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Diffuse large B-cell lymphoma (DLBCL), the most common form of

lymphoma, is typically treated with chemotherapy combined with the

immunotherapy rituximab, an antibody targeting the B cell receptor, CD20.

Despite the success of this treatment regimen, approximately a third of

DLBCL patients experience either relapse or have refractory disease that is

resistant to rituximab, indicating the need for alternative therapeutic strategies.

Here, we identified that CD74 and IL4R are expressed on the cell surface of

both CD20 positive and CD20 negative B cell populations. Moreover, genes

encoding CD74 and IL4R are expressed in lymphoma biopsies isolated from all

stages of disease. We engineered bispecific antibodies targeting CD74 or IL4R

in combination with rituximab anti-CD20 (anti-CD74/anti-CD20 and anti-

IL4R/anti-CD20). Bispecific antibody function was evaluated by measuring

direct induction of apoptosis, antibody-dependent cellular phagocytosis

(ADCP), and antibody-dependent cellular cytotoxicity in both rituximab-

sensitive and rituximab-resistant DLBCL cell lines. Both anti-CD74/anti-

CD20 and anti-IL4R/anti-CD20 were able to mediate ADCC and ADCP, but

CD74-targeting therapeutic antibodies could also mediate direct cytotoxicity.

Overall, this study strongly indicates that development of bispecific antibodies

that target multiple B cell receptors expressed by lymphoma could provide

improved defense against relapse and rituximab resistance.

KEYWORDS

bispecific antibody, lymphoma, diffuse large B cell lymphoma, rituximab, cancer
therapy, CD20, CD74, IL4R

Introduction

About 4% of all cancer diagnoses in the United States each year are classified as Non-
Hodgkin’s lymphomas (NHL) (1). The most common type of NHL is diffuse large B cell
lymphoma (DLBCL), which represents 40% of all newly diagnosed lymphomas annually
(2). There are many subtypes of DLBCL, which are based on gene expression profiling
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and location of initiation (3–5). Despite being genetically and
phenotypically diverse, most patients with DLBCL are treated
with common therapy regardless of the subtypes involved.
However, with the advances in immunotherapy, more targeted
therapeutic approaches are being implemented.

One such therapeutic is the monoclonal antibody rituximab,
which targets the B cell marker CD20 (6). Rituximab was the first
monoclonal antibody approved by the United States Food and
Drug Administration (FDA) for use in cancer treatment in the
late 1990’s, and in the early 2000’s, it was added to the standard
DLBCL chemotherapeutic regimen, CHOP, which includes
cyclophosphamide, vincristine, doxorubicin, and prednisone
(7–13). With the addition of rituximab, R-CHOP demonstrated
a 10-year disease-free survival of approximately 64%, an
improvement compared to the 42.5% disease-free survival
with CHOP treatment alone (8). Despite this success, 30–
40% of DLCBL patients experience either relapse or refractory
disease with R-CHOP treatment (14–18). There have been
various mechanisms proposed for the development of rituximab
resistance, including a decrease in complement-dependent
cytotoxicity, resistance to killing via antibody-dependent cell-
mediated cytotoxicity, and resistance to apoptosis (19). One of
the most strongly supported hypotheses attributes resistance
to the loss of CD20 expression on B cells following initial
rituximab treatment (19–21). Importantly, rituximab targets
only select subpopulations of B cells and is not a pan-B
cell therapeutic (22). For example, plasma B cells do not
express CD20 and are not targeted by rituximab. This has
led to the development of immunotherapies targeting other B
cells markers to have broader clinical application. Due to the
phenotypically diverse nature of DLCBL subtypes, it has been
suggested that targeting multiple B cell specific pathways or
receptors would be a more effective treatment (3). Additionally,
development of resistance may prove to be more difficult if there
are multiple therapeutic targets, as these targets would need
to be simultaneously mutated or expression level reduced to
effectively escape treatment (3).

Bispecific antibodies are a new immunotherapy that allows
for expression of an antibody that targets two cell surface
receptors, simultaneously. There are multiple mechanisms
associated with bispecific antibody efficacy, including
complement activation; recruitment of macrophages for
antibody-dependent cellular phagocytosis (ADCP); recruitment
of natural killer (NK) cells or T-cells for antibody-dependent
cell-mediated cytotoxicity (ADCC); apoptosis activation; and
priming for cross-presentation by antigen-presenting cells
(19, 23, 24). One advantage of bispecific antibodies over more
conventional treatments is the decreased risk of resistance
against two different targets.

