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A B S T R A C T

Purpose: This study aimed to provide comprehensive diagnostic and candidate analyses in a
pediatric rare disease cohort through the Genomic Answers for Kids program.
Methods: Extensive analyses of 960 families with suspected genetic disorders included short-
read exome sequencing and short-read genome sequencing (srGS); PacBio HiFi long-read
genome sequencing (HiFi-GS); variant calling for single nucleotide variants (SNV), structural
variant (SV), and repeat variants; and machine-learning variant prioritization. Structured
phenotypes, prioritized variants, and pedigrees were stored in PhenoTips database, with data
sharing through controlled access the database of Genotypes and Phenotypes.
Results: Diagnostic rates ranged from 11% in patients with prior negative genetic testing to
34.5% in naive patients. Incorporating SVs from genome sequencing added up to 13% of new
diagnoses in previously unsolved cases. HiFi-GS yielded increased discovery rate with >4-fold
more rare coding SVs compared with srGS. Variants and genes of unknown significance remain
the most common finding (58% of nondiagnostic cases).
Conclusion: Computational prioritization is efficient for diagnostic SNVs. Thorough identifi-
cation of non-SNVs remains challenging and is partly mitigated using HiFi-GS sequencing.
Importantly, community research is supported by sharing real-time data to accelerate gene
validation and by providing HiFi variant (SNV/SV) resources from >1000 human alleles to
facilitate implementation of new sequencing platforms for rare disease diagnoses.
© 2022 The Authors. Published by Elsevier Inc., on behalf of American College of Medical

Genetics and Genomics. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The Children’s Mercy Research Institute in Kansas City
established a large-scale genomic disease program named
“Genomic Answers for Kids” (GA4K) to expand diagnostic
capabilities and catalog rare disease genomes and pheno-
types within a health care system. Broad recruitment across
all pediatric rare diseases resulted in most patients entering
the study either with negative or no prior genetic testing.

Recent studies have shown >10% rate of new findings upon
reanalysis of exome sequencing (ES) or genome sequencing
(GS) data in patients with a history of negative genetic
testing.1-4 The predominant factors in identifying new di-
agnoses were recent publications establishing novel
gene–disease associations, often through data-sharing ef-
forts such as GeneMatcher (GM) (upgrade from gene of
uncertain significance [GUS]), or expanding the phenotypic
spectrum of established disease genes (upgrade from variant
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of uncertain significance).1,3,5 The next most helpful strat-
egy to increase diagnostic yield was the incorporation of
sequencing data from additional family members, particu-
larly for singletons.4 Furthermore, given the continued ad-
vances in technology and expanded availability of public
data, samples sequenced and/or analyzed >3 to 5 years ago
may also benefit from resequencing to enhance coverage
and/or repipelining to incorporate improved filtering
methods and more extensive population data.3,6

The variable success in analyses/reanalyses is largely
explained by patient ascertainment and testing schemes,
although differing variant prioritization strategies are also
likely to play a role. Specifically, depending on the relative
weight placed on inheritance, variant-effect properties, and
the identity/function of the gene harboring the rare variant,
the ranking of candidate variants may yield very different
results. Multiple machine-learning tools have emerged to
balance the variant/locus characteristics in an attempt to
systematically extract optimal candidate prioritization.7 The
integration of such tools in rare disease molecular analyses
has been shown by several centers primarily for small,
selected cohorts.8-12 The universal feature is the patient’s
phenotype coded through human phenotype ontology
(HPO) terms as a basis for prioritization, followed by the
deployment of variable ranking algorithms.13 However, the
utility of incorporating such tools for a systematic first-pass
analysis of patient data within a large, unselected, and
phenotypically diverse pediatric rare disease diagnostic
setting is unknown.

Although variant prioritization strategies continue to
improve, the choice of technology in genome-wide
sequencing and primary data processing strategy have
remained comparatively stable, despite missing some
variant types, including structural variants (SVs).14,15 At our
center, the performance of short-read (sr) genome
sequencing (srGS) and ES was similar when used in the
diagnostic evaluation of suspected pediatric genetic disease
on the same Illumina platform.16 However, alternative
platforms have the potential to reduce uncertainty of
chemistry-dependent errors and omissions, and scalable al-
ternatives have emerged for short-read polymerase chain
reaction (PCR)-free genomes such as DNA NanoBall
sequencing.17 Furthermore, long-read GS (lrGS) has been
shown to detect variants missed by short-read sequencing,
specifically complex SVs, including inversions and inverted
duplications, as well as repeat expansions and variants in
difficult-to-map regions.18 In addition, lrGS also has the
potential to resolve phasing of variants in autosomal reces-
sive genes when parental samples are unavailable. Recent
technological advances in long-read platforms enable the
consideration of lrGS for unsolved rare diseases.19

In this study, we leveraged a large-scale pediatric
genomic medicine program with real-time return of results
to explore automation of variant prioritization and expert
clinical interpretation, as well as the retesting of prior
negative exomes at a scale that has not been previously
reported. The results from the analyses of >1000 patients

with rare disease highlight the utility of systematic variant
prioritization, identify variants in blind spots associated with
current technologies, and underscore the imperative for
improved sharing strategies of suggestive results across rare
disease programs and cohorts.20

Materials and Methods

Detailed methods are described in the Supplemental
Materials and Methods online. All analyses were completed
on Genome Reference Consortium Human Build 38
(GRCh38).

Cohort

The case cohort described included 1083 affected patients
from 960 families, with a total of 2957 sequenced individuals
collectively (detailed in Supplemental Tables 1 and 2). Cases
included 595 males and 488 females, aged 1 to 55 years
(older individuals were typically ascertained as follow-up
from an affected family member). Of these patients, 158
(14.6%) were singletons, whereas the remaining 955 had at
least 1 additional family member sequenced. Patients were
referred from 22 different specialties, with the largest pro-
portion nominated by Clinical Genetics (47.7%) followed by
Neurology (22.9%). Given the broad referral pool, we
acknowledge the limitations in the ethnic diversity of this
population that may reflect systemic health care issues; these
will be addressed directly in future studies. A continuum of
pediatric conditions is represented, ranging from congenital
anomalies to more subtle neurological and neurobehavioral
clinical presentations later in childhood. Of the 1083 patients,
125 entered the study with a known genetic diagnosis
because the program is building an inclusive rare disease
genome resource with solved cases serving to benchmark
new methods and processes. Phenotypes were manually
extracted from the medical records and primary features
recorded in PhenoTips using HPO terminology.13,21 These
structured data were used for automated prioritization tools,
whereas expert review used the complete clinical notes for
variant prioritization and interpretation. A summary of HPO
terms/patient is detailed in Supplemental Table 3.

