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SPECIAL ARTICLE

Dietary Intake and Physical Activity Assessment:
Current Tools, Techniques, and Technologies for Use

in Adult Populations

D1X XHolly L. McClung, D2X XMS,1 D3X XLauren T. Ptomey, D4X XPhD,2 D5X XRobin P. Shook, D6X XPhD,3 D7X XAnju Aggarwal, D8X XPhD,4

D9X XAnna M. Gorczyca, D10X XPhD, MS,2 D11X XEdward S. Sazonov, D12X XPhD,5 D13X XKatie Becofsky, D14X XPhD,6 D15X XRick Weiss, D16X XMS,7

D17X XSai Krupa Das, D18X XPhD8

Accurate assessment of dietary intake and physical activity is a vital component for quality research
in public health, nutrition, and exercise science. However, accurate and consistent methodology for
the assessment of these components remains a major challenge. Classic methods use self-report to
capture dietary intake and physical activity in healthy adult populations. However, these tools, such
as questionnaires or food and activity records and recalls, have been shown to underestimate energy
intake and expenditure as compared with direct measures like doubly labeled water. This paper
summarizes recent technological advancements, such as remote sensing devices, digital photogra-
phy, and multisensor devices, which have the potential to improve the assessment of dietary intake
and physical activity in free-living adults. This review will provide researchers with emerging evi-
dence in support of these technologies, as well as a quick reference for selecting the “right-sized”
assessment method based on study design, target population, outcome variables of interest, and
economic and time considerations.

Theme information: This article is part of a theme issue entitled Innovative Tools for Assessing
Diet and Physical Activity for Health Promotion, which is sponsored by the North American
branch of the International Life Sciences Institute.
Am J Prev Med 2018;55(4):e93�e104. Published by Elsevier Inc. on behalf of American Journal of Preventive
Medicine. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

INTRODUCTION

Accurate assessment of dietary intake (DI) and
physical activity (PA) is essential for quality
research in the fields of public health, nutrition,

and exercise science. However, consistent and accurate
estimation of both remains one of the largest challenges
in these fields. Several subjective and objective measures
of DI and PA assessment exist, each with its own limita-
tions and biases.
Capture of DI in healthy adult populations is intricate

and multidimensional, thus making accurate quantifica-
tion challenging. DI is traditionally assessed using
self-report measures, including food frequency question-
naires (FFQs), diet records, and recalls.1�3 Such self-report
measures have been shown to underestimate energy intake
by approximately 11%�35% (more prevalent among

obese individuals) compared with direct measures like
doubly labeled water.4�7 Reporting error that includes
bias, also known as systematic error, misestimation, and
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random error, and error related to nutrient databases for
foods being reported are a few of the current criticisms
that have questioned the adequacy of self-report DI meas-
ures as the basis for scientific conclusions regarding the
link between DI and health.8�11 From the findings in stud-
ies with doubly labeled water, researchers have suggested
that self-report measures should not be used to estimate
energy intakes, but that they are useful to estimate usual
intakes of other nutrients and food groups and their densi-
ties, inform nutrition policy, and assess diet and disease
associations.12 Several recent reports suggest that investi-
gators should work to improve and apply newer methods
of DI assessment suitable for use in free-living individuals,
such as biomarkers,4,13,14 remote sensing devices,15,16 or
digital photography,17 rather than continue to rely solely
on self-report methods.
PA is typically assessed using both self-report meas-

ures and devices. Self-report measures of PA include
administration of questionnaires and completion of
detailed diaries or logs. Device-based measures include
motion sensors, such as accelerometers, pedometers,
heart rate (HR) monitors, and multisensor devices.18

Because of the complex and multidimensional nature of
PA, precise quantification can be difficult.19 Improve-
ment and innovation are needed to provide low-cost,
accurate measures of PA for use in both large and small
samples of free-living healthy adults.
The use of technology for individualized DI and PA

assessment has expanded rapidly over the past deca-
de.20�24 Although technology has brought about some
advances in diet and PA assessment methodology, many
limitations and challenges remain. The purpose of this
paper is to review the current science and challenges in
the assessment of DI and PA for healthy adults and to
identify current gaps and future needs.