In this study, using a bispecific antibody approach, we
sought to broaden the therapeutic benefit of rituximab by
developing novel lymphoma-targeted bispecific antibodies.
We identified CD74 and IL4R as surface receptors that are

expressed on B cell populations that have CD20 or do not
have CD20 expression, respectively. Moreover, we found that
these markers are expressed in lymphomas and could serve as
potential therapeutic targets on B cells. We engineered bispecific
antibodies against these targets in combination with anti-CD20.
We then evaluated these antibodies for functional targeting of
lymphoma cell lines.

Materials and methods

Single cell RNA sequencing analysis

Single cell RNA sequencing (scRNA-seq) data was acquired
from a previously published dataset of scRNA-seq performed
on peripheral blood mononuclear cells (PBMCs) from 12
healthy and HIV-infected subjects that were deidentified from
Duke University (25). Original sample collection was reviewed
and approved by the Duke Medicine Institutional Review
Board. The data is publicly available at SRA BioProject ID:
PRJNA681021. PBMCs were thawed, washed and placed in
single-cell suspensions with PBS + 0.04% bovine serum albumin
(BSA). Cellular suspensions were loaded on a GemCode Single-
Cell instrument (10X Genomics, Pleasanton, CA, USA) to
generate single-cell beads in emulsion. Single-cell RNA-seq
libraries were then prepared using a GemCode Single Cell 3′

Gel bead and library kit version 2 (10X Genomics). Single-
cell barcoded cDNA libraries were quantified by quantitative
PCR (Kappa Biosystems, Potters Bar, UK) and sequenced on
an Illumina (San Diego, CA, USA) NextSeq 500 (26–29). Read
lengths were 26 bp for read 1, 8 bp i7 index, and 98 bp read 2.
Cells were sequenced to greater than 50,000 reads per cell.

After sequencing, the Cell Ranger Single Cell Software Suite
(version 2.1.1) was used to generate sequencing FASTQ files
and to perform sample de-multiplexing, barcode processing,
reference alignment and single-cell 3′ gene counting (30). Reads
were aligned to the human genome (GRCH38). Samples were
aggregated using the CellRanger Aggr function to create a
single matrix of cell barcodes and gene counts for the groups.
During the process each library was normalized for mapped
sequencing depth. In order to control for variation in the
number of reads per sample (sequencing depth), reads were
subsampled from higher-depth libraries until they all had an
equal number of reads per cell that were confidently mapped
to the transcriptome. Finally, in order to control for technical
variation and correct for any batch effects we used the Seurat
analysis pipeline Multi CCA method to regress out cell-cell
variation in gene expression. The union of variable genes across
all individual samples were utilized to renormalize the data.

Matrices of cell barcodes and gene counts generated by
Cell Ranger were loaded into Seurat R package (v3.2.3)
for graph-based cell clustering, dimensionality reduction and
data visualization (31–33). We filtered low quality cells that
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had lower than 200 expressed transcripts and percentage of
mitochondrial genes expressed greater than 20% and for the
primary cell model we reduced this threshold to greater
than 10% mitochondrial genes. We included up to 45 PCA
dimensions for the PBMCs and 48 PCA for the primary cell
model for downstream graph-based clustering and UMAP
visualization. All other parameters we followed the default
Seurat recommendations. We then selected cells that were
B cells using CD79A transcript expression and utilized this
subset of cells for further analysis. Genes that correlated with
MS4A1 or CXCR4 transcript expression were calculated by
Pearson correlation and corrected for multiple comparisons
using Bonferroni. Graphs and plots were generated using the
Seurat and ggplot2 (v3.3.3) R packages and Graphpad Prism
version 8 (Graphpad Software, San Diego, CA, USA). The
single-cell RNA seq unprocessed reads have been deposited in
the NCBI SRA database under the BioProject ID: PRJNA681021.
Code and other processed file formats are available from
corresponding author/s upon reasonable request.

Lymphoma panel gene expression
assay

Lymphoma cDNA Array I and Array II were purchased
from OriGene Technologies, Inc. (Rockville, MD, USA). The 2
panels consisted of cDNA from the following tumor samples:
12 normal, 15 stage IE, 41 stage I, 1 stage IIB, 12 stage
IIE, 6 stage II, 1 stage III, 7 stage IV, and 1 N/R. Plates
with lyophilized cDNA were warmed to room temperature,
centrifuged for 30 s at 1,000 revolutions per minute, and pellets
from each well suspended in 30 µl of qPCR master mix.
For a single 30 µl reaction, the qPCR master mix consisted
of 15 µl of 2x Taqman Fast Advanced Master Mix (Applied
Biosystems, Waltham, MA, USA), 1.5 µl of 20x Taqman
probe (Thermo Fisher Scientific, Waltham, MA, USA), and
13.5 µl of PCR-grade water (Invitrogen, Waltham, MA, USA).
Probes utilized in the assay targeted IGSF9 (Hs00325279_m1),
CD209 (Hs01588349_m1), MS4A1 (Hs00544819_m1), IL4R
(Hs00965056_m1), and CD74 (Hs00269961_m1). An 18S probe
(Hs03003631_g1) was used as a housekeeping control. Only
1 probe was used per master mix. Following resuspension,
plates were vortexed, centrifuged and placed on ice. Plates were
loaded into the QuantStudio 12 Flex (Applied Biosystems).
After loading, the reactions underwent an initial 50◦C for
2 min activation followed by a 95◦C for 10 min pre-soak for
1 cycle. The remaining 42 cycles were performed in two steps:
denaturing at 95◦C for 15 s followed by annealing at 60◦C
for 1 min. Data was analyzed by subtracting the Ct values
of 18S from the Ct value of the target gene. This difference
(x) was transformed via the function 2ˆ(-x) and plotted on a
logarithmic scale to illustrate target gene expression relative to
18S for each sample.