ES/srGS

Exome libraries were prepared according to the manufac-
turer’s standard protocols using the Illumina TruSeq DNA
PCR-Free library preparation kit (Illumina) with 10 cycles
of PCR, followed by enrichment with the IDT xGen
Exome Research Panel v2, with additional spike-in oligos
(Integrated DNA Technologies) to capture the mitochon-
drial genome and dispersed genomic regions for copy
number variation (CNV) detection. PCR-Free genome li-
braries were prepared according to the manufacturer’s
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standard protocols for Illumina TruSeq DNA PCR-Free
library preparation.

MGI sequencing (srGS)

Genome sequencing libraries were constructed using the
MGIEasy Universal DNA Library Prep Set (MGI Tech Co,
Ltd) according to the manufacturer’s standard protocols.
srGS was performed on MGI DNBSEQ-G400 (MGI Tech
Co, Ltd).

PacBio HiFi long-read GS and analysis

DNA was sheared to a target size of 14 kb using the Dia-
genode Megaruptor 3 (Diagenode). Single molecule, real-
time (SMRT) bell libraries were prepared using the
SMRTbell Express Template Prep Kit 2.0 (100-938-900,
Pacific Biosciences) following the manufacturer’s standard
protocol (101-693-800) with modifications described in the
Supplemental Materials and Methods. Libraries were
sequenced on the Sequel IIe Systems using the Sequel II
Binding Kit 2.0 (101-842-900, Pacific Biosciences) or 2.2
(102-089-000, Pacific Biosciences) and Sequel II
Sequencing Kit 2.0 (101-820-200, Pacific Biosciences) with
30 hour movies/SMRT cell. In total, 175 samples were
sequenced to a target of >25× coverage; 297 samples were
sequenced on 1 SMRT Cell (average: 10× coverage).

Read mapping, variant calling, and genome assembly
were performed using a Snakemake workflow. HiFi reads
were mapped using pbmm2 v1.4.0, and SVs were called
using pbsv 2.4.0. Single nucleotide variants (SNVs) were
called using DeepVariant v1.0 following DeepVariant best
practices for PacBio reads.22 De novo assembly was per-
formed using hifiasm v0.9-r289 using default parameters.23

SV call sets were compared using svpack match, which
considers 2 SV calls to match when the variants are of the
same type (considering insertion and duplication to be the
same), are nearby (start position difference ≤100 base pairs
[bp]), and are of similar size (size difference ≤100 bp). To
systematically evaluate expansions at known pathogenic
tandem repeat loci, tandem genotypes were used to count the
length of the tandem repeats in HiFi reads for each sample.24

Because long (GA)-rich repeats have been noted to have
lower coverage in HiFi reads, a complementary system was
setup to identify haplotypes with coverage dropouts at the
known pathogenic tandem repeat loci.25 At each locus, the
number of reads that span the repeat region were counted
per haplotype (on the basis of a Whatshap-haplotagged
BAM from phased SNVs) (unpublished—Martin et al,
WhatsHap: fast and accurate read-based phasing. bioRxiv.
2016. https://doi.org/10.1101/085050). A coverage dropout
was identified as a locus with fewer than 2 spanning reads in
a haplotype.

Joint calling of SV and small variants was also
completed for HiFi long-read genome sequencing (HiFi-
GS). A multisample SV call set was produced by merging

single-sample pbsv call sets with JASMINE v1.1.4
(unpublished—Kirsche et al. Population-scale SV com-
parison and analysis. BioRxiv. 2021. https://doi.org/10.11
01/2021.05.27.445886). A multisample small variant call
set was produced by running GLnexus v1.2.7 on all single-
sample DeepVariant genomic variant call format files using
glnexus_cli –config DeepVariant_unfiltered and converting
the resulting binary variant call format to variant call
format using bcftools view v1.10.26

Analyses and variant prioritization pipeline

Figure 1 depicts an overview of the sequence processing,
variant calling, and interpretation pipeline. Reanalysis was
carried out using ES/srGS data in parallel. Exomiser v12.1
(Sanger Institute) (data version 2102) and AMELIE v3.1.0
were applied for variant prioritization, and the top ranked
variants were manually reviewed and flagged for expert
interpretation.27,28 Variant prioritization was restricted,
impacting common pathogenic variants (Supplemental
Table 4). An additional sequencing platform using srGS
was tested in a subset of trios (MGI), whereas HiFi-GS
(PacBio) was predominantly deployed for cases without
diagnosis after srGS. Finally, an early phase of the study
employed 10x Linked-Read GS, predominantly in singleton
cases (Supplemental Materials and Methods). Supplemental
Table 5 summarizes the different types of data generated for
the cohort.

Annotation of SVs for disease relevance used both fre-
quency (minor allele frequency of <1%) in a local sequence
modality specific SV warehouse and focused on overlap
with OMIM morbid genes, followed by manual curation to
interpret the validity of candidate SV calls as well as rele-
vance in context of the phenotype/known transmission of
disease at locus.