DIETARY INTAKE ASSESSMENT

Methods of DI have been assessed using several objective
and subjective tools, each with its inherent strengths and
limitations. Selection of the right tool for use in research
varies, depending on the study design, nutrients of inter-
est, target population, and economic and time resources
available. Some caution the adequacy of self-report DI
measures as the basis for scientific conclusions regarding
the link between DI and health outcomes.8�10 However,
traditional DI assessment measures (FFQs, diet records,
and recalls) remain the mainstay in the field based on
their cost and familiarity, as well as lack of consensus
among more objective methods capable of providing the
complex output required. Although these measures may
be criticized for not being precise, such data remain use-
ful for population guidance in maintaining healthy

eating practices, comparison across populations, inform-
ing nutrition policy, and elucidating the associations
between diet and disease.12 Additional information on
traditional DI methods and the controversy can be
found in recent reviews by Farshchi et al.,25 Dhurandhar
and colleagues,9 Archer et al.,10 Shim and colleagues,26

and Kirkpatrick et al.27 Additionally, researchers are
encouraged to utilize the Dietary Assessment Primer by
National Cancer Institute (NCI) to help them determine
the best way to assess diet for any study in which esti-
mates of group intakes are required.28

Current Dietary Intake Technology
Recent advances in technology have led to the develop-
ment of several automated dietary assessment tools that
have overcome some limitations of the traditional sub-
jective tools, while striving to meet time and cost effi-
ciency. Although modern DI methods are attractive,
researchers should consider that these methods often do
not differ in errors associated with underreporting and
reactivity as compared with traditional methods. Cur-
rent examples of modern methods include automated
24-hour recalls and food records,29,30 automated and
graphic FFQs, photo-assisted dietary assessments
(PADAs),31�38 and image-based dietary assessments
(IBDAs).39�45 Table 1 summarizes the current and
emerging DI assessment tools using technology.
The NCI introduced a modified version of the U.S.

Department of Agriculture’s Multiple-Pass 24-Hour
Recall Method enabling 24-hour recalls to be self-admin-
istered by a respondent (ASA24) and used over multiple
days as a food record.46 Multiple versions (i.e., lan-
guages) have since been released and are detailed else-
where.47 The ASA24 improves on the limitations of
traditional 24-hour recalls, including lack of reliance on
trained interviewers, reduced time and economic burden
to the researcher, and reduced respondent burden.48

Because of the need for a high-speed Internet connection
and familiarity with Internet or web-based tools, the use
of the ASA24 may be limited in some populations.
In an effort to limit the issues with paper-based tra-

ditional FFQs,49 a number of innovative web-based
self-administered FFQs have been developed to auto-
mate the tool, such as the NCI Block questionnaire
developed by Nutrition Quest,50 NCI’s Diet History
Questionnaire (DHQ) III,51 and the Fred Hutchinson
Cancer Research Center FFQ.52 All are web based and
contain 100 or more questions on food items, purchas-
ing, and preparation, with variations in layout design
and analysis (e.g., food lists and databases) with NCI’s
DHQ III free for use by researchers. A novel alterna-
tive, VioScreen, offers a graphical FFQ option that
addresses limitations of traditional FFQs by utilizing
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Table 1. Summary of Current DI Assessment Tools Using Technology

Method/ tool Outcome measure Appropriate population Attributes Limitations Validity Research gaps References

PADA Researcher-defined nutrient

output, such as energy intake,

nutrient intake, food groups,

and individual foods

Individuals and small

groups

DLW validation; includes

objective measure plus self-

report

Participant burden to collect

photos; researcher burden

for post-analysis; self-report

measure may not suitable for

low-literacy populations

Estimate of energy intake

¡8.8% to 6.8% error

compared to DLW

Automated post-analysis to

include large food database

31�38

IBDA Energy intake and volume

estimates

Individuals and small

groups; laboratory data

collection

Low participant burden;

no self-report

Data storage; high error

rates or not validated to

estimate energy/nutrient

intake; ethical issues

Underestimated energy

intake by »23% compared

to DLW; mean portion size

difference compared to

seed displacement is �5%

§ 21.1%

Automatic analysis of data

can estimate volume and

requires food density to

convert to nutrient intake;

most food-nutrient databases

lack density values

39�45

Automated

24-hour recall/

food record

Short-term DI, including energy

intake, nutrient intake, food

group, and individual foods;

provides indicators of overall

diet quality

Individuals, small

groups, and large

groups

Self-administered; eliminates

the need for an interviewer

and coding of intakes;

captures short-term diet;