Cell culture

SU-DHL-4 (CRL-2957), NU-DUL-1 (CRL-2969), and SU-
DHL-8 (CRL-2961) cell lines were purchased from the Non-
Hodgkin’s Lymphoma Cell Line Panel at ATCC (Manassas, VA,
USA) and maintained in RPMI-1640 medium (Gibco, Grand
Island, NY, USA) supplemented with 10% fetal bovine serum
(Thermo Fisher Scientific). All cell lines were cultured at 37◦C
under 5% CO2. Media was refreshed every 48 h.

RT-PCR

RNA extraction was performed according to manufacturer
protocol using RNeasy Plus Mini Kit with the additional
use of Qiashredder from Qiagen (Hilden, Germany). cDNA
synthesis was performed using SuperScriptTM VILOTM cDNA
Synthesis kit and High-Capacity cDNA Reverse Transcription
Kit (Thermo Fisher Scientific). RT-PCR was performed using
TaqMan Fast Advanced Master Mix (Thermo Fisher Scientific)
and the following Advanced Biosystems Taqman Probes: 18S
TaqMan Probe (FAM-MGB) Assay ID: Hs99999901_s1, MS4A1
TaqMan Probe (FAM-MGB) Assay ID: Hs00544819_m1, CD74
TaqMan Probe (FAM-MGB) Assay ID: Hs00269961_m1, IL4R
TaqMan Probe (FAM-MGB) Assay ID: Hs00965056_m1.

Antibodies

Rituximab was purchased from Creative Biolabs (Shirley,
NY, USA) and Invivogen (San Diego, CA, USA). Milatuzumab
(TAB-763), Dupilumab (TAB-021ML) were purchased from
Creative Biolabs. Bispecific antibodies were produced in
collaboration with Creative Biolabs. Expression vectors
encoding the antibody heavy and light chain gene sequences
were transiently transfected and expressed in HEK293F
cells. Secreted antibody was purified by Protein A affinity
chromatography, ultrafiltration and then subjected to 0.2-
micron sterile filtration. Purified antibodies were stored at PBS,
pH 7.4. For sequences used for each heavy and light chain
in each of the anti-CD20/anti-CD74 bispecific antibody and
anti-CD20/anti-IL4R bispecific antibodies (see Supplementary
Data 1). Quality of bispecific antibodies was measured by
Creative Biolabs by reducing SDS-PAGE and size exclusion
chromatography-HPLC (Supplementary Figure 1). AffiniPure
Goat Anti-Human IgG, Fcγ fragment specific (109-005-
098) cross-linking antibody was purchased from Jackson
ImmunoResearch Laboratories, Inc. (West Grove, PA, USA).

Enzyme-linked immunosorbent assays

Enzyme-linked immunosorbent assays (ELISAs) were
performed using the following antigens and antibodies:
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recombinant CD20 full length protein (Acro Biosystems,
Newark, DE, USA), recombinant CD74 protein (R&D
Systems, Minneapolis, MN, USA), recombinant IL4R protein
(R&D Systems), human Anti-CD20 antibody (Invivogen),
Milatuzumab/Anti-CD74 Antibody (Creative Biolabs),
Dupilumab/IL4R monoclonal antibody (Creative Biolabs),
bispecific anti-CD20/anti-CD74 antibody (Creative Biolabs),
bispecific anti-CD20/anti-IL4R antibody (Creative Biolabs).
Antigens were all diluted to 2 µg/mL in 0.1 M sodium
bicarbonate and incubated on high-binding plates (Corning
Inc., Corning, NY, USA) overnight at 4 degrees. Antibodies
were diluted to 33.3 µg/mL in superblock buffer with sodium
azide followed by subsequent 1:3 dilutions until a final dilution
of 0.565 ng/mL. Secondary Goat anti-human IgG antibody
(Jackson ImmunoResearch Laboratories, Inc.) dilutions were
done in superblock buffer without sodium azide within range of
manufacturer’s recommendations at 1:50,000 dilution. SureBlue
Reserve Microwell Substrate (VWR, Radnor, PA, USA) was
added and incubated in the dark for 15 min. Immediately after,
0.33 N HCl Acid Stop solution was added to the plate and
absorbance was measured at 450 nm.