Clinical validation of research results

Variants identified through research sequencing were
reviewed in accordance with American College of Medical
Genetics and Genomics/Association for Molecular Pathol-
ogy criteria; pathogenic and likely pathogenic variants
related to the disease phenotype were confirmed in the
Children’s Mercy Clinical Laboratory Improvement
Amendments–certified laboratory through the best appli-
cable validated methods and reported clinically in real-time
for incorporation into clinical management.29

Results

Machine-assisted interpretation

A combination of 2 publicly available tools was imple-
mented to aid with variant prioritization: Exomiser (E) and
AMELIE (A).27,28 Both tools (E/A) rely on structured
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phenotyping (with HPO terms) but apply algorithms that
explore different features of variants/genes (Supplemental
Materials and Methods). Therefore, we hypothesized that
the combination would improve speed and accuracy of
analysis. To test the efficacy of these tools, we reviewed the
combined top 50 ranked E/A candidate variant list for cases
with known molecular diagnoses at study entry (n = 125),
with a knowledge of the phenotype of each proband but
blinded to the original genetic results. Of these, 88 had
diagnostic SNVs serving as a positive control set (other
known diagnoses included aneuploidies, microdeletions/
duplications, repeat expansions, or special cases such as
SMN1/2 variants not in the scope of exome or genome
interpretation provided in this article and are described in
Figure 2A as other mechanism). The causative variant was
ranked within this top 50 by E/A in 84 (95.5%) of the
positive control cases. Diagnostic variants were sometimes
outranked by single pathogenic variants (carrier status) or 2
variants in cis in autosomal recessive genes. Absolute E/A
score distribution is shown in Figure 2B. Of the 4 cases for
which the diagnostic variant was not ranked, 3 had deep
intronic pathogenic variants, a recognized limitation of E/A
prioritization; therefore, only 1 diagnostic coding variant
was missed in this subset of cases.

On expanding the E/A strategy to the entire data set and
comparing with expert review, in which variants were
prioritized on the basis of multiple criteria (zygosity,
segregation, population frequency, gene function, etc.) using
our custom software RUNES (Supplemental Materials and
Methods), variant prioritization was found to be concor-
dant in approximately 49.8% of 1083 cases (Figure 2A).
This means that the top variants manually selected from the
combined E/A files for further review were also considered

to be the best candidate variants when expert analysts
reviewed the full clinical notes and unrestricted variant lists,
and yet this variant selection was achieved in a fraction of
the time.30 No strong E/A candidates were identified in
approximately 8.4% of cases that were positive for a variant
that would not have been annotated by these tools (such as
copy number variants, deep intronic variants, SVs, repeat
expansions, etc.). Moreover, approximately 30.6% of cases
were deemed negative by both expert analysis and com-
bined E/A ranking, giving us an overall consistency in
analysis outcome of approximately 88.7% (Figure 2A).
Importantly, in approximately 3.4% of cases (n = 37), these
tools pointed us toward new candidates who may not have
otherwise been considered.

Diagnostic yields stratified by earlier testing
history

Of the 958 patients (88.5%; 958/1083) who entered the
study without a previous diagnosis, the largest group (584/
958) consisted of patients with negative genetic testing
history, either through ES, srGS, or panel testing. New ES
and srGS/lrGS with (re)analysis yielded definitive diagnoses
for 64 of 584 cases (11%). A smaller group of patients,
referred to the research study and to clinical ES in parallel,
achieved a diagnostic rate of 34.5%, which was 71 of 206
cases, and among the patients that had no clinical genetic
testing approved/ordered, the diagnostic rate was 20.2%,
which was 34 of 168 cases. The latter group represented
patients whose physicians did not order testing and/or those
for whom testing was ordered but denied by the insurance.
Various modes of reinterpretation success are exemplified in

Filter 1
>= 4 variant reads, 

>=30% of total reads 

Exomiser

Parental 
variants

AMELIE Prioritized 
Variants

Illumina GS

10X

MGI GS

PacBio

Exome

DRAGEN 3.6.3

longranger 2.2.2
GATK 4.0.3.0

pbmm2 1.4.0 
DeepVariant 1.0
WhatsHap 1.0 

pbsv 2.4.0

Sequencing Alignment
variant detection

Variant
annotation

RUNES 4.9.9
CADD
svpack

Quality
filter

Filter Filter

Rare variant
filter

QC

QC 
check

Filter 2 
gnomAD

MAF <= 0.5%

variant detection 
sensitivity >= 95%,

avg coverage >= 30X

Tandem
genotypes /
coverage

Figure 1 Genomic Answers for Kids pipeline. Overview of sequencing, variant calling, and variant prioritization pipeline. Sequencing
included exome sequencing and GS through multiple technologies (Illumina, MGI, and 10x for short-reads, and PacBio for long-reads).
Standard QC and filtering were applied. Variant prioritization relied on inheritance pattern and AI tools (Exomiser/AMELIE) and tandem
genotypes. AI, artificial intelligence; CADD, combined annotation dependent depletion; GATK, genomic analysis toolkit; gnomAD, Genome
Aggregation Database; GS, genome sequencing; MAF, minor allele frequency; QC, quality control.
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Table 1 (and shown in Supplemental Figures 1-8). We note
that 9 of 64 previously tested cases were diagnosed by an-
alyses of GS when ES analyses were negative, suggesting
that among cohorts of ES-tested patients the contribution of
GS can be >10% of achievable diagnoses. Among previ-
ously untested patients (no testing or testing initiated in
parallel), GS was required to solve pathogenic variation not
detected by ES in 7 of 105 (6.7%) patients because of
intronic variation, small deletions difficult to detect with ES,
repeat expansion disorders, and disease associated non-
coding RNAs not covered in the exome capture.

Effect of GS platforms

GS contributed 6% to 14% of diagnoses (see previous sec-
tions). The different platforms assessed in our study
exhibited distinct characteristics that can contribute to
individual variant types and overall potential for augmenta-
tion of ES. We examined 3 srGS platforms: 10x Linked-
Read sequencing (10x Genomics, n = 542/587 patients),
DNA NanoBall sequencing (MGI, n = 74/180 patients), and
PCR-free srGS (Illumina, n = 683/1660 patients), along with
a subset of samples assessed by HiFi-GS (PacBio,

50%

3%7%

31%

8% 1%

E/A PREDICTIONS
Consistent candidate

New candidate

Missed

Neg/Neg

Neg-other mechanism

Not consistent

DIAGNOSTIC CASES

A

B

Figure 2 Variant prioritization tools showed great concordance with expert analysis. A. Distribution of E/A predictions for all 1083
patients. Prioritization was deemed concordant when the main candidate variant was concordant with expert review (“consistent candidate”),
Neg by both E/A and expert review (“Neg-Neg”), or when the causative variant was not an single nucleotide variant and therefore not
expected to be ranked by E/A (“Neg-other mechanism”), totaling to almost 89%. Prioritization was deemed nonconcordant when a different
candidate variant was highly ranked (“Not consistent”) or when the top candidate was not ranked/very low ranked (“Missed”), totaling to
about 8%. Finally, approximately 3% had a new strong candidate variant prioritized by E/A that was missed by expert review. B. The
distribution of E/A scores is shown for cases with known diagnosis at enrollment (“PD”) and new diagnosis (“ND”). Exomiser scores range
from 0 to 1, with 1 being the highest/best match. AMELIE scores range from 0 to 100, with 100 being the highest/best match. Median is
shown to indicate the shift in mean due to a minority of missed rankings (when diagnostic variant was not ranked the lowest score was used).
E/A, Exomiser/AMELIE; ND, new diagnosis; Neg, negative; PD, prior diagnosis.
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Table 1 Example cases for which diagnosis was initially missed and subsequently solved through research analysis