accessible by individuals

using assistive technologies,

such as screen readers; uses

images to assist respondents in

reporting portion size

Restricted to populations

with access to computers,

high-speed Internet, and

familiarity with web-based

tools; not suitable for low-

literacy populations

Underreporting of energy

intake »11% to 35%

compared to DLW; 72% of

items consumed were exact

or close matches to

reported; use to obtain food

record data has not been

evaluated

Accurately reports energy

intake in normal-weight

subjects; however, research is

warranted to enhance its

accuracy in overweight and

obese individuals

8, 46�48

Automated FFQ Frequency and portion size of

foods and beverages consume

over a long-term period; can also

be used to assess usual DI or

particular aspects of diet,

including food groups and

individual foods

Individuals, small

groups, and large groups

Self-administered; low cost;

low researcher burden;

captures long-term diet

(months); not affected by

reactivity

Not suitable for low-literacy

populations; restricted to

populations with access to

computers; limited

application among ethnic

populations due to its finite

list of foods and beverages;

poor measure of energy

intake and some

micronutrients with variable

preparations; not useful for

estimating a population’s
intake

Underestimated energy

intake by 24% to 33%

compared to DLW

Diverse food list/nutrient data

for more universal use

49�52

(continued on next page )
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Table 1. Summary of Current DI Assessment Tools Using Technology (continued)

Method/ tool Outcome measure Appropriate population Attributes Limitations Validity Research gaps References

Graphic FFQ Frequency and portion size of

foods and beverages consumed

over a long-term period; can also

be used to assess usual DI or

particular aspects of diet

including food groups and

individual foods

Individuals, small groups,

and large groups

Improved DI and dietary

pattern assessment through

the use of improved portion

size estimation via food

images; self-administered; low

cost; low researcher burden;

uses branching logic to reduce

completion time; captures

long-term diet (months); not

affected by reactivity

Not suitable for low-literacy

populations; restricted to

populations with access to

computers; limited

application among ethnic

populations due to its finite

list of foods and beverages;

poor measure of energy

intake and some

micronutrients with variable

preparations; not useful for

estimating a population’s
intake

Compared to traditional

FFQs, nutrient correlations

are 0.90 for alcohol, 0.84 for

saturated fat, 0.82 for fat,

0.79 for carbohydrate, and

0.67 for protein

Diverse food list/nutrient

data for more universal use

53,54

Smart kitchen

(e.g., plates,

tables)

Researcher-defined nutrient

output; frequency and portion

size of foods and beverages

consumed over a long-term

period

Individuals and small

groups; laboratory or

home-based data

collection

Reduced participant burden;

streamlined researcher

collection and analysis

Limited eating environments;

strength of nutrient data is

dependent on database

used for coding

Validity based on quality of

inputs, including weights,

images, and sensor-based

data; nutrient database

selection

Use in real time; development

of enhanced computer vison

systems; validation studies

55,56

UPC or grocery

store purchase

data

Nutrients limited to food label;

foods and beverages

purchased over a long-term

period

Large populations, as an

adjunct to mobile apps

Ease of collection, time

efficient, and minimal

training of participants

Data are of food purchases

and not consumed intake

(DI assumed); large amount

of data; individualized DI

difficult to interpret;

nutrients limited to food

label (some missing nutrient

data); privacy concerns

Association of foods

purchased to food group

mapping: 77%�100%;
agreement between UPC

scanned data home food

inventory: »95%

Real-time data use and

feedback; accountability for

waste; validation studies;

database use transparency

57,58

Body-worn

monitors

Time and duration of

food intake; meal

microstructure; estimates of

mass and energy; food imagery

Individuals and small

groups

Potential ease of data

collection; no self-report in

some methods; potential

use in just-in-time

interventions

Not well tested (yet); sensors

may not detect certain foods;

the nutritional value of

ingested foods is not

measured directly; stigma to

wearing the device; personal

privacy of bystanders

Up to 90.1% accurate at

identifying when a person is

consuming food

Large-scale validation across

populations and

environments

59�67

DI, dietary intake; DLW, doubly labeled water; FFQ, food frequency questionnaire; IBDA, image-based dietary assessment; PADA, photo-assisted dietary assessment; UPC, Universal Product Code.
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branching questions (i.e., avoids lost data and limits
respondent burden) and offers multiple photographs
for each food item to accurately capture serving size
(i.e., avoids need for respondents to calculate DI into a
standard serving size).53,54