Crosslinking apoptosis assay

Cells were seeded at 50,000 cells per well in 24 well dishes. 10
µg/mL of respective antibody and AffiniPure Goat Anti-Human
IgG, Fcγ fragment specific cross-linking antibody (Jackson
ImmunoResearch Laboratories, Inc.) was added to wells and
incubated for 8 h. Cells were collected and incubated in the Muse
Annexin V reagent according to the manufacture’s protocol.
Total cell death was measured and recorded on the Muse Cell
Analyzer (Luminex Corporation, Austin, TX, USA) in reference
to crosslinking antibody control wells with the addition of only
crosslinking antibody.

Antibody-dependent cellular
cytotoxicity assay

ADCC Bioassay Core Kit (Promega, Madison, WI, USA)
was performed using the manufacturer protocol with the
addition of SU-DHL-4 (CRL-2957), NU-DUL-1 (CRL-2969),
and SU-DHL-8 (CRL-2961) cell lines as target cells purchased
from ATCC. ADCC Bioassay Complete Kit (Promega) was
performed using the manufacturer protocol with the provided
Raji target cells. Antibodies were treated at 1 µg/mL and
subsequently diluted at a 1:3 ratio until a final concentration
of 0.152 ng/mL. Respective target cells were incubated with
antibody and modified Jurkat NFAT-luc FcγRIIIa effector cells
for 6 h. Bio-Glo luciferase assay reagent was added to each well
and luminescence was measured.

Antibody-dependent cellular
phagocytosis assay

ADCP Bioassay Complete Kit (Promega) was performed
using the manufacturer protocol with the provided Raji target
cells and modified Jurkat NFAT-luc FcγRIIa-H effector cells.
Antibodies were treated at 1 µg/mL and subsequently diluted at
a 1:3 ratio until a final concentration of 0.152 ng/mL. Raji target
cells were incubated with antibody and modified Jurkat NFAT-
luc FcγRIIa-H effector cells for 6 h. Bio-Glo luciferase assay
reagent was added to each well and luminescence was measured.

Results

Identification of candidate therapeutic
targets on CD20 positive and negative
B cells

To identify putative B cell specific targets for the engineering
of bispecific antibodies against DLBCL, we performed
expression analysis of B cells isolated from healthy individuals
using single cell RNA sequencing from a prior published
study (SRA BioProject ID: PRJNA681021). CD20, the target of
rituximab, is encoded by the MS4A1 gene. Initial evaluation of
the MS4A1 levels showed heterogeneous expression within the
B cell subpopulations (Figure 1A). CD20 and the chemokine
receptor CXCR4 are critical for B cell trafficking and are
molecular targets for cancer immunotherapies (34–37).
Moreover, a prior study demonstrated that cells with high
CXCR4 expression were less responsive to rituximab treatment
suggesting an inverse expression pattern (38, 39). Therefore,
we examined the expression CXCR4 and confirmed an inverse
relationship between CXCR4 and CD20, with a low Pearson
correlation score of 0.008 (Figure 1A and Supplementary
Table 1). CXCR4 is known to be expressed by many other
immune cell types such as neutrophils and T cells, making
it less specific therapeutic targeting of B cells (40–44). Thus,
we focused on putative targets that correlated highly with
CXCR4 expression, were expressed on the B cell surface,
and had FDA-approved monoclonal antibodies available.
CD74 and IL4R were identified as candidates for further
investigation, with expression that overlapped with CXCR4
and Pearson correlation scores of 0.325 and 0.307, respectively
(Figures 1B,C and Supplementary Table 1). Additionally,
CD74 was broadly expressed and correlated highly with MS4A1
expression while IL4R did not, with correlation scores of 0.523
and −0.064, respectively (Supplementary Table 1). Thus, both
CD74 and IL4R could target B cells, even when CD20 is low or
not present.