Case Phenotype
Previous Clinical

Testing
Previous
Result

Research
Test/ Analysis

Diagnostic
Finding (GRCh38) Inheritance

Barrier
Overcome
by Research
Methods

New diagnosis upon reanalysis
239/240

(Supplemental
Figure 1)

Lipodystrophy Microarray, ES Neg 10x linked-read
GS, srGS

MFN2
(NM_014874.3):
c.2119C>T,
(p.Arg707Trp)
(homozygous)

AR Reanalysis revealed
atypical disease
presentation

272 Narrow chest, small
stature, macrocephaly,
tall forehead, high
palate

Skeletal ciliopathies
panel, ES

HUWEI ES, srGS, scRNA HUWEI (NM_031407.5):
c.647C>T, (p.Thr216Ile);

MAP3K7 (NM_145331.2):
c.745C>T, (p.Pro249Ser)

De novo Research uncovered second
diagnosis (MAP3K7), which
was not reported by ES in
commercial laboratory
(reason unknown)

453 (Supplemental
Figure 2)

Congenital myotonic
dystrophy

CLCN1, DMPK,
SCN4A seq, and
DMPK expansion

Neg ES, 10x linked-read
GS, srGS

SCN4A (NM_000334.4):
c.4342C>T, (p.Arg1448Cys)

AD (nk) Not reported by commercial
clinical laboratory because
of low coverage cutoff

953/954 Precocious puberty,
epilepsy, DD

Brain malformation
panel, ES

Neg ES, srGS, GBS PTEN (NM_000314.4):
c.269T>C, (p.Phe90Ser)

AD (pat) Not reported by commercial
clinical laboratory because
of atypical phenotype

Not detected in previous testing: technology and/or analysis limitations
110/111

(Figure 3D-F)
Septo-optic dysplasia,

hypotonia, strabismus,
tremor, DD

Microarray, HESX1
seq del/dup,
ALSM1 seq,
neuro-muscular
panel

Neg ES, srGS, HiFi-GS,
GBS

AARS2 (NM_020745.4):
c.595C>T
(p.Arg199Cys);
6p21.1(44306618_
44310699)x1

AR Deletion of exons 5 to 7 was
difficult to detect; AARS2-related
disease reported after clinical
testing was completed

129 (Supplemental
Figure 3A-C)

Profound congenital
hypotonia, motor
deficits, cerebral visual
impairment

Chromosomes,
microarray, DMPK
expansion,
neuromuscular
panel

Neg ES, srGS (blood
and muscle)

TBCK (ENST00000394708.2):
c.1039C>T, (p.Arg347Ter)/
c.2060-6793_2235+426del,
(p.Glu687Valfs*8)

AR Single exon deletion in setting of
large intronic regions difficult to
detect using ES

189-190, 192-193
(Figure 3A-C)

Global DD, dystonia Microarray, exon
array, ES

Neg ES, srGS, GBS,
HiFi-GS

STARD7: triplet expansion AD (pat) Novel expansion disorder (solved
by lrGS)

302 (Supplemental
Figure 4)

Autoimmune
hypothyroidism,
autoimmune
neutropenia,
immunodeficiency
(unknown type,
low B-cells)

Microarray, ES SPECC1L ES, srGS, scRNA SPECC1L: (NM_015330.6):
c.1900C>T, (p.Arg634Ter) &
RNU4ATAC (NR_023343.1):
n.37G>A/n.8C>T

AD (pat)
and AR

Research uncovered second diagnosis,
missed in clinical ES owing to no
coverage (noncoding RNA not
covered in most ES)

(continued)

A.S.A.
Cohen

et
al.
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Table 1 Continued

Case Phenotype
Previous Clinical

Testing
Previous
Result

Research
Test/ Analysis

Diagnostic
Finding (GRCh38) Inheritance

Barrier
Overcome
by Research
Methods

305 (Supplemental
Figure 3D-E)

Generalized hypotonia,
global DD, infantile
spasms

Microarray, ES VUS 10x linked-read GS,
srGS

TBCK (NM_001163435.3):
c.2060-6793_2235+426del,
(p.Glu687Valfs*8)
homozygous

AR Single exon deletion in setting of
large intronic regions difficult to
detect with ES

397/398
(Supplemental
Figure 5)

Becker muscular dystrophy Microarray, ES Neg RNAseq (external
collaboration)

DMD (NM_004006.3):
c.6290+3076A>G,
(p.Thr3055Serfs*1)

XL (mat) Deep intronic variant, required
functional RNAseq on muscle
biopsy to identify the creation of
pseudoexon

451 (Supplemetal
Figure 6)

Multiple congenital
anomalies (including
severe heart
malformations), slow
growth, DD

Microarray 1.73 Mb dup
1q21.1q21.2

ES, 10xlinked-read
GS, srGS

GATA4 (NM_002052.3):
c.886G>A, (p.Gly296Ser)

AD (mat) Research uncovered a second
unexpected diagnosis by
automated variant prioritization,
which was clinically relevant

678 (Supplemental
Figure 7)

Lissencephaly Lissencephaly panel Neg 10x linked-read,
HiFi-GS

CEP85L (NM_001042475.2):
c.3G>T, (p.Met1?)

