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ARTICLE

Dissecting features of epigenetic variants
underlying cardiometabolic risk using full-
resolution epigenome profiling in regulatory
elements
Fiona Allum 1,2, Åsa K. Hedman3, Xiaojian Shao1,2, Warren A. Cheung1,2,12, Jinchu Vijay 1,2,

Frédéric Guénard4, Tony Kwan 1,2, Marie-Michelle Simon1,2, Bing Ge1,2, Cristiano Moura5, Elodie Boulier1,2,

Lars Rönnblom6, Sasha Bernatsky5, Mark Lathrop1,2, Mark I. McCarthy 7,8,9, Panos Deloukas 10,

André Tchernof11, Tomi Pastinen1,2,12, Marie-Claude Vohl4 & Elin Grundberg1,2,12

Sparse profiling of CpG methylation in blood by microarrays has identified epigenetic links to

common diseases. Here we apply methylC-capture sequencing (MCC-Seq) in a clinical

population of ~200 adipose tissue and matched blood samples (Ntotal~400), providing high-

resolution methylation profiling (>1.3 M CpGs) at regulatory elements. We link methylation

to cardiometabolic risk through associations to circulating plasma lipid levels and identify

lipid-associated CpGs with unique localization patterns in regulatory elements. We show

distinct features of tissue-specific versus tissue-independent lipid-linked regulatory regions

by contrasting with parallel assessments in ~800 independent adipose tissue and blood

samples from the general population. We follow-up on adipose-specific regulatory regions

under (1) genetic and (2) epigenetic (environmental) regulation via integrational studies.

Overall, the comprehensive sequencing of regulatory element methylomes reveals a rich

landscape of functional variants linked genetically as well as epigenetically to plasma lipid

traits.

https://doi.org/10.1038/s41467-019-09184-z OPEN

1 Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada. 2McGill University and Genome Quebec Innovation Centre,
Montréal, QC H3A 0G1, Canada. 3 Department of Medicine Solna, Cardiovascular Medicine Unit, Karolinska Institute, Stockholm 171 76, Sweden.
4 Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada. 5 Department of Epidemiology, McGill University,
Montréal, QC H3A 1A2, Canada. 6 Department of Medical Sciences, Uppsala University, Uppsala 751 85, Sweden. 7Oxford Centre for Diabetes,
Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Old Road, Headington, Oxford OX3 7LJ, UK. 8Wellcome Centre for Human
Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK. 9Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS
Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK. 10William Harvey Research Institute, Barts and The London School of Medicine and
Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. 11 Québec Heart and Lung Institute, Université Laval, Québec, QC
G1V 0A6, Canada. 12Present address: Children’s Mercy Hospitals and Clinics, Kansas City, MO 64108, USA. Correspondence and requests for materials
should be addressed to E.G. (email: egrundberg@cmh.edu)

NATURE COMMUNICATIONS |         (2019) 10:1209 | https://doi.org/10.1038/s41467-019-09184-z | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1205-4685
http://orcid.org/0000-0002-1205-4685
http://orcid.org/0000-0002-1205-4685
http://orcid.org/0000-0002-1205-4685
http://orcid.org/0000-0002-1205-4685
http://orcid.org/0000-0002-7311-475X
http://orcid.org/0000-0002-7311-475X
http://orcid.org/0000-0002-7311-475X
http://orcid.org/0000-0002-7311-475X
http://orcid.org/0000-0002-7311-475X
http://orcid.org/0000-0001-8929-2334
http://orcid.org/0000-0001-8929-2334
http://orcid.org/0000-0001-8929-2334
http://orcid.org/0000-0001-8929-2334
http://orcid.org/0000-0001-8929-2334
http://orcid.org/0000-0002-4393-0510
http://orcid.org/0000-0002-4393-0510
http://orcid.org/0000-0002-4393-0510
http://orcid.org/0000-0002-4393-0510
http://orcid.org/0000-0002-4393-0510
http://orcid.org/0000-0001-9251-070X
http://orcid.org/0000-0001-9251-070X
http://orcid.org/0000-0001-9251-070X
http://orcid.org/0000-0001-9251-070X
http://orcid.org/0000-0001-9251-070X
mailto:egrundberg@cmh.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Complex diseases such as obesity and type 2 diabetes (T2D)
are caused by joint action of predisposing genetic and
environmental factors1–4. Heritability measures of obesity-

related traits such as BMI have shown that the genetic con-
tribution is likely only ~30–40%5—pointing towards a larger
impact than previously estimated by environmental effects.

CpG methylation has been shown to be disrupted in disease
states6,7 and by environmental modifiers8,9. As such, assessment
of CpG methylation changes through epigenome-wide association
studies (EWAS) enables us to connect environment and genet-
ics10,11 to phenotype and disease12. Circulating lipid profiles are
clinically applied in cardiometabolic risk assessment4, providing
indications of metabolic complications among healthy and obese
individuals13. Although past EWAS efforts have successfully
identified lipid-associated loci with roles in metabolic pro-
cesses14–18, we have shown the importance of using disease-
targeted tissues for functional interpretation of disease loci due to
the preferential mapping of identified variants to tissue-specific
regulatory elements11,19. This is an important observation con-
sidering that most EWAS to-date have studied whole-blood tissue
using targeted arrays (e.g., Illumina 450 K array), which under-
represent distal regulatory regions (e.g., enhancers) and bias
towards promoter regions. In fact, promoters are largely unin-
formative in EWAS due to the invariable state of resident CpGs
across individuals11, partly due to insufficient sensitivity measures
in DNA methylation assessments.

To overcome this limitation, we implemented the methylC-
capture sequencing (MCC-seq) approach permitting simulta-
neous methylome and genotype profiling in regulatory regions at
high resolution20. A pilot adipose tissue EWAS of triglyceride
(TG) levels identified novel TG-linked methylation variation
within enhancers. MCC-Seq was also applied across various tis-
sues in hundreds of donors and demonstrated stronger enrich-
ment of GWAS SNPs underlying allele-specific methylation
within disease-linked tissues—emphasizing the importance of
utilizing appropriate tissues to decipher not only epigenetic var-
iants but genetic variants21.

Here, we present a large next-generation sequencing (NGS)-
based EWAS applying MCC-Seq on adipose tissue and blood
samples derived from a clinically relevant cohort of obese indi-
viduals. We link ~1.3 M dynamic CpGs to blood plasma lipids
and map positional trends of lipid-linked CpGs within functional
elements. We highlight the ability of MCC-Seq to fine-map
EWAS signals through replication in the large MuTHER adipose
cohort and apply integrative approaches to identify disease-
associated epigenetic variants linked to regulatory effects, further
providing insight into metabolic disease etiology. We further
show features of the metabolic-disease-linked methylome by
assessing the contribution of genetic factors and use these tabu-
lated associations to fine-map cardiometabolic-risk-associated
GWAS SNPs.

Results
Adipose tissue epigenetic variants linked to plasma lipids. CpG
methylation was profiled in visceral adipose tissue (VAT) from
199 severely obese individuals (BMI > 40 kg m−2; 60% female)
undergoing bariatric surgery (IUCPQ, Université Laval; Supple-
mentary Table 1; see Methods section). We applied the MCC-Seq
protocol querying up to 3.3 M CpGs mapping to adipose tissue
regulatory regions20 (see Methods section). We focus on a con-
servative set of highly covered (33×) and variable sites corre-
sponding to 1.3 M CpGs (see Methods section) that exhibited
mainly (55%) hypomethylated states (<20% average methylation)
with a smaller proportion (10%) being hypermethylated (>80%
average methylation).

