TRIM9). We also found that the top 250 CpGs from this analysis were enriched for 
genes within pathways involving neurotransmitters and synaptic activity, as well as GO-terms related to neuron 
projection and structure. Of particular note, three genes annotated to the FDR-significant CpGs were within these 
neuronal-associated GO-terms and pathways: phospholipase A2 group IVE (PLAG2G4E), glutamate ionotropic 
receptor kainate type subunit 3 (GRIK3), and tripartite motif containing 9 (TRIM9). The CpG site that yielded 
the largest magnitude of association among our statistically significant hits, cg14792155, was within the body of 
the PLA2G4E gene. This gene encodes for a calcium-dependent N-acyltransferase; experimental mouse models 
have implicated that it likely plays a critical role in endocannabinoid signaling in the nervous system58 and thus 
differential regulation of this gene has implications for neurodevelopment and neurodegenerative disorders59. In 
human observational studies, placental CpGs within PLA2G4E have been observed to be differentially methylated 
in association with extremely preterm births60 and genetic variants within the PLA2G4E gene have been impli-
cated as a potential risk factor for neurodevelopmental problems such as panic disorder61. The protein encoded by 
GRIK3 is involved in presynaptic neurotransmission, and has been associated with developmental delay62, schiz-
ophrenia63, obsessive-compulsive disorder64, and depression65. The protein encoded by TRIM9 regulates axon 
guidance and neural outgrowth66,67, while deletion of TRIM9 has been associated with structural and functional 
abnormalities and impaired learning and memory in mice68. The CpG site that yielded the largest statistically 
significant inverse association, cg07850633, was within the body of the MACRO domain-containing protein 2 
(MACROD2) gene; which has been associated with autism spectrum disorder (ASD)69, though other studies have 
yielded potentially contradictory evidence70, autism-like traits71and has been implicated in other neurological 
disorders72,73, and temporal lobe volume74. Variants in EBF3, which encode for the early B Cell Factor 3, may 
contribute to developmental delay and intellectual impairment75. Genetic variation in the Ral Guanine Nucleotide 
Dissociation Stimulator Like 1 (RGL1) gene, has been associated with attention76 and conduct problems among 
children with attention deficit hyperactivity disorder77. Additionally, genetic mutations within CACNA1H, which 
encodes for a subunit of a voltage gated calcium channel, lead to decreased calcium channel activity in neuronal 
cells, and have been linked to ASD78, to epilepsy79, and to amyotrophic lateral sclerosis80. Overall, these findings 
suggest that our NNNS-associated epigenetic variations occurred at numerous genomic regions with recognized 
roles in neurodevelopmental or neurodegenerative disorders. Interestingly, Sparrow et al. (2016) performed an 
EWAS of preterm birth using saliva samples to identify a number of genes that were differentially methylated in 
association with preterm birth that are also involved in neuronal function and/or neurobehavioral traits81. Their 
findings lead them to speculate that preterm-associated variations in DNAm may contribute to the neural and 
behavioral phenotypes that are linked to preterm birth. Thus, differential epigenetic regulation in babies that are 
born preterm may provide a link between preterm birth and poorer neurodevelopmental outcomes.

There were some limitations to this study. We used a false discovery rate of 10% to identify significantly dif-
ferentially methylated CpG sites. Only one of our models yielded an FDR < 5%, and none of the models would 
survive Bonferroni adjustment. Thus, it is probable that some of identified epigenetic loci are false-positives. We 
encourage additional investigation of infant DNAm, epigenetic age, and neurobehavior to determine whether 
similar relationships can be observed in independent populations. There is also the possibility of residual con-
founding, though our findings were robust to adjustments for numerous potential confounders. We utilized buc-
cal cells as a surrogate tissue to examine the relationships between neurobehavioral profiles and DNAm, as it is 
not possible to perform such examinations in the neuronal tissues. However, for studies of children, buccal cell 
collection leads to greater compliance82, and evidenced here in our 93% consent rate for parents who gave overall 
consent for NOVI. Recent evidence also suggests that buccal samples may be very appropriate for epigenetic anal-
yses of neurodevelopmental outcomes, as they arise from the same germ cell layer as the brain and thus may share 
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similar early epigenetic patterning and susceptibility83–85, and have demonstrated DNAm variability associated 
with later neurobehavioral outcomes.

We nevertheless remain cautious in the interpretation of these observations in terms of mechanism. These 
data were collected and analyzed cross-sectionally, so we cannot infer directionality of the observed relationships 
between NNNS profiles with DNAm or epigenetic age. It is notable, however, that the atypical profile observed by 
us and others in different populations21,24,29, has also been related to differential DNAm in other tissues29 and pre-
dicted developmental outcomes in childhood21. Thus, it is possible that the combination of epigenetic measures 
and NNNS profiles may lead to the early identification of which individual children are most at risk for adverse 
developmental outcome. Longitudinal studies of epigenomics and neurobehavioral outcomes are needed to estab-
lish whether epigenetic variations are detectable prior to the presentation of neurobehavioral impairments, and to 
examine whether and how these potential predictors vary throughout early life development.

Conclusions
We found that among very preterm infants (<30 weeks PMA), those with an optimal neurobehavioral profile 
had slightly older epigenetic age, while infants with a poorly regulated neurobehavioral profile had differentially 
methylated CpGs at multiple genes linked to neural structure, function, or different neurobehavioral or neuro-
degenerative conditions. These relationships were detected using buccal cell DNAm, building upon the existing 
evidence that buccal cells may be a suitable surrogate tissue for studying neurobehavioral conditions in human 
observational studies. One CpG within the F10 gene had the strongest association (<5% FDR) with the NNNS, 
while three other CpGs (<10% FDR) were within genes yielding multiple levels of evidence for plausible roles 
in neurobehavioral health, annotated to PLA2G4E, TRIM9, and GRIK3, all of which were among the signifi-
cantly enriched GO-terms or neuronal pathways, and linked to neurobehavioral disorders. The combination of 
epigenomics and neurobehavior holds promise for a personalized medicine approach to the early detection of 
children most at risk for poor developmental outcome.

Data Availability
The microarray data generated and/or analyzed in the current study are available in the NCBI GEO [Accession 
series GSE128821]. R codes used for the analyses presented in the paper are available upon request to the corre-
sponding author.
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