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of HYAL2 deficiency

A R T I C L E I N F O

Article history:
Received 20 June 2021
Revised 3 September 2021
Accepted 21 October 2021
Available online 30 November 2021

Keywords:
Congenital heart disease
Facial dysmorphism
Hyaluronidase
Myopia
Orofacial clefting

A B S T R A C T

Purpose: We previously defined biallelic HYAL2 variants causing a novel disorder in 2 families,
involving orofacial clefting, facial dysmorphism, congenital heart disease, and ocular abnor-
malities, with Hyal2 knockout mice displaying similar phenotypes. In this study, we better
define the phenotype and pathologic disease mechanism.
Methods: Clinical and genomic investigations were undertaken alongside molecular studies,
including immunoblotting and immunofluorescence analyses of variant/wild-type human
HYAL2 expressed in mouse fibroblasts, and in silico modeling of putative pathogenic variants.
Results: Ten newly identified individuals with this condition were investigated, and they were
associated with 9 novel pathogenic variants. Clinical studies defined genotype–phenotype
correlations and confirmed a recognizable craniofacial phenotype in addition to myopia, cleft
lip/palate, and congenital cardiac anomalies as the most consistent manifestations of the
condition. In silico modeling of missense variants identified likely deleterious effects on
protein folding. Consistent with this, functional studies indicated that these variants cause
protein instability and a concomitant cell surface absence of HYAL2 protein.
Conclusion: These studies confirm an association between HYAL2 alterations and syndromic
cleft lip/palate, provide experimental evidence for the pathogenicity of missense alleles, enable
further insights into the pathomolecular basis of the disease, and delineate the core and variable
clinical outcomes of the condition.
© 2021 The Authors. Published by Elsevier Inc. on behalf of American College of Medical

Genetics and Genomics. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Introduction

We first identified abnormalities in HYAL2 function
through studies of a novel syndromic form of orofacial

clefting in 5 Amish and 2 Saudi Arabian individuals1

associated with 2 distinct homozygous HYAL2 missense
variants. Affected individuals displayed a remarkably
consistent pattern of craniofacial dysmorphism involving
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bilateral/unilateral cleft lip and palate, penetrant in all but 1
Saudi Arabian child, along with more variable features,
including congenital cardiac anomalies (cor triatriatum
sinister), myopia with staphyloma, cataract, conductive/
sensorineural hearing loss, pectus excavatum, and single
palmar creases. Consistent with the human condition,
Hyal2–/– mice displayed similar craniofacial abnormalities
with submucosal cleft palate, and in a proportion of mice,
cor triatriatum sinister and hearing loss were identified.1 To
date, no further affected individuals have been described.

HYAL2 is a cell-surface protein proposed to act as a
hyaluronidase enzyme in concert with HYAL1, the other
major mammalian hyaluronidase acting in somatic tissues,
catalyzing the degradation of the high molecular weight
glycosaminoglycan polymer hyaluronan.2,3 Hyaluronan, a
core constituent of the extracellular matrix, plays key roles
in early development by providing the basement membrane
for epithelial tissue formation.4-6 Hyaluronan is also a crit-
ical component of the developing heart and palatal shelf
matrix,7-9 alongside important roles in other specialized
tissues, including the vitreous humor of the eye10 and sy-
novial fluid of synovial joints.11 HYAL1 alterations are
associated with mucopolysaccharidosis type IX (OMIM
601492), which is characterized by short stature, craniofa-
cial dysmorphism, submucosal cleft palate, and joint ab-
normalities.12 The potential parity between HYAL2 and
HYAL1 disruption supports the importance of maintained
hyaluronan modeling for normal craniofacial and palatal
shelf development. In this study, we describe the clinical,
genetic, and molecular findings associated with putative
HYAL2 pathogenic variants in 10 individuals from 6 fam-
ilies of Amish, Romanian, Italian, and North European
ancestry.

Materials and Methods

Patient ascertainment and genetic studies

Affected individuals were identified by their clinician and
using GeneMatcher (Baylor-Hopkins Center for Mendelian
Genomics - https://genematcher.org, accessed June 15,
2021). Phenotypic information was obtained by the clinical
care provider using a targeted questionnaire with informed
consent. DNA was extracted from blood/buccal samples
using standard techniques for exome/genome sequencing.
Variants with <5 reads, a frequency of >1% in the Genome
Aggregation Database (gnomAD, Broad Institute) v2.1.1
and/or in-house databases were excluded. Exonic or intron/
exon boundary (±6 nucleotides of the splice junction) de
novo, homozygous, or compound heterozygous variants
were evaluated and prioritized by call quality, allele fre-
quency (minor allele frequency), inheritance pattern, and
predicted functional consequence as previously described at

Baylor College of Medicine (Individual 2; research trio
exome sequencing),13 Ospedale Pediatrico Bambino Gesù
(Individual 3; research trio exome sequencing),14-16 Chil-
dren’s Mercy Kansas (Individual 4; research trio genome
sequencing),17 GeneDx (Individual 6; diagnostic exome),18

Children’s Hospital of Philadelphia (Individual 7; research
trio exome sequencing),19 and through the 100,000 Ge-
nomes Project (Individual 8; research trio genome
sequencing, with gene-agnostic variant filtering) (see
Supplemental text).20 Cosegregation studies were under-
taken using dideoxy DNA sequencing (Supplemental
Figures 1 and 2). HYAL2 variants were deposited in Clin-
Var (SCV001572828-SCV001572838). For additional de-
tails about variant filtering methodologies, see Supplemental
Data.