We associated CpG methylation at the 1.3 M sites in adipose
tissue with circulating plasma lipid levels, i.e., triglycerides (TG),
HDL-cholesterol (C), LDL-C, and total cholesterol (TC) (see
Methods section), applying a generalized linear model accounting
for sequencing depth, age and BMI. Controlling for bias and
inflation of our test-statistics was achieved using the Bayesian
method BACON22, noting an improvement in the inflation factor
(lambda) after correction across all trait-associations (Supple-
mentary Figures 1-4). In total, methylation levels at 1230 (FDR
10%; corrected p < 3.52 × 10−5) and 615 (FDR 5%; corrected p <
9.25 × 10−6) CpGs were associated to at least one lipid trait
(Supplementary Figure 5). We subsequently refer to “lipid-CpGs”
as those reaching significant lipid associations at FDR 10%
(Supplementary Data 1). Overall, 13% of lipid-CpGs were linked
to more than one lipid trait (Supplementary Figure 5). By
assessing the inter-individual variability of lipid-CpGs, these sites
also depicted a more variable state than the full set of 1.3 M CpGs
tested (Supplementary Figure 6).

Positioning of lipid-CpGs within regulatory elements. Identi-
fied lipid-CpGs were annotated using adipose tissue hypo-
methylated footprints—low-methylated regions (LMRs) and
unmethylated regions (UMRs)20,23—as indicators of regulatory
elements. We previously characterized these methylated foot-
prints23, showing co-localization of adipose tissue LMRs and
UMRs with the H3K4me1 active enhancer and H3K4me3 active
promoter marks, respectively, from primary human adipocytes
(NIH Roadmap Consortium). In all subsequent analyses, we refer
to LMRs and UMRs as putative enhancers and promoters,
respectively. We additionally characterized these adipose tissue
regulatory regions in terms of their genomic lengths and dis-
covery CpG densities, where we noted putative enhancers were
shorter and less densely populated than promoters (Supplemen-
tary Table 2). Mimicking our previous findings20, lipid-CpGs
were enriched in putative adipose enhancers (26% of lipid-CpGs
versus 17% in background; Fisher’s exact test throughout; Fisher’s
p= 6.6 × 10−13) while being less likely to map to putative pro-
moters (40% of lipid-CpGs versus 54% in background; Fisher’s
p < 2.2 × 10−16; Supplementary Figure 7). The set of lipid-CpGs
was then restricted to include only those mapping to adipose
tissue regulatory regions not shared with other tissues (i.e., whole-
blood; see Methods section) and showed stronger enrichment
patterns at enhancers (13% of lipid-CpGs versus 7% in back-
ground; Fisher’s p= 9.9 × 10−13). Additionally, we noted a
reversal of trends as lipid-CpGs were enriched in adipose-specific
promoters (10% of lipid-CpGs versus 6% in background; Fisher’s
p= 8.1 × 10−11; Supplementary Figure 7). Of note, these locali-
zation patterns appear to be independent of CpG methylation
variability at interrogated sites (Fisher’s p < 1.1 × 10−7; top 25th
percentile; Supplementary Figure 7). In total, we identified 264
putative adipose enhancers (LMRs) and 303 promoters (UMRs)
harboring lipid-CpGs, of which 341 are shared elements and 226
are adipose-specific elements. These 567 regulatory elements were
carried forward for further analyses (Supplementary Data 1;
Fig. 1).

Given the high-density coverage of CpG methylation obtained
through MCC-Seq, we investigated differences in positional
trends of lipid-CpGs within adipose tissue hypomethylated
footprints (see Methods section). Focusing first on all discovery
CpGs mapping to the 264 LMRs, lipid-CpGs located more
towards the mid-point of putative enhancers compared to all
CpGs (Fig. 2a). CpGs locating to UMRs (within +/−1.5 Kb of a
transcription start site (TSS); 139/303 UMRs) exhibited a bimodal
distribution flanking the TSS similar to the background with a
slight peak shift downstream of the TSS further into the gene
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DISCOVERY COHORT
IUCPQ adipose tissue

1230 Unique lipid-CpGs (TG, HDL-C, LDL-C, TC)
Key positional trends,
enrichment in adipose

tissue-specific
regulatory regions 

567 Unique lipid-linked regulatory regions

REPLICATION COHORT
MuTHER adipose tissue

21 Replicated lipid-linked
regions

341 Shared lipid-linked
regulatory regions

Genetic regulation
dissection

Overlap with discovery
adipose SNP-CpG pairs

DISSECTION COHORT 1
IUCPQ whole-blood

68 lipid-linked regions
replicated across tissues
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CARTaGENE whole-blood

22 Lipid-linked regions
confirmed across tissues

Three-way associations:

Methylation
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Lipids

Overlap with publicly
available lipid-GWAS
datasets from Global
Lipids Consortium Key examples of annotated adipose-specific enhancers

Fig. 1 Study flow chart. Overview of included study cohorts and follow-up analyses to characterize identified lipid-linked adipose tissue regulatory regions
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body (Fig. 2b). To rule out potential technical biases explaining
these observations, we assessed the mean coverage of reads within
these elements and found that although lipid-CpGs have higher
coverage than all assessed CpGs, the coverage does not differ
based on the position of lipid-CpGs within the elements per se
(Supplementary Figure 8).

Next, we contrasted the capacity of MCC-Seq to capture lipid-
CpGs within adipose tissue regulatory regions over alternative
methods such as the Illumina 450 K14-18 and EPIC arrays. As a
whole, the EPIC and 450 K arrays captured only 17 and 6% of the
total percent CpGs profiled in LMRs by MCC-Seq and 29 and
19% of those mapping to UMRs, respectively. These percentages
dropped further when focusing on CpGs typed on the array-
based methods directly overlapping MCC-Seq CpGs (Supple-
mentary Table 3). Positional trends of CpGs in both arrays
showed a depletion of coverage within putative promoters
downstream of the TSS (Supplementary Figure 9)—regions
towards the gene body where we showed lipid-CpGs to be
enriched (Fig. 2b).

Replication of lipid-linked adipose regulatory regions. We then
validated the 567 adipose regulatory regions mapping with lipid-
CpGs in the MuTHER cohort (N ~ 650 individuals) where sub-
cutaneous adipose tissue CpG methylation levels were profiled on
the 450 K array11 and associated to the same lipid traits under
investigation (TG, HDL-C, LDL-C, and TC)18. Of the 567 high-
lighted regulatory regions, only 365 (64%) were covered by the
450 K array. In line with design biases of the 450 K array, a higher
proportion of adipose tissue promoter regions (269/303 UMRs;
89%) than enhancer regions (96/264 LMRs; 36%) contained at
least one 450K array CpG. Using Bonferroni cutoff (taking into
account each trait individually and with same direction of effect),
we found the highest replication rate for TG-UMRs where 17%
(13/76) of the regions were also associated with TG in the vali-
dation cohort. All replicated regions (N= 21) are presented in
Supplementary Data 2.