Next, we determined MS4A1 (CD20), CD74 and IL4R gene
expression levels in 84 lymphoma samples across different
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FIGURE 1

CD74 and IL4R identified as good candidates for bispecific antibody development, in conjunction with CD20, by single cell RNA sequencing.
(A) tSNE plot of MS4A1 (Blue) and CXCR4 (Green). (B) tSNE plot of CD74 (Blue) and CXCR4 (Green). (C) tSNE plot of IL4R (Blue) and CXCR4
(Green). (D) Relative expression of MS4A1 in samples collected from healthy donors and donors with lymphoma at different stages of disease.
Each dot represents one individual. (E) Relative expression of CD74 in samples collected from healthy donors and donors with lymphoma at
different stages of disease. (F) Relative expression of IL4R in samples collected from healthy donors and donors with lymphoma at different
stages of disease. n = 12 healthy, 41 stage I, 15 stage IE, 19 stage II, 8 stage III/IV.

tumor stages (stage I-III/IV) and compared to expression in
12 healthy tissue controls using quantitative PCR of tissue
biopsies. We found that all three genes were expressed in
lymphoma samples of all stages, with no significant difference
compared to healthy control samples. CD74 had the highest
relative expression level followed by MS4A1 and IL4R. There
were no significant correlations with gene expression and tumor
stage, although CD74 expression did trend higher in later tumor
stages (Figures 1D–F). These results demonstrated that with
CD20, genes encoding CD74 and IL4R are highly expressed in
lymphoma tissues, in addition to being broad B cell markers, and
could represent candidate therapeutic targets for lymphoma.

Engineering bispecific antibodies
targeting CD74 or IL4R with anti-CD20

There are therapeutic antibodies that target CD74
(milatuzumab), IL4R (dupilumab), and CD20 (rituximab)
that are approved for clinical use. We utilized these antibody
combinations to engineer bispecific antibodies to combine
anti-CD74 with anti-CD20 and anti-IL4R with anti-CD20
(Figure 2A). After bispecific antibody expression and
purification, we determined antibody binding specificity

against CD20, CD74, and IL4R recombinant protein antigens
using ELISA. Using area under the curve (AUC) to compare
binding response, anti-CD20 (rituximab) (AUC 78.1),
bispecific anti-CD20/anti-CD74 (AUC 70.1) and bispecific
anti-CD20/anti-IL4R (AUC 79.8) all bound to the recombinant
CD20 with no appreciable non-specific binding from either
anti-CD74 (milatuzumab) (AUC 1.6) or anti-IL4R (dupilumab)
(AUC 1.5) antibodies (Figure 2B). Anti-CD74 (AUC 131.9) and
bispecific anti-CD20/anti-CD74 (AUC 132.5) bound exclusively
to CD74 with comparable levels of binding (Figure 2C).
Likewise, anti-IL4R (AUC 132.6) and bispecific anti-CD20/anti-
IL4R (AUC 133) bound exclusively and comparably to IL4R
(Figure 2D). These data confirmed antibody specificity and
similar binding levels between the monoclonal, single target
antibodies and the bispecific antibodies.

Anti-CD20 and anti-CD74-targeting
antibodies mediate direct
antibody-mediated cytotoxicity

We determined the ability of the antibodies to mediate
direct cytotoxicity of three lymphoma cell lines by measuring
apoptosis using annexin V in the presence of a cross-linking
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FIGURE 2

Bispecific antibody construction and antibody binding responses. (A) Schematic representation of rituximab, milatuzumab, dupilumab, and the
bispecific antibodies constructed with anti-CD20/anti-CD74 heavy chains and anti-CD20/anti-IL4R heavy chains. (B) Line graph of OD450
absorbance obtained by ELISA measuring antibody binding to CD20 at serial dilutions. (C) Line graph of OD450 absorbance obtained by ELISA
measuring antibody binding to CD74 at serial dilutions. (D) Line graph of OD450 absorbance obtained by ELISA measuring antibody binding to
IL4R at serial dilutions. Background absorbance, represented by the dashed line, was considered 3X blank well OD450 measurement.

antibody. We utilized a rituximab-sensitive (SU-DHL-4),
rituximab-intermediate (NH-DUL-1) and rituximab-resistant
(SU-DHL-8) cell lines (38). First, we determined the expression
of MS4A1, CD74, and IL4R in each cell line using qPCR
(Supplementary Figure 2). MS4A1 (CD20) gene expression was
detected in all three cell lines but was reduced in the rituximab-
intermediate and resistant cell lines (Supplementary Figure 2).
CD74 expression was detectable in all three cell lines, with no
significant difference in expression level between the different
cell lines. Similarly, IL4R was detectable in all three cell lines,
and like MS4A1, was reduced in the rituximab-intermediate
and resistant cell lines (Supplementary Figure 2). This data
suggested that reduced gene expression of CD20 and IL4R in
the NH-DUL-1 and SU-DHL-8 cell lines could contribute to
the observed resistance to antibody therapy. Next, we measured
antibody-mediated direct cytotoxicity of the cell lines. We found
that the anti-CD20 antibody induced 25.5% apoptosis of the
rituximab-sensitive SU-DHL-4 cell line (Figure 3A), 18.3 and
2.3% apoptosis of the intermediate (NH-DUL-1) and resistant
(SU-DHL-8) cell lines, respectively (Figures 3B,C). Anti-CD74
antibody also induced direct cytotoxicity of SU-DHL-4 cell
line at 8.6% and had higher percent cytotoxicity compared
to rituximab (Figure 3A), of the NU-DUL-1 and SU-DHL-8