Structural analyses

X-ray diffraction or nuclear magnetic resonance–derived
structures of human HYAL2 (Q12891) were sought in
UniProt and the Protein Data Bank to identify the 3-
dimensional geometry and protein/substrate interactions
of HYAL2 pathogenic missense variants, but no structures
were found. Consequently, HYAL2 homologues were
sought using the Basic Local Alignment Search Tool-
Protein to identify a human HYAL1 (Q12794) structure
(2PE4) with 43% sequence identity, including complete
concordance in all HYAL2 putative pathogenic missense
residues and >50% identity in a region surrounding the
clustered missense variants (amino acids 130-280)
(Supplemental Figure 3). A homology model (https://
swissmodel.expasy.org/, accessed June 18, 2021) was
visualized and annotated using Pymol 2.3 (Schrödinger
LLC, 2019). Seven residues, previously shown to be
critical for HYAL1 catalytic function, and identical in
HYAL2, were annotated onto this model to highlight the
probable enzymatic active site.21 We then modeled each
HYAL2 amino acid substitution individually (FoldX5) to
identify local predicted conformational changes that might
perturb protein folding.22 Residues of interest were
examined using PhosphoSitePlus (www.phosphosite.org,
accessed June 15, 2021) to identify post-translational
modifications.

The 8 putative pathogenic missense variants appeared
clustered in 3-dimensional space (Supplemental Figure 4A)
around the active site of HYAL1 (Supplemental Figure 4B).
To quantify this, the mean (Euclidean) distance between
amino acid substitutions was calculated using the spatial.-
distance function (SciPy, Python 3). The mean Euclidean
distance for this cluster of 8 variants was the mean of each
pairwise comparison. A comparative distribution was
derived by calculating the mean Euclidean distance of 8
randomly selected residues from the same model over
20,000 iterations (Supplemental Figure 4C).
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Plasmid recombinant constructs for variant
functional studies

Putative pathogenic HYAL2 variants (NM_003773.4:
c.713T>G, c.611G>C, c.1271_1272delAC, c.194C>G,
c.1273T>G, c.829C>T, c.883C>T) were introduced into
the HYAL2 complementary DNA expression vector
pCMV6-XL5 by fusion polymerase chain reaction (PCR) to
construct chimeric clones. Complementary primers speci-
fying single-nucleotide variant substitutions or a deletion
(Supplemental Table 1) were used in combination with outer
primers (5′-atgcgggcaggcccaggccccacc-3′, forward; 5′-
gctacaaggtccaggtaaaggcca-3, reverse) to generate HYAL2
variants using Phusion High-Fidelity DNA Polymerase
(New England BioLabs). PCR fragments were gel-purified
and used as a PCR template using the outer primers for
restriction digestion, and pCMV6-XL5 vector used for gel-
purification, ligation, and transformation into electro-
competent DH5α E. coli.23 Positive clones were cultured
and plasmids were extracted and verified (dideoxy
sequencing) at the Toronto Centre for Applied Genomics. A
wild-type (WT) HYAL2 vector with a 5′ deletion that does
not express HYAL2 comprised the negative control.

Human HYAL2 expression analysis

HYAL2 transient expression (4.0 μg plasmid) was performed
in Hyal2–/– mouse embryonic fibroblasts using TurboFect
reagent (Thermo Fisher Scientific) in 6-well plates followed
by immunoblot, immunofluorescence, or phosphoinositol-
phospholipase C (PI-PLC) analysis. For immunoblotting,
cells were collected 48 hours after transfection, washed with
cold phosphate-buffered saline (PBS), and lysed (sonicat-
ion). HYAL2 was detected by immunoblotting with rabbit
anti-HYAL2 antibody (Proteintech AP-15115) and anti-
rabbit horseradish peroxidase secondary antibody. Signals
generated (Immobilon Western Chemiluminescence Kit,
Millipore) were detected on a ChemiDoc imager (Bio-Rad
Laboratories) with equal loading verification (β-actin).

For immunofluorescence, transfected cells were replated
onto coverslips at 24 hours with HYAL2 detected in per-
meabilized and/or processed unpermeabilized cells (48
hours). Cells were washed (PBS), incubated (1% bovine
serum albumin/PBS, 1 hour), and labeled (rabbit polyclonal
anti-HYAL2 antibody, 1:250, 15115-1-AP; ProteinTech) for
2 hours at room temperature before detection (Alexa Fluor
568-conjugated donkey anti-rabbit secondary antibody,
1:500, A10042; Life Technologies) and Hoechst dye 33342
staining and imaging (Axio Imager.Z2, 63×/1.4NA oil
objective).