To assess the potential of MCC-Seq to fine-map EWAS signals,
we focused on the 16 of 21 replicated regulatory regions
containing at least 2 discovery lipid-CpGs where one of these
overlapped the top MuTHER lipid-CpG. Here, 15/16 (94%)
elements harbored stronger lipid associations at discovery CpGs
that didn’t directly overlap the top MuTHER lipid-CpG positions
(Supplementary Data 2). We then investigated the localization of
the “fine-mapped” discovery lipid-CpGs compared to their
nearby MuTHER lipid-CpGs within the adipose tissue regulatory
elements. All the “fine-mapping” discovery CpGs located at the
mid-point of adipose tissue LMRs (+/−20% from mid-point),
representing a slight increase in proportion over their paired
MuTHER CpGs (2/3 CpGs). This pattern is similar to
the observed positional mapping trends for the full set of lipid-
CpGs at LMRs, which exhibited a mid-point shift compared to all
CpGs assessed (Fig. 2a, c). Likewise, “fine-mapping” discovery
CpGs mapping to adipose UMRs showed that these CpGs tended
to locate in greater numbers (7/12; 58%) than their paired
MuTHER CpGs (5/12 CpGs; 42%) within the bimodal positional
peaks (+20 to +45% or −20 to −45% from mid-point)
previously observed for lipid-CpGs at UMRs (Fig. 2b, d). Both
of these fine-mapping trends did not reach nominal significance
most likely owing to the small number of observations and the
additional bimodal pull of the fine-mapping exhibited at the
putative promoter regions.

Functional annotation of lipid-CpGs. Replicated lipid-linked
adipose hypomethylated regulatory regions were characterized by
performing transcription factor binding site (TFBS) motif

analyses (see Methods section). Focusing on replicated UMRs
harboring lipid-CpGs (N= 16 regions) and excluding LMRs due
to their small number (N= 5), TFBS linked to adipogenesis and/
or obesity related metabolic-complications were enriched, with
members of the STAT family24–26 STAT5A27, STAT1 and
STAT328 being most significant, followed by NFIB29,30 and
RUNX131,32 (Supplementary Table 4). We further noted that
STAT5A, STAT3, and NFIB showed higher levels of expression in
adipose tissues over whole-blood in the GTEx Consortium data
(GTEx portal; November 2017; Supplementary Figures 10-12)
with the strongest evidence for NFIB expression. We confirmed
adipocyte-specific expression of NFIB through differential
expression analyses of purified human adipocytes from both
subcutaneous and visceral depots versus various blood cell types
(>14.0-fold change; p < 3.98 × 10−236; see Methods section).

Next, replicated lipid-linked adipose tissue regulatory regions
(N= 5 LMRs; N= 16 UMRs) were functionally annotated by
incorporating matching adipose tissue gene expression data from
the MuTHER cohort11 (see Methods section). As many as 16/21
(76%) lipid-associated regions showed significant association
between the methylation status of one of their resident CpGs and
the expression levels of at least one cis-located gene (FDR 10%;
range 1–9 associated genes/region; within +/−1Mb; Supplemen-
tary Data 3)—representing a 1.9-fold change in effect over all
testable regulatory regions (10,141/26,050 regions; Fisher’s p=
0.00104). All 16 regulatory regions depicting associations to at
least one gene also exhibited stronger effects on gene expression
at non-adjacent genes—with an average absolute distance of
~522 kb to their most correlated gene compared to ~33 kb to the
transcribed region of their most proximal gene. A greater
proportion of these replicated lipid-associated regulatory regions
(11/16 regions; 69%) correlated to the expression levels of more
than one gene compared to the background (4673/10,141 regions;
46%; Fisher’s p= 0.08).

We assessed whether the genes (N= 44) for which expression
levels were associated with methylation status at replicated lipid-
linked regions (N= 16) were also independently linked to the
same plasma lipid phenotypes (see Methods section). As many as
77% (30/39) of testable genes linked to 15 replicated lipid-
associated regulatory regions showed additional association to the
same lipid trait under investigation in the expected direction of
effect (Supplementary Data 4).

Restricting to genes listed in the GWAS SNP catalog (N= 20/
30; accessed September 2018), we observed that 6/20 (30%) genes
associating to lipid-linked regulatory regions also showed
association to metabolic-related phenotypes, revealing an enrich-
ment of obesity-linked traits compared to the full catalog (692/
15,815 genes; 4%; 6.9-fold change; Fisher’s p= 0.00016; Supple-
mentary Data 4; see Methods section). Ingenuity pathway analysis
(see Methods section) of all 30 highlighted genes showed Gαq
Signaling as the most significantly associated function within this
gene set (p= 6.94 × 10−5; Supplementary Table 5). Interestingly,
two of the four genes mapped to this pathway were regulated by
the same lipid-regulatory element which we follow-up in more
detail below.

Tissue-specificity of lipid-linked regulatory regions. To gain
insight into the potential tissue-specific nature of epigenetic sig-
natures associated to disease, we interrogated whether lipid-
linked signals mapping to regulatory regions are detectable across
tissues within a study population by profiling CpG methylation in
whole-blood from a matching set of samples (N= 206) from the
obese IUCPQ cohort (Supplementary Table 1). We linked whole-
blood methylation status to the same circulating plasma lipid
levels (see Methods section) and successfully typed 565 out of the
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567 regulatory regions harboring discovery adipose tissue lipid-
CpGs in whole-blood, of which 340 were shared and 225 adipose-
specific (i.e., not shared to whole-blood) elements (see Methods
section). Globally at the same significance threshold (using
Bonferroni cutoff for each trait individually and with same
direction of effect), lipid-associations at shared regulatory ele-
ments replicated at a significantly higher rate (46/340 replicated
lipid-linked regions; 14%) than adipose-specific elements (12/225
replicated regions; 5%; Binomial test p= 9.0 × 10−9). Lipid-
associations at shared putative promoters (i.e., UMRs) were more
likely to replicate across tissues than at shared enhancer regions—
with 35/221 (16%) lipid-linked UMRs compared to 11/119 (9%)
LMRs replicating in whole-blood. Specifically, we were able to
validate associations at 4/39 (10%) TG-LMRs, 2/39 (5%) HDL-
LMRs, 7/34 (21%) LDL-LMRs, 4/26 (15%) TC-LMRs, 10/64
(16%) TG-UMRs, 7/69 (10%) HDL-UMRs, 11/77 (14%) LDL-
UMRs, and 14/57 (25%) TC-UMRs in whole-blood (Supple-
mentary Data 5). Previous studies have indicated the importance
of accounting for differences in biological outcome of environ-
mental and genetic effects on DNA methylation at the tissue
level18, thus we performed the replication across adipose tissue to
whole-blood by also allowing different directions of effect across
tissues. Here, we were able to validate additional associations at 1/
39 (3%) HDL-LMRs, 1/34 (3%) LDL-LMRs, 6/64 (9%) TG-
UMRs, 4/69 (6%) HDL-UMRs, 10/77 (13%) LDL-UMRs, and 3/
57 (5%) TC-UMRs in whole-blood (Supplementary Data 5).
Taken together, we identified 68 adipose tissue regulatory regions
(13 putative enhancers and 55 promoters) showing evidence for
tissue-shared lipid-associations.

Pathway analysis of the 52 genes directly overlapping the 68
tissue-independent regulatory regions (Supplementary Table 6)
revealed the adipogenesis pathway as the top significantly
associated function (IPA p= 3.1 × 10−3; see Methods section).
Among the genes highlighted within this pathway, we noted (1)
the serine/threonine kinase AKT1 overlapping a shared promoter
region (chr14:105260438-105262714) harboring CpGs positively
correlated to both LDL-C and TC levels; (2) the histone
deacetylase HDAC4 mapping with an intergenic enhancer region
(chr2:240240338-240241584) containing CpGs depicting negative
associations to HDL-C in adipose tissue that were reversed in
whole-blood; (3) BMP4 overlapping a shared promoter region
(chr14:54418956-54424030) where CpGs were negatively asso-
ciated to TG levels. We further highlighted lipid-associated
promoter regions at the following cardiometabolic risk-related
loci; growth factor GDF7, kinase CERK, VGLL3 and ATP-binding
cassette transporter ABCC5.