PADAs, in which images of food selections and any
food remaining after the meal are used to estimate DI,
may provide an efficient, unobtrusive method for DI
assessment in large groups of free-living individuals.
PADAs have been utilized to assess DI in military
recruits during basic training,31,32 young adults,33,34

individuals with disabilities,35,36 and overweight and
obese women.37 PADA methods include traditional
methods (photo match to weighed food standard),38 as
well as technological advancements with remote food
photography37 and digital photography plus recall,34

both validated to direct energy measures (e.g., doubly
labeled water) under different environmental and popu-
lation extremes. PADA is limited by a lack of full auto-
mation for nutrient analysis after photo capture and the
quality of the nutrient database used in analysis.
IBDAs are a technique in which images of food selec-

tions and any food remaining after the meal are used to
estimate DI. Unlike PADA, IBDA image capture is pas-
sive (e.g., automatic from the device) and relies on the
captured images as the main source of information with
input from the user only for verification.39 Updated ver-
sions of IBDAs have combined with automated food
identification and portion size estimation software, as
well as user prompts, in an attempt to accurately assess
DI. Examples include the Nutricam Dietary Assessment
Method,40 the eButton,41 and the Technology-Assisted
Dietary Assessment system.42�44 Most advanced is the
mobile food intake visual and voice recognizer,45 which
incorporates mobile phone food photography methods
using image recognition with speech recognition and
physical location (mobile phone accesses to a GPS).
Although IBDA minimizes participant and researcher
burden during data collection, the amount of data
influx is vast and requires further work to streamline
data cleaning and analysis for efficient researcher/user
feedback.

Emerging Dietary Intake Technology
One of the largest areas of technological growth is in
sensors for DI assessment.55 A majority of technologies
are geared toward the consumer and have inherent flaws
(per the research community), whereas others are in
their infancy and show potential with future improve-
ments and testing.
In an effort to improve data accuracy and partici-

pant burden, some techniques and tools aim to iden-
tify foods and portions consumed through the

automation at the point of sale or food preparation
(e.g., the kitchen). Ease of capturing Universal Product
Codes57 and Global Trade Item Numbers with hand-
held scanners or smartphones enables the correct item
type to be properly linked with serving size and nutri-
tion information at the time of consumption.58 Alter-
natively, use of grocery store receipts (e.g., data
capture) is an attractive option to minimize partici-
pant burden with direct feed into a food record for
timely DI assessment (e.g., eliminate matching food
type and brand consumed with specific database
item). Traditional portion size estimation methods use
standardization tools, cards, or even anatomical meas-
ures (e.g., the user’s thumb) as a reference for
improved accuracy of written DI assessments or
PADAs.55 Preliminary studies have looked at the use
of smart kitchen equipment (e.g., plates, bowls, and
tables) capable of recording food weight (with or with-
out plates) before and after meal consumption.56

Wearable sensors offer automated capture of food con-
sumptions through hand-to-mouth gestures,59,60 modality
of chewing (e.g., microphones to detect food crushing,61

electromyographic sensors to detect muscle activations,62

or strain and acceleration sensors to capture the chewing
motion63), or swallowing frequency.64�66 Chewing moni-
tors have been shown to be reliable indicators of ingestion
in community-dwelling individuals.16 Of interest, chew
counts show good correlation to ingested food mass.67

However, they may be prone to false detections (e.g.,
because of gum chewing) and may not detect all liquids,
although consumption of certain liquids (e.g., sucking
through a straw) creates jaw motion similar to chewing
and thus may potentially be detected. Swallowing has
been shown to be one of the most reliable indicators of
DI, as any food requires swallowing to contribute to nutri-
tion. Consumption of both solid and liquid foods mani-
fests as an increase in swallowing frequency64 over
spontaneous non-nutritive swallowing. Swallowing sen-
sors include microphones,65 electrical sensors, or motion
sensors.66 The frequency of swallowing may be used to
differentiate consumption of solids and liquids,64 and the
count of swallows per meal may serve as an indicator of
the amount consumed.67 In general, a significant strength
of the sensor-based approaches is that in most (not all) of
these, the food intake can be detected automatically, with-
out self-report. However, the technology behind sensor
devices is new and most have not been thoroughly tested
and validated for use in community-dwelling individuals,
and there is concern that wearing the device may cause
some reactivity bias. Furthermore, sensor devices can only
detect the total amount of food ingested and are unable to
identify types of foods, portion sizes, nutrient composi-
tion, or energy intake.55,68
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Other sensor- and informatics-based research tools
have been developed to determine food type and nutri-
tional composition, for example, food classification-based
acoustical sensing,61 use of miniaturized hand-held (near-
infrared) spectrometers that can scan food items and
determine characteristic food matrix properties,69 or
recent miniaturized tooth-mounted sensors capable of
detecting nutrients and wirelessly communicating to a
mobile device.70 Such technologies are still under research
and development at this time, and many require support
of comprehensive nutrient databases to support the tech-
nology and methodology to assess portion size.