To detect glycosylphosphatidylinositol (GPI)-anchored
cell surface hHYAL2 at 48 hours after transfection, the
entire population of cells in a transfected confluent well of a
6-well plate was washed (PBS ×2) and incubated (37 ◦C, 2
hours) with 0.5 U/mL PI-PLC (Sigma-Aldrich, P-5542)
in serum-free Dulbecco’s Modified Eagle Medium

supplemented with 25 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid pH 7.4 (0.5 mL/well with
gentle rocking). The medium from each well was collected
and concentrated (Biomax 0.5 mL spin concentrators) for
use as single samples. Sample proteins were separated
(sodium dodecyl sulfate–polyacrylamide gel electropho-
resis) and PI-PLC released cell surface HYAL2 was
detected by immunoblotting.

Results

Clinical and genetic findings

Table 1 summarizes the core phenotypic features of 10
individuals (2 Amish) aged 0 to 20 years with HYAL2
deficiency syndrome, alongside 7 individuals from Mug-
genthaler et al1 shown for comparison (Supplemental
Table 2) (full clinical synopsis for each proband/family
provided in Supplemental Data). Affected individuals share
distinctive craniofacial similarities, including frontal boss-
ing, hypertelorism, a broad and flattened nasal tip, and
cupped ears with superior helices (Figure 1). Other common
but variable clinical features included cleft lip and palate
(both unilateral and bilateral); congenital cardiac anomalies,
including valvular, atrial/ventricular septal defects; ocular
features, including mild to severe myopia and cataracts;
single palmar crease; and pectus excavatum.

In each newly reported affected individual, genomic
studies (see Supplemental Data for description) identified
pathogenic or likely pathogenic homozygous or compound
heterozygousHYAL2 variants as a likely cause of disease (for
full American College of Medical Genetics and Genomics/
Association of Molecular Pathology classifications refer
to Supplemental Table 3). In Individuals 1 and 2, the
pathogenic Amish HYAL2 founder variant (Chr3
[GRCh38]:g.50320047T>C, NM_003773.4:c.443A>G; p.
[Lys148Arg]), defined in our previous studies1 and with an
allele frequency of 0.6% in the Anabaptist variant server
comprising >10,000 exomes, was identified (Supplemental
Figure 1). The homozygous Amish founder MTPAP variant
(Chr10[GRCh38]:g.30313926T>C, NM_018109.3:c.1432
A>G; p.[Asn478Asp]), marked as pathogenic by ClinVar
(VCV000018391.1) and known to cause mild-moderate
developmental delay, optic atrophy, and spastic ataxia, was
also identified in Individual 2, likely explaining these
phenotypic features.24 Compound heterozygous novel path-
ogenic missense and nonsense HYAL2 variants were identi-
fied in Individual 3 (Chr3[GRCh38]:g.50319661G>A,
NM_003773.4:c.829C>T; p.[Arg277Cys], Chr3[GRCh
38]:g.50319607G>A, NM_003773.4:c.883C>T; p.[Arg
295*]). In siblings, Individuals 4 and 5, compound hetero-
zygous pathogenic nonsense and missense HYAL2 variants
were identified (Chr3[GRCh38]:g.50320296G>C, NM_
003773.4:c.194C>G; p.[Ser65*] Chr3[GRCh38]:g.503
18278A>C, NM_003773.4:c.1273T>G; p.[Phe425Val]).

J. Fasham et al. 633



Table 1 Clinical features of affected individuals with HYAL2 deficiency
Individual 1 2 3 4 5

Genotype p.(Lys148Arg) |
p.(Lys148Arg)

p.(Lys148Arg) |
p.(Lys148Arg)

p.(Arg277Cys) |
p.(Arg295*)

p.(Ser65*) |
p.(Phe425Val)

p.(Ser65*) | p.(Phe425Val)

Ethnicity, Sex, Agea Amish, F, 13.8 y Amish, M, 9.4 y Italian, M, 19 y North European, F,
died 10 mo

North European, M, died 10 d

Height, cm (SDS)b 152.5 (–0.93) 124.5 (–1.83) 163.5 (–1.75) 53 (+1.42) 51 (+0.23)
OFC, cm (SDS)b 55.5 (+0.51) 54.2 (–0.07) 53.7 (+0.51) 33.5 (–1.32) 35.5 (+0.23)
Broad nasal bridge ✓ ✓ ✓ ✓ ✓

Hypertelorism ✓ ✓ ✓ ✓ ✓

External ear abnormalities ✓ Small, overfolded
thickened helices

✓ Small, overfolded
thickened helices

✓ Small, overfolded
thickened helices

✓ Small, low set,
small lobule, R ear pit

✓ Low set, cupped, thick
helix, prominent tragus

Cleft lip/palate ✖ ✖ ✖ ✓ R CLP ✓ R CLP
Micrognathia ✓ ✓ ✖ ✓ ✓

Frontal bossing ✓ ✓ ✖ ✖ ✓

Ptosis ✖ ✖ ✓ ✖ ✓

Cardiac anomalies ✓ Mild AS and AR ✖ ✓ CoA and VSD ✓ VSD, ASD, PDA, PHTN ✓ Complex
Pectus excavatum ✖ ✓ ✓ ✖ ✖