Next, we investigated how the lipid-linked and tissue-shared
regulatory regions identified in a clinical population associate
with the same traits independently of obesity status. CpG
methylation was profiled by MCC-Seq in whole-blood from a
population-based (N= 137) cohort (CARTaGENE; https://
cartagene.qc.ca/; Supplementary Table 1), again linking whole-
blood methylation status to circulating plasma lipid levels
(Methods). Overall, we found 22/68 (32%) regions to be
associated with the same lipid trait under investigation in the
population-based cohort (Supplementary Data 6). However,
contrasting adipose lipid-associations that replicated in whole-
blood with the same (N= 46 regions) versus opposing (N= 28
regions) directions of effects (N= 17/46 regions; 37% vs. N= 5/
28 regions; 18%) showed a marked difference in the replication
rate (>2-fold change) indicating the possibility of the latter being
more specific to the clinical condition.

Genetic contribution to lipid-CpG methylation variability. We
previously validated the ability and accuracy of MCC-Seq to

provide genotyping information over target regions20, which we
used here to study genetic effects on CpG methylation. Using this
inferred genetic dataset, we integrated recently tabulated SNP-
CpG associations (metQTL) in cis (+/−250 kb) for a subset of the
adipose discovery cohort21. First, we confirmed our previous
findings11 that SNPs associated with CpG methylation are enri-
ched in the vicinity of their linked CpGs (Supplementary Fig-
ure 13). Second, we investigated the level of genetic regulation
among lipid-associated regulatory regions and noted a large
fraction to be partly under genetic regulation. In line with pre-
vious studies11,18,33, we observed that 64% (362/567) of lipid-
associated elements depicted a significant SNP-CpG association
(FDR 10%) compared to only 44% (22101/50759) in the back-
ground (Fisher’s p < 2.2 × 10−16; Table 1). We further found that
this enrichment was maintained when accounting for overall
methylation variability (top 25% variable CpG methylation status
across all individuals; 194/406 lipid-linked regions versus 4763/
17593 in background; Fisher’s p < 2.2 × 10−16).

We queried whether the identified lipid-linked regulatory regions
have different levels of genetic contribution depending on their
tissue-specificity and contrasted the elements unique to adipose (N
= 226) versus those shared across tissues to whole-blood (N= 341;
Table 1). We observed an enrichment in association to cis-SNPs
only at shared regulatory elements (N= 251/341 regions; 74%;
Fisher’s p < 2.2 × 10−16; Table 1). Restricting to the subset of 68
lipid-associated shared regulatory regions that were further
validated in the matched whole-blood cohort, we noted an increase
in observed genetic variation contribution corresponding to as
much as 93% (N= 63/68 regions; Fisher’s p < 2.2 × 10−16; Supple-
mentary Data 5; Table 1). Finally, we further filtered the list of lipid-
linked regulatory regions to only contrast those that in addition to
being validated in the matched whole-blood cohort were also
significantly associated to lipids in the independent population-
based cohort (Supplementary Data 6). Here, we found a striking
enrichment with 21/22 (95%) of these tissue-independent and
obese-status-independent regions to be under genetic regulation
(Fisher’s p= 3.3 × 10−7).

To assess whether these genetically controlled lipid-linked
epigenetic loci overlap GWAS loci, we incorporated GWAS SNPs
for the same four lipid traits under study from the large-scale efforts
of the Global Lipids Genetics Consortium34. We focused on lead
SNPs associated with methylation of CpGs mapping to the 362
lipid-linked regulatory regions. Intersecting these SNPs and/or their
proxies (r2 > 0.8) with the fully released dataset of GWAS SNPs at
nominal significance, we noted an enrichment at lipid-linked
regulatory regions for all lipid traits; TG (3.7-fold; Fisher’s p= 3.4 ×
10−16), HDL-C (4.4-fold; Fisher’s p < 2.2 × 10−16), LDL-C (4.3-fold;
Fisher’s p < 2.2 × 10−16) and TC (4.1-fold; Fisher’s p < 2.2 × 10−16).
Enrichment trends were maintained at a more stringent significance
cutoff for GWAS SNPs (p= 5.0 × 10−8) albeit with lower statistical
confidence due to smaller numbers (Fisher’s p < 0.05).

Table 1 Genetic regulation on lipid-linked adipose regulatory
regions

Lipid-linked regulatory regions Genetic regulation enrichment
(fold-change)

All lipid-linked elements (N= 567) 1.5
Adipose-specific elements (N= 226) 1.1
Tissue-shared elements (N= 341) 1.7
Tissue-shared elements validated in
blood cohort 1 (N= 68)

2.1

Tissue-shared elements validated in
blood cohort 1 and 2 (N= 22)

2.2
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Regulation of lipid-linked adipose-specific enhancers. Genetic
regulation of lipid-linked regulatory elements is pronounced
among regions shared across tissue to whole-blood whereas
adipose-specific regions exhibited a larger component of
environmentally-driven regulation. Specifically, we found no
evidence of genetic associations for 115/226 (51%) lipid-linked
regulatory regions active in adipose but not whole-blood. Among

these lipid-linked regulatory regions with non-genetic regulatory
effects, we followed-up on an adipose-specific putative enhancer
(chr19:2332094-2333076) harboring adipose lipid-CpGs linked to
TG levels in our discovery and replication samples. (Supple-
mentary Data 2). This enhancer region maps to the first intra-
genic region of SPPL2B—a locus with no reported associations to
cardiometabolic risk (Fig. 3a, b). We initially highlighted the
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region for harboring TG-linked methylation in the discovery
cohort near the mid-point of the enhancer region (chr19:2332436;
corrected p= 2.4 × 10−5; Fig. 3b)—mimicking positional trends
for lipid-CpGs at this type of element. The positive correlation of
methylation to TG levels at this region was validated in the large-
population based MuTHER cohort at nearby CpGs (cg05660874;
p= 5.1 × 10−10; cg10723746; p= 1.0 × 10−8; Supplementary
Data 2; Fig. 3b). Confirming earlier results for the characteriza-
tion of adipose putative enhancers23, overlapping the intragenic
region with adipocyte-specific H3K4me1 and H3K4me3 (Road-
map; donor 92) showed co-localization of the highlighted
adipose-specific LMR with the H3K4me1 enhancer mark
(Fig. 3b). This was not observed in peripheral blood (Roadmap;
donor TC015) ChIP-Seq data as H3K4me1 peaks were absent,
indicating the adipose-specific nature of the regulatory marks
(Fig. 3b). This observation corroborates the lack of replication of
epigenetic regulation from whole-blood EWAS at this element
(Supplementary Data 5; Fig. 3b).

Integrating the MuTHER cohort expression data (see
Methods section) revealed a lack of significant epigenetic-
association to expression levels of the SPPL2B locus. In line
with the trend reported above, we instead noted that expression
levels of GNA15—located 803 kb downstream of the putative
enhancer region—were the most correlated (ILMN_1773963
versus cg10723746; p= 1.5 × 10−17; ILMN_1773963 versus
cg05660874; p= 1.5 × 10−16; Fig. 3d). We further observed
links to expression levels of GNG7 (179 kb downstream), REEP6
(834 kb upstream) and MKNK2 (281 kb upstream; Supplemen-
tary Data 3; Fig. 3a). Expression levels of these four genes were
also associated with TG levels in the MuTHER cohort, with
GNA15 and GNG7 exhibiting the strongest relationships
(GNA15; ILMN_1773963; p= 1.5 × 10−18; GNG7;
ILMN_1728107; p= 1.2 × 10−12; Supplementary Data 4; Fig. 3c,
d)—corroborating the link between regulation of these loci with
levels of TG and disease state. Supporting a co-regulation
network between these genes is the strong correlation between
the 450 K array probes located at several regulatory regions at
these genes and the expression products of GNG7 and GNA15
interchangeably (Supplementary Data 7; Fig. 3c, d). GNA15 and
GNG7 both encode for G-protein subunits with suggested roles
for GNA15 in heart failure35 and glucose homeostasis36 and for
GNG7 in coronary artery calcification37 (Supplementary
Data 4). Both of these genes mapped to the top IPA disease-
linked function of Gαq Signaling for genes under regulation by
replicated lipid-linked regulatory regions (IPA p= 6.94 × 10−5;
Supplementary Table 5). Taken together, this may suggest that
the identified adipose-specific regulatory region has pleiotropic
effects regulating both GNA15 and GNG7 expression, resulting
in additive disease risk.