PHYSICAL ACTIVITY ASSESSMENT

Similarly to DI, the assessment of PA can be measured
through self-report or device-based techniques.18,19

Researcher-selected PA methods and tools are influ-
enced by cost, participant burden, sample size, collection
time frame, type of information required (e.g., steps,
counts, energy expenditure [EE]), data management,
and measurement error.71,72 The following section pro-
vides a brief overview of PA assessment tools. Additional
information can be found in recent reviews by Ains-
worth and colleagues,18 Sylvia et al.,73 Welk and col-
leagues,74 and the Physical Activity Resource Center for
Public Health (www.parcph.org/). PA assessment tech-
niques are summarized in Table 2.

Device-Based Physical Activity Assessment Tools
Research grade devices. Triaxial accelerometers, such as
the ActiGraph wGT3X-BT, measure PA volume and
intensity. They are commonly worn on the wrist or hip,
with the hip location providing better accuracy.80�83

The major strength of accelerometers is their ability to
collect large amounts of data and measure intensity level.
Limitations include expense and the inability to provide
contextual information. Furthermore, data collection
protocols (e.g., hip versus wrist placement, waking-hour
versus 24-hour registration period) and data analysis
approaches (e.g., non�wear-time definition, cutpoints
for intensity classification) vary, making it very difficult
to compare across studies.84 Researchers have tradition-
ally used “activity counts” to classify PA as light, moder-
ate, or vigorous intensity, but the field is shifting to
activity characterization from raw acceleration sig-
nals.85,86 Lastly, researchers are working to improve the
ability to analyze data from wrist-worn devices,83,87,88

which may improve compliance.85 For an extensive dis-
cussion of considerations when using accelerometers,
see the 2017 review by Migueles et al.84

The activPAL is a particularly useful device for
researchers interested in sedentary behavior.108,109 The

activPAL is affixed to the thigh, which makes it uniquely
capable of assessing postures (e.g., sitting versus stand-
ing). The device also measures step cadence and number
of steps, therefore allowing activity to be classified as sit-
ting, standing, or stepping. There is promising evidence
that the activPAL can also accurately classify PA intensi-
ties.110,111 For an extensive discussion of considerations
when using the activPAL, see the review by Edwardson
and colleagues.89

HR monitors are used in laboratory settings to assess
exercise activity, intensity of the activity, and EE of activ-
ity90,91 due to the direct and linear relationship between
HR and oxygen consumption.92 Recently, HR monitor-
ing has been combined with accelerometry to more
accurately account for the predictive power of HR at rest
and during light activity in EE estimates.93

GPS units enable collection of altitude, longitude, lati-
tude, speed, distance traveled, and elevation data.94,95

Commercial GPS units can be accurate up to 15�20
meters; however, the clarity of the device signal to the
satellites is crucial, affecting sample rates and signal
validity.96,97 Compared with accelerometers, GPS units
significantly underestimate PA (i.e., EE).98 There have
been suggestions to use GPS in combination with HR
monitors and accelerometry.97,99

Multisensor devices utilize multiple physiological and
mechanical sensors in combination to improve precision
of PA and EE measurements. For example, the Sense-
Wear armband is worn on the upper arm and incorpo-
rates triaxial accelerometry, heat flux, galvanic skin
response, skin temperature, and near-body ambient tem-
perature to accurately determine when the device is
being worn (i.e., a major consideration with traditional
accelerometers).100 These measures, in combination
with entered data, enable accurate estimation of EE,
minutes of activity, and sleep.101�105 However, Jawbone
Inc. acquired BodyMedia in 2013 and discontinued sup-
port of the SenseWear armband. Thus, this device is no
longer available for purchase. Another device, the Intelli-
gent Device for Energy Expenditure and Activity, incor-
porates five sensors (chest, right and left thighs, and
right and left legs) connected to a digital recorder that
allows identification of 32 different activities and body
postures for estimation of PA level and accurate
EE.106,107