Single palmar crease ✓ ✓ ✖ ✖ ✓

Myopia (refraction) ✓ Mild NK ✓ Severe ✓ Mild NK
Cataract ✖ ✖ ✓ Bilat. NK NK
Other ocular features Poor vision Myopic maculopathy, RD PPM R VH
Hearing loss ✖ ✖ ✖ ✖ ✓Failed NBHS on L side
Duodenal web NK NK NK ✓ NK
Other clinical findings Broad halluces, broad

and distally
placed thumbs

Ataxia, mild/moderate developmental delay,
broad halluces broad thumbs

Accessory oral frenulum
low posterior hairline
Short, webbed neck

Broad deviated thumbs,
hypoplastic nails, prominent
creases, bilat. extrarenal
pelvises, congenital
diaphragmatic hernia,

glabellar capillary nevus,
cystic hygroma

Cystic hygroma at 11 wk,
hydrops, hypoplastic

nails, small penis, bilateral
undescended testicles,
large anterior fontanelle

Comorbid diagnosis Spastic ataxia 4,
autosomal recessive

(continued)
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Individual 6 7 8 9 10 Summaryc

Genotype p.(Gly204Ala)|
p.(Gly204Ala)

p.(His424Leufs*12) |
p.(Leu238Arg)

p.(Arg378Cys)|
p.(Ala64Thr)

p.(Arg378Cys)|
p.(Ala64Thr)

p.(Arg378Cys)|
p.(Ala64Thr)

-

Ethnicity, Sex, Agea Turkish, F, 20y German, M, 4 y Polish, F, 8.6 y Polish, M, ToP Polish, M, 4.3 y -
Height, cm (SDS)b 151 (–2.09) NK 129.9 (–0.14) NK 93.7 (1.12) (Median: –0.93)
OFC, cm (SDS)b 51 (–3.26) NK 50.7 (–0.83) NK 47 (–1.35) (Median: –1.32)
Broad nasal bridge ✓ ✓ ✓ NK ✓ 13/14
Hypertelorism ✓ ✓ ✓ NK ✓ 13/16
External ear abnormalities ✓ Small ear lobes,

chronic otitis media
✓ Small, overfolded, thick
helix, low set, small lobule

✖ NK ✓ L preauricular pit 11/14

Cleft lip/palate ✓ Bilat. CLP ✓ R CLP ✖ Not reported ✖ 10/17
Micrognathia ✖ ✖ ✖ NK ✖ 9/14
Frontal bossing ✖ ✖ ✖ NK ✖ 5/14
Ptosis ✖ ✖ ✖ NK ✖ 5/13
Cardiac anomalies ✖ ✓ ToF ✓ ToF ✓ Hypoplastic left heart ✓ DORV, VSD 12/17
Pectus excavatum ✓ ✖ ✖ NK ✖ 7/16
Single palmar crease ✖ ✓ ✖ NK ✓ 9/13
Myopia (refraction) ✓ High ✓ High ✓ High NK Suspected 11/11
Cataract ✖ ✖ ✖ NK ✖ 2/8
Other ocular features L RD with enucleation

R macular atropy
Myopic maculopathy,

rod dystrophy suspected
NK -

Hearing loss ✓ R: mild-sev. SNHL
L: mild-profound mixed

✖ ✖ NK ✖ 7/16

Duodenal web NK NK ✖ NK ✖ 2
Other clinical findings Intellectual disability,

No speech until 3 y,
autism spectrum
disorder, ADHD,
fingertip whorls,
finger webbing,
webbed neck

Broad halluces
Cryptorchidism
Short neck fifth

finger clinodactyly

Broad thumbs NK Bilateral 2-3 toe
syndactyly

-

Comorbid diagnosis Retinitis pigmentosa 2

(✓) and (✖) indicate presence and absence of a feature in an affected subject, respectively.
ADHD, attention deficit hyperactivity disorder; AR, aortic regurgitation; AS, aortic stenosis; ASD, atrial septal defect; AV, aortic valve, Bilat., bilateral; BMI, body mass index; CoA, coarctation of aorta; CLP, cleft

lip and palate; D, dioptres; DORV, double outlet right ventricle; F, female; L, left; M, male; NBHS, newborn hearing screen; NK, not known; OFC, occipitofrontal circumference; PDA, patent ductus arteriosus; PHTN,
pulmonary hypertension; PPM, persistent pupillary membrane; R, right; RD, retinal detachment; SDS, SD score; sev., severe; SNHL, sensorineural hearing loss; ToF, tetralogy of Fallot; ToP, termination of pregnancy;
Unilat, unilateral; VH, vitreous hemorrhage; VSD, ventricular septal defect.

aRefers to decimal age of examination.
bHeight, weight, BMI, and OFC Z-scores were calculated using a Microsoft Excel add-in to access growth references based on the LMS (Lambda Mu Sigma) method using a reference European population (https://

www.healthforallchildren.com/, accessed September 3, 2021).
cIncluding 7 individuals from Muggenthaler et al1 (Supplemental Table 2).