Although we observed a lack of enrichment for genetic
associations among lipid-linked regulatory regions active in

adipose but not whole-blood, we identified 111 regions under
genetic regulation. To exemplify this, we focused on an element
mapping to an intragenic region of GALNT2 (chr1:230312462-
230313455) showing both epigenetic and genetic associations to
HDL-C (Fig. 4; Supplementary Data 1). Specifically, we showed
that this lipid-linked regulatory region (corrected p= 2.0 × 10−5)
is under tight genetic regulation with seven CpGs associating to
multiple SNPs (N= 21) flanking this element (Supplementary
Data 8; Fig. 4b). These lead SNPs were in high LD (r2 > 0.9) with
an HDL-linked GWAS SNP34 (Global Lipids Consortium;
rs627702; p= 5.0 × 10−24) located 11 kb downstream of the
enhancer (Fig. 4). Of note, this HDL-linked GWAS SNP was
independent of the top GWAS SNP reported by the Global Lipids
Consortium study for this same trait, which locates upstream of
the enhancer region (rs4846914; p= 4.0 × 10−41; Fig. 4a)34.
Genetic effects at this enhancer were supported by conditional
analysis where absence of lipid-CpG association was noted when
genotypes were included in the model with rs2760537 being the
most prominent (corrected p= 4.3 × 10−2; q= 0.78; see Methods
section). Dissecting results with whole-blood EWAS showed the
adipose-specific nature of HDL-association at this region (Fig. 4).
This enhancer is also not covered on the 450 K array,
representing a novel avenue for HDL-association to epigenetic
variants. In addition, we found no evidence of cis-eQTLs (GTEx
Consortium) linking genetic variants at this locus to gene
expression (Fig. 4b). This observation in combination with the
lack of a strong adipocyte-specific H3K27ac signature at this
enhancer indicates a possible poised or primed region state,
supporting efforts highlighting the superior molecular value
provided by epigenetics traits over gene expression alone38. The
glycosyltransferase GALNT2 locus itself has previously been
associated to metabolic syndrome39, TG levels40,41 and type 2
diabetes42, with our current results supporting additional links to
cardiometabolic disease through putative epigenetic regulation.

Discussion
We recently introduced MCC-Seq20 as a cost-effective and flex-
ible platform for simultaneous DNA methylation and genotype
interrogation in large-scale cohorts, permitting targeted and
dense profiling of active methylomes within disease-relevant tis-
sues. Here, we apply MCC-Seq in a comprehensive epigenome-
wide study of plasma blood lipids (including TG, HDL-C, LDL-C,
and TC) and identify 567 lipid-linked regulatory regions in
visceral adipose tissue. We combine a stringent statistical cor-
rection method (BACON) with a more lenient FDR threshold
(10%) and perform detailed follow-ups on regions replicating
across adipose tissue depots and across tissue types (whole blood)
using the classical Bonferroni approach. This strategy allowed us
to present an expanded resource of cardiometabolic risk-linked
epigenetic loci.

Fig. 3 TG-linked adipose-specific regulatory region shows putative pleiotropic effects. A top discovery TG-CpG (chr19:2332436; corrected p= 2.4 × 10−5;
sky blue track) replicated by multiple nearby MuTHER TG-CpGs (cg05660874; p= 5.1 × 10−10; cg10723746; p= 1.0 × 10−8; light green track) locates
within an adipose-specific enhancer region (chr19:2332094-2333076) overlapping the first intron of SPPL2B (LMR; shown in red in a the broad and
b zoomed-in view). Methylation levels at cg05660874 and cg10723746 show associations to cis-locating REEP6, MKNK2, GNG7, and GNA15 (highlighted in
red in a), which in turn exhibit associations to TG levels in the MuTHER cohort with GNG7 and GNA15 showing the strongest links (c GNG7; cg05660874
versus ILMN_1709247; p= 4.9 × 10−5; cg10723746 versus ILMN_1709247; p= 3.1 × 10−8; ILMN_1709247 versus TG; p= 1.2 × 10−12; d GNA15;
ILMN_1773963 versus cg10723746; p= 1.5 × 10−17; ILMN_1773963 versus cg05660874; p= 1.5 × 10−16; ILMN_1773963 versus TG; p= 1.5 × 10−18). We
show evidence for a co-regulation network between these two genes and the enhancer region by highlighting associations between 450 K array probes
(light green tracks in b–d) locating to several regulatory regions (shown in red in b and teal in c, d) and expression levels of c GNG7 and d GNA15 in
MuTHER. We show a lack of whole-blood lipid-EWAS signals at the enhancer of interest (b), which is supported by the adipocyte-specific nature of
chromatin signatures observed at the locus (Roadmap Epigenomics Consortium; adipocyte nuclei donor 92 shown in orange versus peripheral blood donor
TC015 shown in green)
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We confirm current epigenomics trends where tissue-specific
regulatory regions such as enhancers globally appear more likely
to contain trait-linked CpGs compared to promoters - empha-
sizing the importance of targeting these regions to expand our
understanding of complex disease biology. The observed under-
representation of lipid-associated epigenetic variants within

promoters may be attributable to the more tightly regulated and
static nature of these elements, where smaller variations may be
biologically impactful but harder to statistically identify. Using
MCC-Seq for dense single-base resolution profiling at regulatory
elements (7 CpGs/LMR and 37 CpG/UMR, respectively) is
advantageous by depicting unique positional trends of lipid-
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associated epigenetic variants. Key differences are observed in
positioning at putative enhancers in contrast to promoters: lipid-
associated epigenetic variants show clear enrichment at the mid-
point of enhancers whereas they depict a bimodal distribution
flanking the TSS of promoters. These observations may reflect the
TFBS landscape within regulatory regions with preferential
binding of TFs at midpoints or edges dependent on elements.
Comparisons of these full-resolution positional trends with those
captured by array-based approaches exemplified the limitations of
the latter methods to assess CpGs within regulatory regions both
in terms of the number of CpGs covered and ascertainment biases
due to probe design.

We further demonstrate that NGS-based high resolution CpG
profiling in epigenome-wide studies allows for fine-mapping of
trait-linked epigenetic signals from large-scale array-based stu-
dies. Due to limitations in visceral adipose tissue cohort avail-
abilities, the large MuTHER subcutaneous adipose tissue cohort
was used as the best alternative proxy of available data for
replication studies, therefore we focused on epigenetic variants
stable across these two adipose tissue depots. We highlight a high-
confidence set of 21 adipose-specific regulatory regions associated
with plasma lipid levels. Identified signals for >90% of lipid-
associated regulatory regions were refined, with “fine-mapping”
discovery CpGs mimicking positional trends highlighted at adi-
pose regulatory elements. We hypothesize that differences in
study design both in terms of adipose tissue depots (visceral
versus subcutaneous) and cohort selection (obese versus popu-
lation-based) between the discovery study and MuTHER cohorts,
respectively, may contribute to the observed replication rate.
Nevertheless, our TFBS analysis provided insight into potential
underlying signaling pathways. Specifically, binding motifs for
NFIB were enriched at adipose tissue promoter regions mapping
with lipid-associated epigenetic variants. Interestingly, NFIB has
previously been reported to function in glucose transport29 and
also serves as an important regulator of proper adipocyte differ-
entiation as exemplified by preferential mapping to adipocyte-
specific or preadipocyte-specific open chromatin peaks29,30.