cell lines with 22.1 and 16.2% induced apoptosis, respectively
(Figures 3B,C). Anti-IL4R antibody did not directly induce
apoptosis in any of the tested cell lines with 2.7, 0.4, and
0.4% for the SU-DHL-4, NU-DUL-1 and SU-DHL-8 cell lines,
respectively (Figures 3A–C). This data indicated that antibodies
that are cross-linked to CD20 or CD74 could induce direct
cellular cytotoxicity of lymphoma cells, whereas antibodies
targeting IL4R could not. Moreover, reduced expression of
CD20 on lymphoma cells reduced this cytotoxicity by anti-
CD20 antibody.

The bispecific antibodies anti-CD20/anti-CD74 or anti-
CD20/anti-IL4R could also mediate direct toxicity of the SU-
DHL-4 cell line with 23.6 and 21.9% apoptosis, respectively,
albeit not higher than anti-CD20 alone (25.5% apoptosis)
(Figure 3A). However, the two bispecific antibodies had higher
percent apoptosis of the rituximab-resistant cell lines NU-DUL-
1 and SU-DHL-8 compared to anti-CD20 alone (Figures 3B,C).
These results demonstrated that bispecific antibodies targeting
CD20 and either CD74 or IL4R could mediate direct cytotoxicity
of lymphoma cells, but when using a rituximab resistant
lymphoma cell line (SU-DHL-8), bispecific anti-CD20/anti-
CD74 or anti-CD74 alone induced the highest levels of
apoptosis.
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FIGURE 3

Apoptotic response to crosslinking antibodies within varying rituximab-resistant lymphoma cell lines, measured by annexin V staining. (A) Bar
graph of the percent of total apoptosis within rituximab-sensitive, high CD20 expressing, SU-DHL-4 cells after 8 h of exposure to antibodies and
crosslinking antibodies. (B) Bar graph of the percent of total apoptosis within rituximab-intermediate, intermediate CD20 expressing, NU-DUL-1
cells after 8 h of exposure to antibodies and crosslinking antibodies. (C) Bar graph of the percent of total apoptosis within rituximab-resistant,
low CD20 expressing, SU-DHL-8 cells after 8 h of exposure to antibodies and crosslinking antibodies. All bar graphs normalized to respective
cell line crosslinking antibody control.

Bispecific antibodies could mediate
antibody-mediated cytotoxicity and
phagocytosis of lymphoma
antibody-dependent cellular
cytotoxicity and antibody-dependent
cellular phagocytosis

In addition to direct cytotoxicity of lymphoma cells by
engaging cellular receptors, therapeutic antibodies can engage
and recruit effector cells through Fc-Fc receptor interactions
to mediate antibody-dependent cellular cytotoxicity (ADCC)
or ADCP. We utilized a cell-based assay employing a reporter
gene that generates luciferase downstream of the Fc receptor
pathway (Promega). For ADCC, FcγRIIIa is engaged and for
ADCP, FcγRIIa-H is primarily engaged (Figure 4A). We utilized
these cell lines as proxies for ADCC and ADCP activities.
We found that anti-CD20 alone could mediate ADCC with
increasing concentrations of antibody using Raji (AUC 50,712),
SU-DHL-4 (11,125), NU-DUL-1 (AUC 6,535), and SU-DHL-8
(AUC 22,929) lymphoma targets (Figure 4B). The two bispecific
antibodies (anti-CD20/anti-CD74 and anti-CD20/anti-IL4R)
could also induce ADCC, but at lower levels than anti-
CD20 alone. Anti-CD20/anti-CD74 bispecific ADCC AUC for
Raji, SU-DHL-4, NU-DUL-1 and SU-DHL-8 cell targets were:
10,512, 1,351, 1,798, and 9,815, respectively (Figure 4B). Anti-
CD20/anti-IL4R bispecific ADCC AUC for Raji, SU-DHL-4,
NU-DUL-1 and SU-DHL-8 cell targets were: 10,001, 2,123,

1,623, and 11,610, respectively (Figure 4B). Similarly, anti-
CD20 and the bispecific antibodies could induce ADCP of
Raji cell targets using our cell reporter system, with anti-CD20
having a higher magnitude of response (Figure 4C). The AUC
for anti-CD20, bispecific anti-CD20/anti-CD74, and bispecific
anti-CD20/anti-IL4R being 1,679, 482, and 510, respectively.
These data showed that the anti-CD20 monoclonal antibody
and both bispecific antibodies containing anti-CD20 could
induce ADCC and ADCP immune responses, although the
bispecific antibodies had lower magnitude of ADCC and ADCP
at the same antibody concentrations.