Table 1 Continued J.
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The nonsense variant is located in exon 2/4 with the resulting
transcript expected to undergo nonsense-mediated decay. In
Individual 6, a likely pathogenic homozygous HYAL2
missense variant (Chr3[GRCh38]:g.50319879C>G; NM_
003773.4:c.611G>C; p.[Gly204Ala]) was identified along-
side a homozygous RP2 missense variant (ChrX
[GRCh38]:g.46837108G>C, NM_006915.2:c.8G>C; p.[Cy
s3Ser]), reported as likely pathogenic by ClinVar (accession;
VCV000418458.2), potentially explaining the severity of this
individual’s ocular phenotype.25 In Individual 7, compound
heterozygous pathogenic frameshift and likely pathogenic
missense HYAL2 variants were identified (Chr3
[GRCh38]:g.50318279_50318280delGT, NM_003773.4:
c.1271_1272delAC; p.[His424Leufs*12], Chr3[GRCh
38]:g.50319777A>C, NM_003773.4:c.713T>G; p.[Leu23
8Arg]). The frameshift alteration is predicted to cause a pre-
mature stop codon in the final exon (4/4) and escape
nonsense-mediated decay, producing a truncated protein
(436/473 amino acids). In Individuals 8, 9, and 10, two likely
pathogenic missense HYAL2 variants in trans were identified
(Chr3[GRCh38]:g.50318419G>A, NM_003773.4:c.1132C

>T; p.[Arg378Cys], and Chr3[GRCh38]:g.50320300C>T,
NM_003773.4:c.190G>A; p.[Ala64Thr]).

All variants cosegregated as expected for an autosomal
recessive disorder (Supplemental Figures 1 and 2) and were
absent or rare in gnomAD (allele frequency <0.0001,
Supplemental Table 4). All missense alterations affected
evolutionarily conserved amino acid residues (Supplemental
Figure 5) and were predicted deleterious (Supplemental
Table 4).

Expression of HYAL2 variants

HYAL2 gene variants identified in Individuals 3 to 7 were
introduced into human HYAL2 complementary DNA to
assess the impact on HYAL2 levels after transient expres-
sion in Hyal2–/– mouse embryonic fibroblasts, with func-
tional studies of p.(Lys148Arg) and p.(Pro250Leu) having
been performed in previous work.1 Protein levels were
compared with WT HYAL2 by transient transfection and
immunoblot analysis. The Ser65* and Arg295* premature

Figure 1 Facial features of individuals with HYAL2 deficiency, with new clinical photographs of individuals from Muggenthaler
et al1 for comparison. Key features include frontal bossing, hypertelorism, a broad and flattened nasal tip, and cupped ears with overfolding
of the superior helices. A, F. Individual XII:7 from Muggenthaler et al,1 (our Supplemental Figure 1 pedigree reference X:1). B, G. Individual
XII:9 from Muggenthaler et al1 (our Supplemental Figure 1 pedigree reference X:3). C, H. Individual 6. D, I. Individual 8. E, J. Individual 10.
K, L. Individual 3. M. Individual 4. N. Individual 5. O. Individual 7.

636 J. Fasham et al.



terminations resulted in no detectable HYAL2 protein,
whereas the Leu238Arg, Phe425Val, and Arg277Cys al-
terations displayed very low protein levels, suggesting
accelerated degradation (Figure 2A). Two variants,
Gly204Ala and His424Leufs*12, were present at levels
similar to WT protein (Figure 2B). The His424Leufs*12
variant resulted in 2 prominent forms of HYAL2
(Figure 2A), which when treated with PNGase F to remove
N-linked glycans, resulted in a single protein band that was,
as expected, smaller in size than the band from similarly
treated WT HYAL2 (Supplemental Figure 6A).

Impact of HYAL2 variants on HYAL2 localization

Proper HYAL2 processing includes modification by intro-
duction of a GPI anchor for cell surface localization. Vari-
ants impacting protein folding may lead to endoplasmic
reticulum (ER)-mediated degradation and/or a failure in C-
terminal GPI anchor addition; such variants would be ex-
pected to reduce cell surface HYAL2 levels. To explore this
hypothesis, we performed immunofluorescence studies us-
ing transfected cells under nonpermeabilized conditions
(cell surface HYAL2) and permeabilized conditions (intra-
cellular HYAL2) and analyzed HYAL2 released from the
surface with phospholipase C (PLC) (Figure 2C). WT
HYAL2 was abundantly detected at the cell surface and
within cells using immunofluorescence (Figure 3). Impor-
tantly, no variant resulted in cell surface HYAL2 levels that
were comparable with the levels in WT, although several
variants enabled substantial expression of intracellular
HYAL2. No intracellular or cell surface HYAL2 was
detected for termination codons (p.[Ser65*] and
p.[Arg295*]). Low levels of cell surface expression could be
detected for p.(Leu238Arg) and p.(Gly204Ala).

Removal of cell surface HYAL2 with PLC

To confirm the low levels of cell surface HYAL2 in cells
expressing mutant HYAL2 constructs, we released cell sur-
face HYAL2 with PI-PLC (Figure 2C). Media collected
from cells expressing WT HYAL2 were analyzed before
and after treatment with PI-PLC. A low level of HYAL2
(–PLC) was detected in the medium, but this was much
lower than the amount released after 2 hours of incubation
with PI-PLC. The large number of cells used in this
experiment allowed the clear confirmation of cell surface
mutant HYAL2 that was only faintly apparent by immu-
nofluorescence. Only 2 variants, Leu238Arg and
Gly204Ala, led to substantial HYAL2 levels released from
the cell surface, consistent with immunolocalization results.
Interestingly, although WT HYAL2 has 2 forms that can be
detected by immunoblot, 1 band predominated in the pres-
ence of each HYAL2 variant. PNGaseF treatment of these
samples showed that these 2 bands differ only in glycosyl-
ation (Supplemental Figure 6B), suggesting that the variants
differently impact folding and glycosylation rates in the ER.