While MCC-Seq represents added fine-mapping value for full-
resolution methylome assessment, past profiling efforts within the
MuTHER cohort have provided us with rich array-based datasets.
Linking methylation, expression, and phenotype profiles across
~600 adipose tissue samples, we identify lipid-linked replicated
adipose tissue regulatory regions associating to plasma lipid traits
and expression levels at unique loci that associate to the same
lipid traits. We highlight several obesity-related GWAS loci—
CSK43, SLCO3A144 and GNG737 and GNA1535,36—and report
several novel genes including LCN2, ECHS1, IDH2, and CD7.
These genes also map to metabolic disease-linked pathways such
as the highlighted Gαq Signaling known to have a role in adi-
pogenesis through its action in regulating intracellular calcium
levels and downstream expression of the master regulators
PPARγ and C/EBPα45,46.

CpG methylation is seen as a proxy linking genetics and
environment to disease and phenotype. To further contribute to
our understanding of genetic and non-genetic factors impacting
complex diseases, we dissect lipid-linked regulatory regions
through adipose SNP-CpG associations21 within the same cohort.
As previously observed11,18,33, a large fraction of lipid-associated
regulatory elements is under genetic regulation. These genetic
effects are strengthened when restricting to tissue-independent
and lipid-linked regions replicating to whole-blood within the
same disease-cohort (93%) as well as across cohorts (95%)—
hinting at a coordinated mechanistic regulation over these regions
across tissues. We highlight an adipose tissue specific putative
enhancer on chromosome 1—locating within the first intron of
the obesity-linked GALNT239–42, where methylation levels at this
regulatory region are under genetic control by variants within an
HDL-linked GWAS locus34. Adipocyte-specific histone marks at
the locus suggest that the HDL-linked regulatory region repre-
sents an adipose-specific poised enhancer and may explain why
genetic regulation of this disease locus has not been identified by
large eQTL efforts such as from the GTEx Consortium. This
finding highlights the importance of studying epigenetic marks
such as DNA methylation over gene expression alone.

Building on a previous study11, we also present an expanded
methylation-expression association analysis, permitting us to
assess pleiotropic effects of adipose tissue regulatory regions
showing association to cardiometabolic risk factors. In line with
current chromatin conformational studies, we report that
methylation status at lipid-linked regulatory regions shows
stronger associations to expression levels of genes locating ~500
kb away, on average. A majority (~70%) of these lipid-linked
regulatory elements exhibit putative pleiotropic effects—indicat-
ing the occurrence of regulatory networks linked to the disease
state. We focus on an adipose tissue-specific TG-linked enhancer
region on chromosome 19 showing strong putative effects on the
expression levels of two Gαq Signaling genes—glucose
homeostasis-linked GNA1536 and coronary artery disease-linked
GNG737 located >200 kb upstream of the element. We support
observed TG-associations at this region through our three-way
associations of methylation, expression and lipids within the
MuTHER cohort. We also present evidence for a co-regulation
network between regulatory regions mapping to GNA15 and
GNG7 and the adipose enhancer of interest. Taken together, this
may suggest that the identified adipose-specific regulatory region
has pleiotropic effects regulating expression of both GNA15 and
GNG7 resulting in additive disease risk.

In conclusion, our study demonstrates the advantage of NGS-
based methylome profiling in disease-relevant tissues to identify
complex trait-linked epigenetic variants at high resolution. We
show that targeted sequencing approaches enables us to refine
methylome landscape features and to further disentangle the
genetic versus environmental contributions to complex traits. Our
study represents an expanded dataset of cardiometabolic-risk-

Fig. 4 HDL-C linked adipose-specific regulatory region under genetic regulation. A discovery HDL-CpG (chr1:230313001; corrected p= 2.0 × 10−5; sky blue
track) maps within an intragenic region of GALNT2 (chr1:230312462-230313455) overlapping an adipose-specific putative enhancer region (LMR; shown in
red in a the broad and b zoomed-in view). The adipose-specific nature of the epigenetic signature at this locus is supported by patterns in adipocyte nuclei
(Roadmap Epigenomics Consortium; donor 92 for H3K4me1 and H3K4me3; donor 7 for H3K27ac; orange tracks) versus peripheral blood (Roadmap
Epigenomics Consortium; donor TC015; green tracks) chromatin marks as well as from intersecting whole-blood EWAS signals (pink and dark orange
tracks). We show that the enhancer region is under extensive genetic regulation by nearby cis-SNPs (gray blue tracks in b) that are in high LD (r2 > 0.9)
with an HDL-linked GWAS SNP (Global Lipids Consortium; rs627702; p= 5.0 × 10−24; purple tracks), which is independent of the previously reported top
HDL-linked SNP at this locus (rs4846914; p= 4.0 × 10−41; dark green track in a). We depict a lack of coverage of the 450 K array at this region. Adipocyte-
specific (in-house data; light orange track) and peripheral blood RNA-Seq (Roadmap Epigenomics Consortium; donor TC014; light green track) data at the
locus is also depicted in a
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linked epigenetic regulatory regions in the disease-relevant adi-
pose tissue. Our findings confirm that integrating cellular phe-
notypes with disease traits across tissues enables the identification
of functional epigenetic variants in regulatory regions linked to
complex disease traits.

Methods
Sample collections. We obtained 199 visceral adipose tissue (VAT) samples
(males N= 79; females N= 120) from the Quebec Heart and Lung Institute for our
discovery cohort (IUCPQ; Université Laval, Quebec City, Canada). Samples were
collected between June 2000 and July 2012 for 1906 severely obese (BMI
> 40 kg m−2) men (N= 597) and women (N= 1309) undergoing biliopancreatic
diversion with duodenal switch47 at this Institute as previously described48. Briefly,
subjects fasted overnight before the surgical procedure. Anesthesia was induced by
a short-acting barbiturate and maintained by fentanyl and a mixture of oxygen and
nitrous oxide. VAT samples were obtained within 30 min of the beginning of the
surgery from the greater omentum48.

We additionally obtained 206 whole-blood samples from the same IUCPQ
cohort described above for dissection of adipose epigenetic variants. Blood was
collected before surgery.

The sample collection was approved by the Université Laval and McGill
University (IRB FWA00004545) ethics committee and performed in accordance
with the principles of the Declaration of Helsinki. Tissue banking and the severely
obese cohort were approved by the research ethics committees of the Quebec Heart
and Lung Institute. All participants provided written informed consent before
enrollment in the study.

We included 137 whole-blood samples from the CARTaGENE cohort (https://
cartagene.qc.ca/) in the study design for dissection of adipose epigenetic variants.
As a whole, the CARTaGENE cohort numbers ~20,000 general population subjects
drawn from the province of Québec, Canada. Using bio-banked serum from a
random subset (N= 3600) of the CARTaGENE cohort, ACPA (anti-citrullinated
protein antibody) positive subjects (N= 69; 18 with high titers ≥ 60 units, the
others with medium titers= 20–59 units) were identified by an enzyme-linked
immunosorbent assay (Quanta Lyte, CCP3 IgG: Inova Diagnostics Inc., San Diego,
CA). Age and sex-matched ACPA negative subjects (N= 68) were randomly
selected. ACPA status was not considered as a covariate in this study.