AD (nk) Novel gene not included in panel
testing (and poor coverage of exon
1 in 10x GS)

791 (Supplemental
Figure 8)

Hypotonia, persistent
global DD, epilepsy

Microarray, ES AOH region
6q15; HEXB
carrier
status

srGS CACNA1A (NM_001127221.1)
19p13.13(13332562-
13336361)x1

AD (not
mat)

Deletion of exons 7 to 9; CNV analysis
of ES analysis not completed
clinically

799 Global DD, language
delays, hypotonia

None n/a ES, srGS SHANK3 (ENST00000262795.3)
22q13.33(50690814-
50780545)x1

AD (not
mat)

Intronic breakpoints detected using
GS, CNV analysis not completed
using ES

AD, autosomal dominant; AR, autosomal recessive; CNV, copy number variation; DD, developmental delay; del, deletion; dup, duplication; ES, exome sequencing; GBS, genome bisulfite sequencing; GS, genome
sequencing; HiFi-GS, HiFi long-read genome sequencing; lr, long read; mat, maternally inherited; n/a, not applicable/not available; Neg, negative; nk, inheritance not known; pat, paternally inherited; scRNA, single-
cell RNA expression analysis; seq, sequencing; sr, short read; VUS, variant of uncertain significance; XL, X-linked.
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n = 274/472 patients; Supplemental Materials and Methods
and Supplemental Table 6). The 10x Linked-Read
sequencing exhibited inconsistent coverage across the
genome, which resulted in suboptimal variant sensitivity
(97.8% mean sensitivity), and was discontinued in favor of
other GS platforms that performed similarly (>98.3%
sensitivity, >98.8% specificity) against Infinium Global
Screening microarray genotypes (Supplemental Figure 9).
Considering the moderate increase in diagnostic yield using
srGS, lrGS using PacBio HiFi reads was systematically
deployed for negative trios, allowing for a thorough com-
parison of HiFi-GS with srGS with a particular focus on the
potential for rare disease variant discovery while controlling
for false positives using parental samples. Direct comparison
of overall SNV calls and SV calls indicated an approximately
5% increase in SNV called from high coverage lrGS (25×
HiFi-GS) vs srGS (35× Illumina GS), with a much more
dramatic effect on SV detection with nearly double the
discovery rate with lrGS (Supplemental Table 6).

To gauge the effect on potential rare disease SNV alleles,
we compared a subset of probands (n = 102) using both
srGS and HiFi-GS, focusing on rare coding variants. On
average, there were 439 coding variants per proband
genome, of which 14% were unique to HiFi-GS, in contrast
to 6% unique rare coding variants in srGS. Of these vari-
ants, transmission (variant detected in parent) supported
nearly all (98%) variants observed through both srGS and
HiFi-GS, whereas 40% of HiFi-GS–specific variants
appeared transmitted and 20% of srGS-specific variants
showed evidence of transmission. Extrapolating true posi-
tive rates per genome and per technology on the basis of
transmission suggested that on average lrGS exclusively
detects 31 coding variants and srGS detects 6 coding vari-
ants per genome (Supplemental Table 7). More striking
differences were observed for family-transmitted rare SVs
(minor allele frequency < 1%) generated at our center in
either srGS or HiFi-GS data and not seen in publicly
available reference data, including database of genomic
variants for srGS, Human Pangenome Reference Con-
sortium HiFi-GS, or variants published from ONT-lrGS by
Decode for lrGS.18,31,32 On average, 70 transmitted rare
SVs are observed in srGS data and >300 in HiFi-GS data: a
greater than 4-fold difference. The discovery advantage for
HiFi-GS also applies for transmitted rare coding SVs

(Table 2). Similar to earlier reports, the rate of de novo SVs
is low and only 2 (noncoding) examples were found in the
manual curation of 8 high coverage HiFi-GS trios
(Supplemental Table 8).33

Enabling rare disease allele discovery by HiFi-GS

A tangible consequence of higher discovery rate of variant
detection using HiFi-GS was the detection of 4,369,149
recurrent (observed in at least 2 unrelated individuals)
SNVs not reported in Genome Aggregation Database, as
well as 115,595 recurrent SVs detected in our aggregated
HiFi-GS resource (30,707 not seen in any previously
published data sets).34 These findings serve as a reminder
that publicly available data sets remain highly incomplete.
To enable new rare disease discovery efforts using HiFi-
GS, we are sharing these recurrent variants and their fre-
quencies derived from >1000 alleles of HiFi-GS data
(https://github.com/ChildrensMercyResearchInstitute/GA4
K). As anticipated, the recurrent variants detected in HiFi-
GS were biased to regions with poor srGS resolution (eg,
segmental duplications and satellite repeats), but recurrent
SVs not in database of genomic variants were widely
dispersed across genic regions, and >800 OMIM loci also
showed higher than GENCODE average rate of HiFi-
GS–specific SNVs (Supplemental Tables 9 and 10).

The current diagnostic evaluation for rare disease relies
on a multitude of genome-wide tests (ES, GS, microarray,
chromosomes) as well as specialized directed tests (for
repeat expansions, methylation defects, etc.). We explored
the potential of HiFi-GS to consolidate some of this
testing and therefore reduce costs in the diagnostic od-
yssey for each proband. Developing a toolkit for HiFi-GS
in rare disease included the accommodation of specific
queries for known repeat expansion loci (Supplemental
Table 19). Among our cohort, in which each sample had
a minimum of 8× HiFi-GS coverage across 51 loci, we
identified 3 pathogenic events (1 FMR1, not shown, and 2
STARD7 expansions, shown in Figure 3A-C). In addition,
although not specifically explored, there are known dis-
ease genes among the loci with an excess of non–Genome
Aggregation Database variation (see previous sections)
such as OTOA and STRC, which are challenging to test
owing to known pseudogenes/duplications (Supplemental

Table 2 Structural variation

Structural Variation Group

Average Proband Counts—Illumina/MGI srGS (49
Trios), >30× Coverage

Average Proband Counts—PacBio HiFi-GS (81 Trios)
>25× (Proband) >10× (Parents)

TOT BND CNV DEL DUP INS INV TOT BND CNV DEL DUP INS INV

All 11,036 2046 n/a 4299 393 4299 n/a 22,013 52 5 9104 412 12,354 86
Rare 260 98 n/a 43 10 108 n/a 398 4 1 160 15 217 2
Family validated 9127 1537 n/a 3876 339 3375 n/a 21,114 45 5 8768 390 11,824 81
Rare family-validated 69 24 n/a 19 4 22 n/a 332 3 1 136 12 179 2
Rare family-validated coding 20 6 n/a 6 1 7 n/a 119 1 0 46 4 67 1

BND, break-end; CNV, copy number variation; DEL, deletion; DUP, duplication; HiFi-GS, HiFi long-read genome sequencing; INS, insertion; INV, inversion; n/
a, not available/applicable; srGS, short-read genome sequencing ; TOT, total.
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Table 9). We note that the current alignment/variant
calling pipeline for HiFi-GS also generates phased hap-
lotypes that allow detection of compound heterozygotes
even in the case of singletons (Figure 3D-G), with an
average phase block of 400 kb (Supplemental Figure 10).
Finally, the combination of SV calls and personal as-
semblies allowed the identification of HiFi-GS signatures
for large CNVs clinically detected using microarray
(Supplemental Table 12). Furthermore, the implementa-
tion of personal assembly data can add bp-level resolution
for complex rearrangements interpreted as balanced using
cytogenetic assays owing to resolution limitations
(Supplemental Figure 11).