Discussion

Although therapeutic applications of bispecific antibodies
are relatively new, the dual nature of the antibodies could
be predicted to decrease the ability of lymphomas to escape
treatment or develop resistance as two cellular targets would
need to be escaped. Besides tagging cells for destruction,
bispecific antibodies may also be designed to deliver
nanoparticles or drugs to target cells (45). Additionally,
some treatments such as CAR-T cells require significant
modifications specific to each patient, a costly and time-
consuming series of steps that may be avoided with the use of
bispecific antibodies (46, 47). Here, we investigated the ability
of anti-CD20/anti-CD74 and anti-CD20/anti-IL4R bispecific
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FIGURE 4

Antibodies induce ADCC and ADCP responses within lymphoma cell lines. (A) Schematic representation of the assays used to measure ADCC
and ADCP response within modified Jurkat effector cells. Created with BioRender.com. (B) Line graphs of the relative fluorescent units (RFU) of
luciferase produced by ADCC activation of FcγRIIIa modified Jurkat cells when incubated with Raji, SU-DHL-4, NU-DUL-1, or SU-DHL-8 DLBCL
cell lines and serial diluted anti-CD20 (Blue), bispecific anti-CD20/anti-CD74 (Purple), or bispecific anti-CD20/anti-IL4R (Orange) antibodies. (C)
Line graph of the relative fluorescent units (RFU) of luciferase produced by ADCC activation of FcγRIIa-H modified Jurkat cells when incubated
with Burkitt’s lymphoma Raji cells and serial diluted anti-CD20 (Blue), bispecific anti-CD20/anti-CD74 (Purple), or bispecific
anti-CD20/anti-IL4R (Orange) antibodies.
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antibodies to bind their designated targets on lymphoma cells
and to kill their targeted cells via different mechanisms.

Using B cells isolated from healthy patients, we explored
other potential B cell markers that previously have FDA-
approved antibody therapies available and focused on CD74
and IL4R. CD74, a transmembrane glycoprotein that functions
as a survival receptor, is highly expressed in malignant B
cells (48, 49). Stein et al. demonstrated survival of immune-
deficient mice with lymphoma was significantly improved
when treated with anti-CD74 antibody, especially when
administered in conjunction with rituximab (50). Milatuzumab,
the first anti-CD74 monoclonal antibody approved by the
FDA for clinical practice, is effective at treating aggressive
B cell malignancies such as multiple myeloma, especially in
combination with rituximab (49–51). When PBMC samples
from patients were treated with milatuzumab, naïve and
memory B cells were bound by milatuzumab 98.3 and 97%
of the time, respectively (52). Although IL4R expression
was limited to a smaller population of total B cells, it
provided an opportunity to target cells otherwise capable
of escaping rituximab treatment due to their low CD20
expression. Cells treated with the IL4 antagonist, APG201,
were more susceptible to chemotherapeutics, suggesting a role
for IL4 pathway signaling in chemotherapy resistance (53).
Furthermore, anti-IL4R treatments reduced inflammatory cell
recruitment, improved measurable lung function and decreased
overall asthma symptoms in both humans and monkeys (54,
55). Consequently, both targets would help expand the range of
targeted cells compared to current rituximab treatment.

The bispecific antibodies, anti-CD74/anti-CD20 and anti-
IL4R/anti-CD20, caused significantly more apoptosis than anti-
CD20 alone in both the rituximab intermediate (NU-DUL-1)
and rituximab resistant (SU-DHL-8) cell, while the rituximab-
sensitive (SU-DHL-4) cell line showed comparable levels of
apoptosis between the bispecific antibodies and anti-CD20.
These data demonstrate the potential benefit of using bispecific
antibodies in conditions of rituximab resistance without losing
significant apoptosis induction in conditions of continued
rituximab sensitivity. It is interesting to note that the relative
patterns of apoptosis induction by anti-CD74 across the cell
lines appear to be negatively correlated with CD20 expression:
the rituximab-resistant cell line exhibited higher killing by anti-
CD74 compared to anti-CD20, while the rituximab-sensitive
cell line exhibited lower apoptosis by anti-CD74. Milatuzumab,
which has previously been shown to reduce cell growth
and proliferation of B cells (52), mediated direct apoptosis
of the lymphoma cells in this study. The anti-IL4R drug,
dupilumab, an antagonist for the IL4 signaling pathway (56,
57), did not robustly elicit cytotoxicity here. This highlights
both CD20 and CD74 as targets to facilitate direct killing
of lymphoma cells without the need for effector cells. The
significant utility of bispecific antibodies is demonstrated here
as anti-IL4R treatment only was quite ineffective, while using

an anti-CD20/anti-IL4R bispecific antibody caused apoptosis
significantly higher than—or at least comparable to—the anti-
CD20 treatment in all cell lines. Gupta et al. presented similar
results in other bispecific antibodies, with very little apoptosis
after treatment with monoclonal antibodies for CD20 or CD74,
but anti-CD20/anti-CD74 bispecific antibodies displayed 3–
4 times higher apoptosis than either monoclonal antibody
alone (58).