HYAL2 variant structural homology modeling

In total, 7 of 8 missense HYAL2 variants affect residues
located internally away from the HYAL2 molecular surface,
making it unlikely that they directly bind ligands
(Figure 2D). In all but 1 case (Ala64Thr), in silico analysis
predicted these variants destabilize protein folding
(Supplemental Table 5). In contrast, the only missense
variants within our model that were present in homozygous
state in gnomAD v2.1.1, Ile418Ser and Trp440Arg, were
found at the protein periphery with side chains projecting
outward and were either stabilizing or only very mildly
destabilizing to protein folding. The Lys148Arg variant
located on the protein surface is predicted to mildly
encourage the folded state. However, because Lys148 en-
tails the only known HYAL2 ubiquitinated residue,26 it may
have a specific and key functional molecular role (eg, in
signaling).

As expected, structural modeling defined a putative
substrate binding cleft and the key catalytic residues in the
same conformation as HYAL1 (Supplemental Figure 4A
and B). Pathogenic HYAL2 residues were all identical in
HYAL1 (Supplemental Figure 3), and notably, Lys148Arg
is located within the predicted binding cleft. In total, 7 of 8
pathogenic missense variants cluster in the region of the
substrate binding cleft (Supplemental Figure 4A and B),
which is further supported by analysis of variant mean
Euclidean distance in the lowest 3% (Z <–1.89) of all such
groupings of this size in this protein (Supplemental
Figure 4C).

Discussion

The clinical and genetic studies described herein establish
HYAL2 gene variants as a cause of syndromic cleft lip and/
or palate, and our molecular findings identify HYAL2
protein deficiency as the pathomolecular basis of disease.
The comprehensive comparison with our previously re-
ported cases, initially elucidated as founder alleles, define
the core and variable clinical features that characterize the
condition.

A recognizable pattern of craniofacial dysmorphism
is invariably present, although a cleft lip and palate––previously
considered to be a core clinical feature––is now shown through
our larger cohort to be a common but more variable feature than
previously thought. Auricular anomalies (cupped ears, over-
folded helices), previously identified in a minority of in-
dividuals, are now noted in more than half of individuals and
frontal bossing, a broad nasal tip, micrognathia, and pectus
excavatum (Supplemental Figure 7) are considered variable
features. Congenital cardiac anomalies, identified in most new
cases, comprise an important component of the disease
phenotype, and we identified a number of clinically significant
anomalies likely to require surgical intervention in the first year
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of life (coarctation of the aorta, mitral valve atresia, hypoplastic
left ventricle, pulmonary valve atresia, and tetralogy of Fallot).
The presence of these severe phenotypes and the high overall
incidence of cardiac defects in the affected individuals under-
score the importance of cardiac screening at birth with pulse
oximetry and echocardiography, allowing early detection of

defects that may require surgical intervention to reduce the risk
of morbidity and mortality associated with a delayed diag-
nosis27 (Supplemental Table 6).

Myopia, originally described in only 2 individuals in our
initial publication, is now confirmed as another core clinical
feature, being present in all individuals examined. This may

Figure 2 Functional studies and protein modeling of pathogenic HYAL2 variants reported to date. A. Expression of HYAL2 in
Hyal2–/– mouse embryonic fibroblasts (MEFs). Immunoblot analysis of protein lysates (10 μg per lane) prepared from transfections with
HYAL2 expression vectors were analyzed with anti-HYAL2 (upper panel) and anti-β-actin (lower panel). HYAL2 is indicated by an arrow,
and the asterisk indicates a cross reacting band that is evident even in the control. A second band, resulting from N-linked glycosylation of
HYAL2, is apparent for His424Leufs*12. This band disappears after treatment with PNGase F (Supplemental Figure 6). The control was
transfected with a vector that does not express HYAL2. B. Quantification of the immunoblots. The average ± SEM of the luminescence units
from 4 separate transfection experiments are shown by the bars. The significance for each variant compared with the wild type (WT) was
determined using a paired t test using the ratios from each experiment. P ≤ .0001 (****); P ≤ .001 (***); P ≤ .01 (**). C. Immunoblot
analysis of HYAL2 released by phosphoinositol-phospholipase C (PI-PLC) treatment. Hyal2–/– MEFs that were transfected with WT HYAL2
and HYAL2 variants were incubated with (+) or without (–) phospholipase C to release the cell surface HYAL2. HYAL2 was detected by
immunoblot after the protein in the media was concentrated from the entire population of cells in a confluent well of a 6-well plate. This blot
is representative of 3 independent experiments. Apparent difference in molecular weight between Gly204Ala and Leu238Arg result from
differential N-linked glycosylation (Supplemental Figure 6B). A shorter exposure image (Supplemental Figure 6C) confirmed the highly
abundant WT (+) band to be singular. No quantification was performed owing to the possibility of variability in PI-PLC efficiency
significantly affecting these values. D. HYAL2 three-dimensional (3D) homology modeling using a crystal structure of HYAL1(2PE4)
showing the position of described variants. Pathogenic variants are highlighted in red; variants present in a homozygous state in gnomAD
v2.1.1 are colored yellow. E. The previously experimentally determined active site of HYAL1 shown on the same HYAL2 3D homology
model as shown in D. ns, not significant.
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Figure 3 Comparative immunolocalization of Hyal2–/– mouse embryonic fibroblasts (MEFs) expressing HYAL2 variants. The
transfected Hyal2–/– MEFs were fixed and incubated with anti-HYAL2 primary antibody under non-perm and perm conditions. HYAL2 is
detected with Alexa Fluor 568-conjugated donkey anti-rabbit secondary antibody and is labeled with orange fluorescence. Nuclei are stained
blue with Hoechst. Scale bars, 20 μm. 63× magnification. Representative microscopy images from at least 3 independent experiments are
shown. perm, permeabilized.
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be particularly severe (up to –16.75 dioptres) and associated
with complications including myopic macular degeneration
(4 individuals) and retinal detachment (2 individuals). In-
dividual 6 displayed a particularly severe phenotype with
high myopia leading to unilateral retinal detachment,
potentially caused by coinheritance of a homozygous RP2
variant previously described as pathogenic in a single
hemizygous male with retinitis pigmentosa (OMIM
312600)25 but also present in 3 hemizygous males in gno-
mAD v.2.1.1. Additional ocular findings in some in-
dividuals, including posterior subcapsular cataract and
wedge-shaped cortical cataract, suggest high myopia may
be part of a hereditary vitreoretinal degeneration phenotype.
The human vitreous is a specialized extracellular matrix
composed of hyaluronan, the major macromolecule, inter-
woven with chondroitin sulfate proteoglycans (including
versican and collagen IX) and other collagen fibrils.10