The methylation studies of the samples from CARTaGENE were approved by
the McGill University institutional review board, IRB number A04-M46-12B. All
participants provided written informed consent before enrollment in the study.

BMI was calculated as weight in kilograms divided by height in meters squared.
Plasma total cholesterol (TC), triglyceride (TG), and high-density lipoprotein
cholesterol (HDL-C) levels were measured using enzymatic assays. HDL-C was
measured in the supernatant following precipitation of very low-density
lipoproteins and low-density lipoproteins with dextran sulfate and magnesium
chloride. Plasma low-density lipoprotein cholesterol (LDL-C) levels were estimated
with the Friedewald formula. Summary of the characteristics are tabulated in
Supplementary Table 1.

MCC-Seq methylation profiling. Genomic DNA was extracted from the blood
buffy coat using the GenElute Blood Genomic DNA kit (Sigma, St. Louis, MO,
USA) and quantified using both NanoDrop Spectrophotometer (Thermo Scientific)
and PicoGreen DNA methods. The samples were profiled through targeted
methylation sequencing as previously described20. Briefly, in MCC-Seq a whole-
genome sequencing library is prepared and bisulfite converted, amplified and a
capture enriching for targeted bisulfite-converted DNA fragments is carried out.
The captured DNA is further amplified and sequenced. More specifically, whole-
genome sequencing libraries were generated from 700 to 1000 ng of genomic DNA
spiked with 0.1% (w/w) unmethylated λ DNA (Promega) previously fragmented to
300–400 bp peak sizes using the Covaris focused-ultrasonicator E210. Fragment
size was controlled on a Bioanalyzer DNA 1000 Chip (Agilent) and the KAPA
High Throughput Library Preparation Kit (KAPA Biosystems) was applied. End
repair of the generated dsDNA with 3′-overhangs or 5′-overhangs, adenylation of
3′-ends, adapter ligation and clean-up steps were carried out as per KAPA Bio-
systems’ recommendations. The cleaned-up ligation product was then analysed on
a Bioanalyzer High Sensitivity DNA Chip (Agilent) and quantified by PicoGreen
(Life Technologies). Samples were then bisulfite converted using the Epitect Fast
DNA Bisulfite Kit (Qiagen), according to the manufacturer’s protocol. Bisulfite-
converted DNA was quantified using OliGreen (Life Technologies) and, based on
quantity, amplified by 9–12 cycles of PCR using the Kapa Hifi Uracil+DNA
polymerase (KAPA Biosystems), according to the manufacturer’s protocol. The
amplified libraries were purified using Ampure Beads and validated on Bioanalyzer
High Sensitivity DNA Chips, and quantified by PicoGreen. SeqCap Epi Enrichment
System protocols (Roche NimbleGen) were then carried out for the capture step
using the previously presented adipose-specific custom panels20 MetV1 (N= 113
discovery adipose samples), MetV2 (N= 92 discovery adipose samples; N= 206
whole-blood IUCPQ cohort samples) as well as a whole-blood-specific custom
panel49 (N= 137 CARTaGENE cohort samples). The hybridization procedure of
the amplified bisulfite-converted library was performed as described by the man-
ufacturer, using 1 μg of total input of library, which was evenly divided by the

libraries to be multiplexed, and incubated at 47 °C for 72 h. Washing and reco-
vering of the captured library, as well as PCR amplification and final purification,
were carried out as recommended by the manufacturer. Quality, concentration and
size distribution of the captured library was determined by Bioanalyzer High
Sensitivity DNA Chips. Captures were sequenced on the Illumina HiSeq2000/
2500 system using 100-bp paired-end sequencing.

Reads were aligned to the bisulfite converted reference genome using BWA
v.0.6.150. We removed (i) clonal reads, (ii) reads with low mapping quality score
(<20), (iii) reads with more than 2% mismatch to converted reference over the
alignment length, (iv) reads mapping on the forward and reverse strand of the
bisulfite converted genome, (v) read pairs not mapped at the expected distance
based on library insert size, and (vi) read pairs that mapped in the wrong direction
as described by Johnson et al.51 To avoid potential biases in downstream analyses,
we applied our benchmark filtering criteria as follows; ≥5 total reads, no overlap
with SNPs (dbSNP 137), ≤20% methylation difference between strands, no off-
target reads and no overlap with DAC Blacklisted Regions (DBRs) or Duke
Excluded Regions (DERs) generated by the ENCODE project: (http://hgwdev.cse.
ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability).

Methylation values at each site were calculated as total (forward and reverse)
non-converted C-reads over total (forward and reverse) reads. CpGs were counted
once per location combining both strands together. We restricted the analyses to
CpGs covered in at least 100 individuals for the IUCPQ cohorts and 50 individuals
for the CARTaGENE cohort (due to the smaller cohort size) with more than 10%
of these having methylation status above zero and below 100%.

Epigenome-wide association of plasma lipid levels. We tested associations
between methylation levels of CpGs detected by MCC-Seq with circulating lipid
levels (TG, HDL-C, LDL-C, and TC) from the corresponding cohorts using a
generalized linear model (GLM) function implemented in R3.1.1. Outliers in lipid
levels were identified by setting a cutoff of mean ± 3 * SD and removed from
further analysis. Lipid levels not depicting a normal distribution were converted to
the log scale (adipose IUCPQ: TG; whole-blood IUCPQ: TG and HDL-C; CAR-
TaGENE: TG, HDL-C, and LDL-C). The response variable (methylation levels) was
fitted to a binomial distribution weighted for sequence read coverage at each site
and adjusted (1) for age, sex, MCC-Seq panel batch effect and BMI for discovery
cohort adipose samples, and (2) for age, sex, blood cell proportions and BMI for the
whole-blood IUCPQ and CARTaGENE cohort samples. We remove bias and
inflation by applying the bacon correction22 on the test statistics using default
parameters. False-discovery rate (FDR) was calculated with the R/Bioconductor q-
value package52 for each trait individually in the adipose IUCPQ cohort. We set the
significance level at FDR 10%. Bonferroni cutoff was used as a significance
threshold for dissection with the whole-blood cohorts for each trait individually.

Subcutaneous adipose tissue methylation data from a population-based cohort
of 648 female individuals in the TwinsUK/MuTHER cohort was obtained for
replication. The samples were profiled on the Illumina 450 K array and normalized
as described previously11. Associations between 450 K array methylation data (N=
355,296 CpG probes) and the four circulating lipid levels under investigation were
previously assessed18 using a linear mixed model taking into account familial
relationship, twin zygosity and other cofactors into account (i.e., age, beadchip, BS
conversion efficiency, BS-treated DNA input and BMI—expect when assessing
BMI itself). Bonferroni cutoff was used as a significance threshold for validation for
each trait individually.

Positional mapping analyses. We defined un-methylated (UMR) and low-
methylated regions (LMR) by mining through whole-genome bisulfite sequencing
datasets from adipose and whole-blood samples from the same cohort, separately,
as described previously20,23. Through these efforts, we reported 20,195 UMRs and
45,065 LMRs for adipose tissue and 19,871 UMRs and 46,159 LMRs for whole-
blood samples20,23. Adipose-specific regions were previously defined by intersect-
ing adipose and whole-blood hypomethylated regions, where 2342 and 24,687
adipose-specific UMRs and LMRs were tabulated, respectively20.