New candidate genes after reanalysis across all data
and variant prioritization

The joint sequencing results and automated prioritization
were reviewed by an expert analysist (genetic counselor or
clinical laboratory director) to identify a large fraction of
patients (58%) with potential new disease genes. Compel-
ling candidates were systematically submitted to GM.5 At
the time of manuscript submission, 152 candidate genes
were active in GM, 12 of which were identified in >1 un-
related family and 6 of which were recently published or
were close to publication and therefore in transition from

Figure 3 Examples of cases solved by HiFi long-read genome sequencing (HiFi-GS). Long-read genome sequencing addresses
challenges in short-read genome sequencing as exemplified by 3 cases. A. HiFi-GS identified a novel pentamer expansion in STARD7,
previously associated with familial adult myoclonic epilepsy, 2 in an extended family. B. Pedigree of family with STARD7 disease, case 193
had adult-onset dystonia, whereas cases 189, 190, and 192 had childhood onset of disease, consistent with anticipation. C. Repeat primed-
polymerase chain reaction (PCR) confirmed the expansion detected in the HiFi-GS in case 189, which was also detected by the tandem
genotyping tool. The negative control had a normal repeat pattern. D. Affected siblings cases 110 and 111 were found to be compound
heterozygous for 2 pathogenic variants in AARS2: NM_020745.4: maternally inherited, c.595C>T (p.Arg199Cys) and a paternally inherited
deletion, chr6:44306625-44310745 encompassing exons 5 to 7 of AARS2. E. Clinical confirmation of the deletion using long-read PCR
detected the deletion (arrow) and normal allele in both siblings and unaffected father. F. Clinical Sanger confirmation of the maternally
inherited c.595C>T (p.Arg199Cys) variant. G. Case 259 was clinically diagnosed with Niemann-Pick disease, but parents were unavailable
for phasing. HiFi-GS confirmed the pathogenic variants were in trans, consistent with autosomal recessive disease. NPC1:
c.3570_3573dupACTT (p.Ala1192Thrfs*67) (left)/ c.1947+5G>C (right).
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GUS to diagnostic. More than 36% of submitted GUS had
>10 hits in GM, suggesting that they are strong candidates
as we had previously reported.30 Collectively, this un-
derscores the imperative for data sharing and collaboration
in rare disease research and diagnosis.

Individual data sharing to enhance variant and gene
discovery

Uniform research consents permit sharing of sequences and
structured phenotypic data with other rare disease in-
vestigators to enhance gene matching beyond the variation
submitted to GM. Raw data submitted to database of Ge-
notypes and Phenotypes (phs002206.v2.p1) will allow for
joint calling with other available rare disease data sets.
Access to processed data for rare variants, de-identified
pedigrees, and coded phenotypes will be available to
registered users through a cloud-hosted PhenoTips web user
interface: https://phenotips-ga4k.cmh.edu (access inquiries
for investigators GA4k@cmh.edu) (Supplemental
Figure 12).23 This web user interface provides a simple
interface for users to review participant data, identify co-
horts of participants on the basis of phenotypic or genotypic
attributes, and review rare variants in the context of a spe-
cific phenotype. Furthermore, this interface will continue to
be dynamically synchronized with the GA4K program, and
it already included >1000 additional cases in various stages
of ongoing analyses at the time of manuscript submission
for a total of 5922 individuals across 2537 families and
processed variants for 2069 patients.

Discussion

We developed a comprehensive rare disease phenotype–
genotype data repository across a large pediatric health
care system in the GA4K program. Full access is provided
to enable medical genomic testing, complete annotation for
reanalysis, and use by contemporary research genomic
tools. Using multiple sequencing methods and analytic
approaches, the first 1083 patients evaluated serve as a
roadmap to improve rare disease diagnostics and as a cata-
log of case data for utility in biomedical discovery.

We combined publicly available machine-learning ap-
proachesE/A for variant and disease gene prioritization at scale
inwhich the nominated candidate variant was ranked byE/A in
539 (49.8%) cases, supporting the use of machine-learning
tools as a first-pass, resource-saving analysis. Primarily retro-
spective studies suggested higher rates of relevant results, and
we replicated similar success to these studies in our observed
concordance among previously diagnosed cases.7,27,35

Importantly, the vast majority of our patients were undiag-
nosedwhen entering the study. This allowed us to establish the
utility of computationally assisted interpretation among pro-
spective patientswith diverse rare disease on a scale far beyond
any previously assessed rare disease cohort.9,35 We also
showcase patients having a strong candidate or diagnostic

variant identified through machine-learning ranking (subse-
quently confirmed through expert review) that may not have
otherwise been prioritized for further investigation owing to
combined supportingdata beingpulledbyartificial intelligence
from multiple sources and not easily digested by manual
analysis in a timelymanner, as expected in a clinical setting (ie,
not an obvious candidate that would arise from easily checked
metrics such as gene constraint and protein function). This
supports the utility of the approach not only for diagnostic
evaluation but also as a systematic source for generating hy-
potheses on disease gene discovery. Importantly, prioritization
is still biased given that it will inevitably rank genes that have
more linked resources (be it clinical, functional, or otherwise)
higher than poorly characterized genes, and therefore, genetic
prioritization independent of literature mining remains
important for gene discovery.36