Versican binds to hyaluronan via a hyaluronan-binding
domain located in the globular N-terminal region.28 Of
note, pathogenic variants in VCAN, encoding versican, are
associated with vitreoretinopathy, Wagner syndrome
(OMIM 143200), and are implicated in congenital cardiac
defects.29 These observations define HYAL2 as being crit-
ically important for ocular and cardiac development, with
decreased hyaluronan and/or chondroitin sulfate degradation
likely underlying ocular and cardiac disease in patients. In
view of the association with high myopia and associated
complications and the possible association with a more se-
vere vitreoretinal degeneration phenotype, we suggest reg-
ular ophthalmic examinations from infancy to enable early
detection and treatment of ocular pathologies (see
Supplemental Table 6 for proposed clinical guidelines).

Hearing loss, noted in 5 of 7 of the originally described
individuals, was present in only 2 of 9 new cases, possibly
reflecting the reduced incidence of cleft palate, which is
commonly associated with conductive hearing loss. How-
ever, screening for hearing loss in all patients at diagnosis is
recommended because we cannot exclude an independent
association with HYAL2 deficiency (Supplemental
Table 6). Two affected individuals (2 and 6) in our study
were considered to have cognitive impairment, although for
individual 2 an explanatory second diagnosis was identified
(MTPAP-related spastic ataxia). Individual 6 is also
microcephalic, and it remains unclear whether these aspects
of her condition are caused by a comorbid disorder.
Importantly, for most patients, cognitive ability is unaf-
fected, information that will aid genetic counseling for this
condition (Supplemental Table 6).

This study also identified the first 3 individuals with a
loss-of-function HYAL2 variant in trans with a missense
HYAL2 variant (Individuals 3, 4, and 5) who notably
exhibited cardiac anomalies at the more severe end of the
spectrum (coarctation of the aorta, mitral valve atresia),
with 1 also having severe myopia. These findings may
indicate an emerging genotype–phenotype relationship
regarding protein functionality and cardiac/ocular

phenotype severity, which may ultimately aid refinement
of clinical screening and enable the interpretation of
missense alterations beyond variant of unknown
significance.

HYAL2 is a cell-surface protein that undergoes complex
cotranslational modification before achieving its final to-
pology as a mature GPI-anchored cell surface glycoprotein.
The c-translational steps required to generate mature
HYAL2 begin in the ER, where, like other glycoproteins,
even apparently conservative amino acid substitutions may
lead to ER-associated degradation and HYAL2 deficiency.
Our functional assays determined that the nonsense variants
Ser65* and Arg295* lead to no detectable intracellular or
cell surface HYAL2 protein (Figure 2 and 3). Although
these shorter peptides are likely unstable in this transient
overexpression system, in the endogenous situation the
transcripts would likely be subjected to nonsense-mediated
messenger RNA decay, leading to no HYAL2 protein. Our
studies also revealed that Phe425Val, Leu238Arg, and
Arg277Cys substitutions also result in low total levels of
HYAL2, indicating mutant protein instability (Figure 2).
Interestingly, expression levels of Gly204Ala and
His424Leufs*12 mutant proteins remain similar to WT
levels (Figure 2). As the His424Leufs*12 entails a 2 base
pair deletion within the final exon of HYAL2, this is not
unexpected given such last exonic alterations may escape
nonsense-mediated decay and generate truncated albeit
stable mutant protein products.30,31 Immunofluorescence
and PI-PLC studies show that although some variants
permit intracellular expression of mutant HYAL2, all
impact HYAL2 levels at the cell surface, with reduced
(Gly204Ala and Leu238Arg) or absent (Phe425Val,
Arg277Cys, and His424Leufs*12) levels of mature HYAL2
detected or released at the cell surface (Figure 2 and 3).
Also of note, while Leu238Arg is depleted intracellularly, it
displays notable expression at the cell surface, although far
below WT levels and similar to Gly204Ala. Interestingly,
the Leu238Arg mutant protein has increased N-linked
glycosylation, suggesting it has prolonged ER retention,
possibly leading to a transient localization to the cell surface
en route to the lysosome.32 Taken together, these findings
show that all putative pathogenic variants assessed to date
affect HYAL2 stability and/or HYAL2 functional
deficiency.