General-Use Devices
Pedometers are simple devices that measure steps. They
are inexpensive and useful in assessing behavioral feed-
back and motivation.118 Pedometer accuracy has
improved with transition into microelectromechanical-
based systems112 specifically with measurements more
than 2 mph.112�115 Pedometer output can vary
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Table 2. Summary of Device-Based PA Assessment Tools

Method/tool

Appropriate

populations Outcome measure Attributes Limitations Validity Research gaps References

General-use

wearables (Fitbit,

Garmin, Apple)

Large population;

behavior change within

individuals

EE Popular; ease of collection

and data upload (wireless);

large amounts of data

collected

Not a valid measure of TEE;

underestimates free-living

EE; overestimates PAEE;

algorithms change with updates;

not designed for research; cost

to obtain data

Correlation between

consumer activity monitors

and accelerometers for sleep

count and step count, r >0.8;

for TDEE, r =0.74 to 0.81; and

MVPA, r=0.52 to 0.91

More accuracy

research is needed

75�79

Accelerometers Large populations Minutes of physical

activity, intensity

Commonly used in research

settings and by NHANES;

ability to collect large

amounts of data

Expense; inability to provide

contextual information; data

collection protocols (e.g., hip vs

wrist placement, waking-hour vs

24-hour registration period) and

data analysis approaches (e.g.,

non-wear-time definition, valid

day criteria, cutpoints for

intensity classification) vary,

making it very difficult to

compare across studies using

accelerometry

Correlations between daily

PAEE and activity counts for

the hip-worn ActiGraph range

from r =0.77 to 0.90;

compared to wearable

cameras measuring PA, hip-

worn accelerometers had

89.4% accuracy and wrist-

worn accelerometers had

84.6% accuracy

Lack of consensus

regarding data

processing

80�88

GPS Large populations;

outdoors

Distance and speed Ideal use outdoors (free-

living walking and running)

or field testing

Underestimates EE for field

activities; not a standalone

measure for EE; not appropriate

for indoor activities; issues with

battery life

Compared to accelerometers,

GPS underestimates EE by

42% to 50%

Stronger association

with EE measure

(accelerometer use)

89�95

HR monitor Supervised exercise HR, activity intensity Direct measure, high

validity to clinical measures

Uncomfortable when worn

for long periods of time;

not a valid estimate of EE at

rest; must have an HR-O2

consumption curve for each

person to measure their

intensity; TDEE is hard to

predict because daily HR is not

linear

During PA, EE error rates are

<3% compared to whole-

room calorimetry; however,

when doing light or sedentary

activity, they have poor

predictive power in terms of

EE

Improved estimates

of TEE

96�99

(continued on next page )
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according to location worn (e.g., the ankle is the most
accurate placement)114,116 or among individuals (e.g.,
foot-strike variability).117

Recently, commercial off the shelf (COTS) activity
trackers from Fitbit, Garmin, and Apple have exploded
onto the consumer market.75 These newer devices use
advanced technologies allowing expansion of monitoring
capabilities (e.g., accelerations, HR, EE, and sleep) and
are able to transmit and store PA data to smartphones,
computers, and cloud-based storage. New devices and
algorithm updates are released frequently with expanded
capability to detect posture changes and type of activity
for more accurate and precise estimates of EE. These
wearables provide health data that are instantly available
to the consumer through a smartphone application.
Such wearable devices employ multiple engagement
strategies to make them more attractive and interactive
for the individual.76

Popularity in the marketplace has led to more research
in the past 3�5 years to validate accuracy and reliability
of EE for COTS wearables compared with more tradi-
tional measures, such as the ActiGraph.76�78,111 Com-
pared with EE measured by doubly labeled water, COTS
wearables underestimated EE in free-living, normal-
weight men and women aged 21�50 years.79

Other limitations to using COTS wearables for EE
assessment in research include the lack of transparency
of cutpoint data and algorithms used to calculate activity
intensity and EE. Data management can also become
overwhelmingly expensive, and many companies employ
a third party to clean and organize the data. COTS wear-
ables were not developed to be research grade; therefore,
inclusion of third-party sites for data management
makes it difficult for researchers to obtain required data
necessary for analysis.

CONCLUSIONS

Accurate measurement of DI and PA is needed for both
population- and intervention-based assessments.
Although there are many limitations to the measure-
ment of DI and PA, there is progress and promise for
using technology to improve these measures. Managing
the current knowledge base and facilitating a resource
center for new technology integration are key to the
future success of accurate DI and PA measures through
device-assisted methods.
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