We showed that there is diagnostic utility in ES rean-
alyses and/or repeat ES to improve coverage; however,
>10% diagnoses that we made in previously negative ES
cases were solved with elevation to GS, which, unlike most
ES analyses, included systematic CNV calling. As expected,
the utility of GS was lower in previously unassessed cases;
however, even in this group 1 in 20 diagnoses required GS.
Similar to previously unsolved cases, GS contributed pri-
marily to the detection of SVs. Given the known benefits of
HiFi-GS in SV detection, we pursued HiFi-GS in unsolved
rare diseases beyond earlier demonstration studies as routine
streamlining of trios.18,19 Early results from HiFi-GS
showed the expected improvement in detection rates for
SVs but also provided first glimpses of diagnostic variation
currently only achievable through HiFi-GS, such as the
discovery of novel repeat expansions (including repeat size
and sequence composition), the solving of CNV breakpoints
and orientation/localization, and the resolution of phase in
the absence of parental samples. The potential for having
full genome analyses by HiFi-GS was explored in this study
as proof of concept; further work will elaborate underex-
plored areas of HiFi-GS utility, such as personal assemblies,
haplotype-phasing, and directed work on duplicated gene
regions. In the meantime, our HiFi-GS variant catalogs
extending across hundreds of individuals provide the first
building blocks for using alternative GS methods in clinical
settings and particularly for unsolved diseases.

Finally, most unsolved cases in our cohort do have
candidate genes and variants but lack sufficient evidence to
assign pathogenicity owing to a lack of replication (also
known as the “n of 1” problem), with hundreds of genes and
variants currently followed through GM. Greater data
sharing is paramount for enhancing benefits to participants
and advancing scientific progress, along with maximizing
the utility of genomic data.37 Unfortunately, hesitancy to-
ward extensive data sharing persists among investigators
because of reasons that include the arduous processes
required for data sharing, concerns about participant pri-
vacy, and fear of loss of priority in data publication.37,38 Our
study follows regulations and considers recommendations
for responsible sharing of pediatric genomic data to support
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the benefits of data sharing to research participants and
patients while protecting privacy.37

Data Availability

Processed data for rare variants, de-identified pedigrees, and
coded phenotypes are available to registered users through a
cloud-hosted PhenoTips web user interface (https://
phenotips-ga4k.cmh.edu/). Access inquiries for in-
vestigators should be directed to GA4k@cmh.edu
(including key to correlate study numbers used in this
manuscript). Recurrent variants and their frequencies
derived from >1000 alleles of HiFi-GS data are available at:
https://github.com/ChildrensMercyResearchInstitute/GA4K

Acknowledgments

We would like to thank the families for participating in our
study. This work was made possible by the generous gifts to
Children’s Mercy Research Institute and Genomic Answers
for Kids program at Children’s Mercy Kansas City.

Author Information

Conceptualization: T. Curran, T. Pastinen.; Formal Anal-
ysis: A.S.A. Cohen, E.G. Farrow, J.T. Alaimo, C.J. Saun-
ders, I. Thiffault, T. Pastinen; Funding Acquisition: T.
Curran, T. Pastinen; Investigation: A.S.A. Cohen, E.G.
Farrow, A.T. Abdelmoity, J.T. Alaimo, S.M. Amudhavalli,
J.T. Anderson, L. Bansal, L. Bartik, B. Belden, C.D. Ber-
rios, R.L. Biswell, W.A. Cheung, K.A. Coffman, A.M.
Cooper, L.A. Cross, T. Curran, T.T.T. Dang, M.M. Elfrink,
K.L. Engleman, E.D. Fecske, C. Fieser, K. Fitzgerald, E.A.
Fleming, R.N. Gadea, J.L. Gannon, R.N. Gelineau-Morel,
M. Gibson, J. Goldstein, E. Grundberg, K. Halpin, B.S.
Harvey, B.A. Hesse, W. Hein, S.M. Herd, S.S. Hughes, M.
Ilyas J. Jacobson, J.L. Jenkins, S. Jiang, J.J. Johnston, K.
Keeler, J. Kussman, C. Lawsont, J.-B. Le Pichon, J.S.
Leeder, V.C. Little, D.A. Louiselle, M. Lypka, B.D.
McDonald, N. Miller, A. Modrcin, A. Nair, S.H. Neal, C.M.
Oermann, D.M. Pacicca, K. Pawar, N.L. Posey, N. Price,
L.M.B. Puckett, J.F. Quezada, N. Raje, E.T. Rrush, V.
Sampath, C.J. Saunders, C. Schwager, R.M. Schwend, E.
Shaffer, C. Smail, S. Soden, M.E. Strenk, B.R. Sullivan,
B.R. Sweeney, J.B. Tam-Williams, A.M. Walter, H. Welsh,
L.K. Willig Y. Yan, S.T. Younger, D. Zhou, T.N. Zion, I.
Thiffault, T. Pastinen; Methodology: A.S.A. Cohen, E.G.
Farrow, P. Baybayan, B. Belden, C.D. Berrios, S. Chakra-
borty, W.A. Cheung, T. Curran, M.M. Elfrink, M. Gibson,
E. Grundberg, S.M. Herd, J.J. Johnston, J. Korlach, C.
Lambert, S. Leeder, B.D. McDonald, N. Miller, A. Nair,
S.H. Neal, N.L. Posey, L.M.B. Puckett, W.J. Rowell, C.
Saunders, A.M. Walter, A.M. Wenger, S.T. Younger, T.N.