Our homology models support these functional studies,
suggesting that 6 of the 8 identified missense variants impact
buried residues, which would be strongly deleterious to
folding and likely lead to removal of mutant protein
(Supplemental Table 5). Of these, Gly204Ala had the
smallest predicted deleterious effect, consistent with our
findings of normal protein expression levels and reduced
(but not abolished) cell surface expression. One pathogenic
variant, Lys148Arg, which was previously shown to reduce
protein expression,1 was not predicted by homology
modeling to be deleterious to folding. This residue repre-
sents the only HYAL2 ubiquitination site,26 marking the
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protein for degradation and trafficking; this likely explains
the apparent deleterious nature of this variant. Furthermore,
the altered side chain of the Lys148Arg substitution projects
directly into the putative binding cleft and leads to altered
hydrogen bonding (Figure 2D). In silico modeling also
identified a clustering of 7 of the 8 missense variants near to
the putative binding cleft, whereas variants present in the
homozygous state in gnomAD were clustered at the pe-
riphery with side chains projecting outward. The importance
of this clustering remains unclear because the protein levels
are low in affected individuals.

HYAL2 is broadly expressed both in mouse and human
tissues, and the significant parity in mouse and human phe-
notypes associated with HYAL2 deficiency has permitted
new insights into the mechanistic basis of developmental
defects in HYAL2-related disease. Despite the controversy
surrounding the precise role of HYAL2 in hyaluronan turn-
over,33,34 tissues from mice deficient in HYAL2 show sub-
stantial accumulation of hyaluronan, indicating that HYAL2
is clearly involved in hyaluronan removal from the extracel-
lular matrix.35 Studies have also shown that a failure
to remove hyaluronan leads to increased epithelial-to-
mesenchymal transition (EMT) and decreased differentia-
tion.36 We hypothesize that this mechanism underlies the
cardiac anomalies observed inmice and humanswithHYAL2
deficiency. During cardiac development, EMTwithin cardiac
cushions establishes the primordium that develops into car-
diac valves and the ventricular septum.37 Removal of high
molecular mass hyaluronan from the provisional extracellular
matrix is shown to be critical to heart development38,39 such
that increased hyaluronan in the absence of HYAL2 would
lead to excess EMT and decreased differentiation affecting
cardiac development. In keeping with this, HYAL2-deficient
mice show increased numbers of mesenchymal cells in the
heart and expanded cardiac valves and accessory tissues,38,39

and congenital cardiac defects are a major clinical feature of
HYAL2 deficiency in humans.

A similar mechanism may underlie the craniofacial
anomalies in HYAL2 deficiency. Overall, the craniofacial
appearance of individuals carrying pathogenic HYAL2 var-
iants resembles the phenotypic spectrum of frontonasal
dysplasias, with overlapping features, including hyper-
telorism, nasal anomalies, and midline orofacial clefts.
These features can arise from defects in midline craniofacial
development, a process involving the fusion of 3 separate
facial processes through a combination of programmed cell
death and conversion of epithelial cells into mesenchyme
via EMT.40 Craniofacial bones of Hyal2–/– mice show a
central ossification defect, suggesting decreased differenti-
ation in Hyal2–/–embryonic tissues.1 This supports increased
hyaluronan accumulation, which leads to improperly regu-
lated EMT, and decreased differentiation as a common
mechanistic pathway underlying some of the congenital
craniofacial and cardiac abnormalities seen in both humans
and mice deficient in HYAL2.

Although Hyal2–/– knockout mice are viable (albeit with
significant preweaning lethality and reduced survival),1 the

absence of clear human knockouts in affected individuals
identified to date may indicate that HYAL2 plays a crucial
role in human growth and development, and its complete
absence may be incompatible with human life. Although the
specific developmental cascades impaired by HYAL2 defi-
ciency remain to be identified, it is clear that HYAL2
function is important for cardiac and craniofacial develop-
ment. Together, our genetic, functional, and structural
modeling studies expand the molecular spectrum associated
with pathogenic HYAL2 variants and provide new insight
into the likely disease mechanism and functional roles of
HYAL2. Our comprehensive phenotyping assessments
enable a clearer delineation of the core and variable
phenotypical features of HYAL2 deficiency to be charac-
terized. On the basis of the features described earlier, we
have proposed a set of general guidelines to aid the clinical
workup of patients affected by HYAL2 deficiency
(Supplemental Table 6). The precise functions of HYAL2 in
human growth remain incompletely understood, and further
studies are important to elucidate the precise molecular and
developmental roles of this molecule in cardiac, ocular, and
craniofacial development.

Data Availability

The variants listed in this paper have been deposited in the
ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/)
with accessions SCV001572828 - SCV001572838.
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