Positional trends of CpGs within adipose regulatory elements were assessed
restricting to LMRs containing at least 1 CpG (N= 31,964) and UMRs containing
at least 1 CpG and within +/−1.5 kb of transcription start sites (TSS) as well as not
depicting bivalent gene transcription orientations (N= 10,924). Position of CpGs
were tabulated as the percent distance from the midpoint of elements (genomic
distance from midpoint (bp)/length of element(bp)*100) and collapsed to make
density plots using ggplot253 to summarize positional trends over all assessed
elements. Gene orientation was additionally taken into account for CpGs mapping
to UMRs where UMRs were positioned upstream of genes.

Transcription factor binding site motif analysis. Transcription factor binding
site (TFBS) motif analysis was performed using the Homer software54 for lipid-
linked UMRs (N= 16 regions) replicated in the MuTHER cohort where we
excluded replicated lipid-linked LMRs due to their small number (N= 5 regions).
Default settings were selected with the “given” size option. UMRs harboring
replicated lipid-associated CpGs were contrasted against the remaining promoter
regions containing interrogated CpGs that lacked nominal significance in the
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discovery EWAS for any of the four lipid traits (N= 912 UMRs). A Bonferroni q <
0.05 cutoff was applied for significance.

Differential expression analyses. Peripheral blood mononuclear cells were pur-
ified from buffy coats originating from 450 ml blood of healthy blood donors
(Uppsala Blood Transfusion Center, Uppsala University Hospital, Sweden), using
Ficoll-Paque (GE Healthcare) density-gradient centrifugation. B cells, T cells and
monocytes were isolated from dedicated batches of peripheral blood mononuclear
cells, using positive selection with CD19+, CD3+, and CD14+ beads (Miltenyi
Biotec), respectively, according to the manufacturer’s instructions.

RNA isolations were performed using miRNeasy Mini Kit (Qiagen). RNA
library preparations were carried out on 500 ng of RNA with RNA integrity
number (RIN) > 7 isolated from adipocyte cells extracted from AT55,56 and blood
cells (CD19+, CD3+, and CD14+) using the Illumina TruSeq Stranded Total
RNA Sample preparation kit, according to manufacturer’s protocol. Final libraries
were analysed on a Bioanalyzer and sequenced on the Illumina HiSeq2000 (pair-
ended 100 bp sequences). Raw reads were trimmed for quality (phred33 ≥ 30) and
length (N ≥ 32), and Illumina adapters were clipped off using Trimmomatic v.
0.3257. Filtered reads were aligned to the hg19 human reference using STAR
v.2.5.1b58. Raw read counts of UCSC genes were obtained using htseq-count v.0.6.1
(http://www-huber.embl.de/users/anders/HTSeq).

Differential expression analysis was done using DESeq2 v.1.18.159 on RNA-seq
data from adipocytes isolated from adipose tissue (subcutaneous and visceral) of 20
obese individuals undergoing bariatric surgery (IUCPQ) and different blood cell
types (N= 11 B cells; N= 20 T cells; N= 20 monocytes) of healthy European
individuals (Uppsala Blood Transfusion Center, Uppsala University Hospital,
Sweden). We used stringent cutoffs to define adipocyte-specific expression—
requiring log2-fold-change > 2 and p < 0.05 across all six comparisons of adipocytes
to blood cell types.

Linking gene expression to methylation in MuTHER cohort. We expanded on a
previously published methylation-expression association analysis performed within
the MuTHER cohort11 to assess possible long-range interactions (+/−1Mb) for
CpGs mapping to both LMRs and UMRs. We restricted to 145,913 450 K CpGs
residing in 27,258 adipose regulatory regions and tested for association to 20,326
expression probes (IlluminaHT12) for 602 individuals with matched samples. We
used a similar linear mixed-effects model as described previously11, implemented
with the lme4 package60 lmer() function fitted by maximum likelihood. As before,
the linear mixed-effects model was adjusted for both fixed effects (age, beadchip, BS
conversion efficiency, BS-treated DNA input) and random effects (family rela-
tionship and zygosity) but here we added BMI as an additional covariate. We used
a likelihood ratio test to assess the significance of the gene expression effect. The p-
value of the gene expression effect in each model was calculated from the Chi-
square distribution with 1 degree of freedom (df) and −2 log(likelihood ratio) as
the test statistic. In total, we tested 4,245,804 methylation to gene expression
associations and assessed the false-discovery rate (FDR 10%) using the R/Bio-
conductor q-value package52.

Association of gene expression to lipids in MuTHER cohort. Associations
between gene expression levels (IlluminaHT12) and lipid status within the
MuTHER cohort were modeled using a linear mixed effects model as described
previously61. Briefly, the lmer function in the lme4 package60, was fitted by
maximum-likelihood. The linear mixed effects model was adjusted for age and
experimental batch (fixed effects) and family relationship (twin-pairing) and zyg-
osity (random effects). A likelihood ratio test was used to assess the significance of
the phenotype effect. The p-value of the phenotype effect in each model was
calculated from the Chi-square distribution with 1 degree of freedom using −2log
(likelihood ratio) as the test statistic.

Gene enrichment pathway analyses. Core expression analyses were performed
using default settings in the Ingenuity Pathway Analysis software. Only the top 5
canonical pathways are reported. We ran the software on (1) 30 genes showing
associations to both replicated adipose lipid-CpGs mapping with adipose reg-
ulatory regions and to the same lipid trait independently (see “Functional anno-
tation of lipid-CpGs”), and (2) 52 genes directly overlapping the 68 lipid-linked
adipose regulatory regions validated in whole-blood (see “Tissue-specificity of
lipid-linked regulatory regions”).

Conditional modeling of HDL-EWAS on SNPs. Genotypes for the 21 SNPs in the
region of interest within GALNT2 (Supplementary Data 8) were generated for 148
adipose IUCPQ samples. For 56/113 discovery samples profiled via MCC-Seq using
MetV1, genotypes were typed on the high-density genotyping using the Illumina
HumanOmni2.5–8 (Omni2.5) BeadChip according to protocols recommended by
Illumina. For 92 discovery samples profiled via MCC-Seq using MetV2, genotypes
were inferred using the Bis-SNP software62, a bisulfite-sequencing variant caller,
with default parameters: “-T BisulfiteGenotyper -stand_call_conf 20 -stand_e-
mit_conf 0 -mmq 30 -mbq 17 -minConv 0” and with dbSNP 137 as prior SNP
information. The aligned bam files were used as input file and the hg19 was used as
the reference genome.

Conditional modeling of HDL-association at chr1:230313001 for the 21 SNPs in
the region of interest within GALNT2 (Supplementary Data 8) was carried out
independently for each SNP by adding the genotype status as a covariate in the
GLMs as described in “Epigenome-wide association of plasma lipid levels” above.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The methylation and expression data from the MuTHER cohort have been deposited in
the ArrayExpress, https://www.ebi.ac.uk/arrayexpress/ (accession no. “E-MTAB-1866”
and “E-TABM-1140”. Lipid-EWAS results from the adipose and whole-blood IUCPQ
cohorts as well as the whole-blood CARTaGENE cohort can be visualized in the UCSC
Genome Browser by adding the following URL to “My Hubs”: https://emc.genome.
mcgill.ca/myHub/hub_adipose.txt. Raw MCC-Seq reads from the IUCPQ cohorts are
deposited to the European Genome-phenome Archive (EGA) and available (accession
no. EGAS00001003415) after approval by the Data Access Committee (DAC) designated
to the study (https://www.ebi.ac.uk/ega/home). All other relevant data supporting the key
findings of this study are available within the article and its Supplementary Information
files or from the corresponding author upon reasonable request. A reporting summary
for this Article is available as a Supplementary Information file.
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