Zion, I. Thiffault, T. Pastinen; Software: P. Buczkowicz, O.
Buske; Writing-original draft: A.S.A. Cohen, E.G. Farrow,
I. Thiffault, T. Pastinen; Writing-review and editing: A.S.A.
Cohen, E.G. Farrow, A.T. Abdelmoity, J.T. Alaimo, S.M.
Amudhavalli, J.T. Anderson, L. Bansal, L. Bartik, P. Bay-
bayan, B. Belden, C.D. Berrios, R.L. Biswell, P. Bucz-
kowica, O. Buske, S. Chakraborty, W.A. Cheung, K.A.
Coffman, A.M. Copper, L.A. Cross, T. Curran, T.T.T.
Dang, M.M. Elfrink, K.L. Engleman, E.D. Fecske, C.
Fraiser, K. Fitzgerald, E.A. Fleming, R.N. Gadea, J.L.
Gannon, R.N. Gelineau-Morel, M. Gibson, J. Goldstein, E.
Grundberg, K. Halpin, B.S. Harvey, B.A. Heese, W. Hein,
S.M. Herd, S.S. Hughes, M. Ilyas, J. Jacobson, J.L. Jenkins,
S. Jiang, J.J. Johnston, K. Keeler, J. Korlach, J. Kuussman,
C. Lambert, C. Lawson, J.-B. Le Pichon, J.S. Leeder, V.C.
Little, D.A. Louiselle, M. Lypka, B.D. McDonald, N.
Miller, A. Modrcin, A. Nair, S.H. Neal, C.M. Oermann,
D.M. Pacicca, K. Pawar, N.L. Posey, N. Price, L.M.B.
Puckett, J.F. Quezada, N. Raje, W.J. Rowell, E.T. Rush, V.
Sampath, C.J. Saunders, C. Schwager, R.M. Schwend, E.
Shaffer, C. Smail, S. Soden, M.E. Strenk, B.R. Sullivan,
B.R. Sweeney, J.B. Tam-Williams, A.M. Walter, H. Welsh,
A.M. Wenger, L.K. Willig, Y. Yan, S.T. Younger, D. Zhou,
T.N. Zion, I. Thiffault, T. Pastinen.

Ethics Declaration

All studies were approved by the Children’s Mercy Institu-
tional Review Board (study # 11120514). Informed written
consent was obtained from all participants before study
inclusion.

Conflict of Interest

P. Baybayan, S. Chakraborty, J. Korlach, C. Lambert, W.J.
Rowell, and A.M. Wenger are employees and shareholders of
Pacific Biosciences. P. Buczkowicz and O. Buske are em-
ployees of PhenoTips. N. Miller became an employee of
Bionano Genomics after contribution to the work described in
this manuscript. All other authors declare no conflicts of
interest.

Additional Information

The online version of this article (https://doi.org/10.1016/j.
gim.2022.02.007) contains supplementary material, which
is available to authorized users.

Authors

Ana S.A. Cohen1,2,3 , Emily G. Farrow1,3,4,
Ahmed T. Abdelmoity4, Joseph T. Alaimo2,3,

1346 A.S.A. Cohen et al.

https://phenotips-ga4k.cmh.edu/
https://phenotips-ga4k.cmh.edu/
mailto:GA4k@cmh.edu
https://github.com/ChildrensMercyResearchInstitute/GA4K
https://doi.org/10.1016/j.gim.2022.02.007
https://doi.org/10.1016/j.gim.2022.02.007
https://orcid.org/0000-0002-6353-6350


Shivarajan M. Amudhavalli3,5, John T. Anderson6,
Lalit Bansal4, Lauren Bartik3,5, Primo Baybayan7,
Bradley Belden1, Courtney D. Berrios1,
Rebecca L. Biswell1, Pawel Buczkowicz8, Orion Buske8,
Shreyasee Chakraborty7, Warren A. Cheung1,
Keith A. Coffman4, Ashley M. Cooper4, Laura A. Cross5,
Tom Curran9, Thuy Tien T. Dang4, Mary M. Elfrink1,
Kendra L. Engleman5, Erin D. Fecske4, Cynthia Fieser4,
Keely Fitzgerald4, Emily A. Fleming5, Randi N. Gadea5,
Jennifer L. Gannon5, Rose N. Gelineau-Morel3,4,
Margaret Gibson1, Jeffrey Goldstein4, Elin Grundberg1,
Kelsee Halpin3,4, Brian S. Harvey6, Bryce A. Heese5,
Wendy Hein4, Suzanne M. Herd1, Susan S. Hughes5,
Mohammed Ilyas3,4, Jill Jacobson3,4, Janda L. Jenkins5,
Shao Jiang10, Jeffrey J. Johnston1, Kathryn Keeler6,
Jonas Korlach7, Jennifer Kussmann5, Christine Lambert7,
Caitlin Lawson5, Jean-Baptiste Le Pichon4,
James Steven Leeder1, Vicki C. Little4,
Daniel A. Louiselle1, Michael Lypka10,
Brittany D. McDonald1, Neil Miller1,3,11, Ann Modrcin4,
Annapoorna Nair1, Shelby H. Neal1,
Christopher M. Oermann4, Donna M. Pacicca6,
Kailash Pawar4, Nyshele L. Posey1, Nigel Price6,
Laura M.B. Puckett1, Julio F. Quezada3,4, Nikita Raje3,12,
William J. Rowell7, Eric T. Rush3,5,13,
Venkatesh Sampath14, Carol J. Saunders1,2,3,
Caitlin Schwager5, Richard M. Schwend6,
Elizabeth Shaffer4, Craig Smail1, Sarah Soden4,
Meghan E. Strenk5, Bonnie R. Sullivan5,
Brooke R. Sweeney3,4, Jade B. Tam-Williams4,
Adam M. Walter1, Holly Welsh5, Aaron M. Wenger7,
Laurel K. Willig4, Yun Yan3,4, Scott T. Younger1,
Dihong Zhou5, Tricia N. Zion1,3,4,5, Isabelle Thiffault1,2,3,*,
Tomi Pastinen1,3,9,*

Affiliations

1Genomic Medicine Center, Children’s Mercy Kansas City,
Kansas City, MO; 2Department of Pathology and Labora-
tory Medicine, Children’s Mercy Kansas City, Kansas City,
MO; 3UKMC School of Medicine, University of Missouri
Kansas City, Kansas City, MO; 4Department of Pediatrics,
Children’s Mercy Kansas City, Kansas City, MO; 5Division
of Genetics, Children’s Mercy Kansas City, Kansas City,
MO; 6Department of Orthopaedic Surgery, Children’s
Mercy Kansas City, Kansas City, MO; 7Pacific Biosciences
of California, Inc, Menlo Park, CA; 8PhenoTips, Toronto,
Canada; 9Children’s Mercy Research Institute, Kansas City,
MO; 10Bionano Genomics, Inc, San Diego, CA; 11Division
of Allergy Immunology Pulmonary and Sleep Medicine,
Children’s Mercy Kansas City, Kansas City, MO; 12Divi-
sion of Neonatology, Children’s Mercy Kansas City, Kansas
City, MO; 13Department of Internal Medicine, University of
Kansas School of Medicine, Kansas City, MO; 14Division

of Neonatology, Children's Mercy Hospital Kansas City,
Kansas City, MO

References
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