ADCC experiments revealed high activity with anti-CD20
treatment, though the bispecific antibodies showed decreased
activity in all cell lines. The decrease in ADCC of the bispecific
antibodies could be due to the having only a single Fab
arm of the antibody for each target resulting in reduced
antibody affinity or other binding kinetic attributes. The
decreased effectiveness of the bispecific antibody containing
anti-CD74 may also be due to the rapid internalization causing
difficulty for the effector cells to detect cell surface antibodies,
therefore making cell recruitment unlikely (59–61). Stein et al.
explicitly demonstrated that anti-CD74 antibody treatment did
not produce significant ADCC in Raji cells when cocultured
with purified human leukocyte populations from peripheral
blood samples (50). Here, ADCC experiments utilized only
T-lymphocytes, however, it is possible that ADCC via NK
cells would occur with anti-CD74 treatment (62, 63). ADCP
activity was high in Raji cells when treated with anti-CD20, with
both anti-CD20/anti-CD74 and anti-CD20/anti-IL4R bispecific
antibodies having lower than anti-CD20 but still elevated ADCP
response. These bispecific antibodies have shown to be effective
in all methods of cell killing evaluated, similar to those results of
anti-CD20 alone.

Bispecific antibodies are already being tested in clinical
trials and are demonstrating their utility in a broad range of
diseases (64–68). The bispecific anti-CD20/anti-CD74 antibody
has been tested in mantle cell lymphoma, an NHL sub-type
and has significantly improved survival of mice with lymphoma
(58). Furthermore, an anti-IL4Rα/anti-IL5 bispecific antibody
decreased the number of recruited lymphocytes and eosinophils
during asthmatic reactions in mice more effectively than
when either antibody was administered alone or concurrently,
demonstrating the ability of IL4R bispecific antibodies to be
effective in alleviating symptoms of asthma (54). Finally, an anti-
CD20/anti-CD3 bispecific antibody targeted lymphoma and
cytotoxic T-cells, showed high killing capacity both in vivo and
in vitro, even with very low cell surface expression of CD20;
anti-CD20 alone was unable to cause significant cell death (46).
Phase I clinical trials of this anti-CD20/anti-CD3 antibody,
Glofitamab, showed that at high doses, nearly 50% of previously
treated patients with aggressive NHL had complete recovery
after treatment, and 81% of those remained disease free past
2 years following treatment (47). Previous reports in mantle
cell lymphoma cell lines show distinct cytoskeletal dynamics,
ROS generation, and disruptions of NF-κB pathways after
treatment with rituximab and milatuzumab (51). Future studies

Frontiers in Medicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2022.1034594
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1034594 October 18, 2022 Time: 13:52 # 10

Geanes et al. 10.3389/fmed.2022.1034594

would benefit from the use of single-cell RNA sequencing to
identify unique downstream pathways of cell death induced
by these bispecific anti-CD20/anti-CD74 and anti-CD20/anti-
IL4R antibodies.

There were several key limitations of our study that
should be addressed in future work. One major limitation is
that we evaluated the function of the antibodies in in vitro
model systems. While these models could identify promising
therapeutic targets and antibodies, in vivo evaluation of the
antibodies in animal models will confirm the therapeutic efficacy
of these bispecific antibodies. Moreover, in vivo studies will
be needed to determine any off-target, and other toxicities,
that could be caused by these antibodies. Studies in vivo will
also be required to determine the pharmacokinetics of these
antibodies in order to determine the clinical feasibility of using
them for treatment. Lastly, we evaluated cytotoxicity of several
lymphoma cell lines that may not represent primary tumors of
broad types. Further study with primary tumors or other types
of B-cell derived tumors will be required.

In summary, bispecific antibodies targeting CD74 or
IL4R could mediate ADCC and ADCP, while anti-CD74
targeting antibodies could mediate direct cellular cytotoxicity
similar to anti-CD20. This observation, coupled with higher
expression of CD74 on lymphoma cells, leads to anti-
CD74 and anti-CD20 immunotherapies as better therapeutic
targets. To further develop these bispecific antibodies as
a potential future therapeutic, it would be beneficial to
evaluate the level of acquired resistance that develops with
the use of prolonged bispecific antibodies both in vitro and
in vivo. These data demonstrate that the dual specificity of
engineered bispecific antibodies is an effective future prospect
of cancer immunotherapy.
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