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Abstract: Fetal echocardiography is an excellent tool for accurately assessing the anatomy and
physiology of most congenital heart defects (CHDs). Knowledge gathered from a thorough initial fetal
echocardiogram and serial assessment assists with appropriate perinatal care planning, resulting in
improved postnatal outcomes. However, fetal echocardiography alone provides limited information
about the status of the pulmonary vasculature, which can be abnormal in certain complex CHDs with
obstructed pulmonary venous flow (hypoplastic left heart syndrome with restrictive atrial septum)
or excessive pulmonary artery flow (d-transposition of the great arteries, usually with a restrictive
ductus arteriosus). Fetuses with these CHDs are at high risk of developing severe hemodynamic
instability with the immediate transition from prenatal to postnatal circulatory physiology at the
time of birth. Adjunctive use of acute maternal hyperoxygenation (MH) testing in such cases can
help determine pulmonary vascular reactivity in prenatal life and better predict the likelihood of
postnatal compromise and the need for emergent intervention. This comprehensive review discusses
the findings of studies describing acute MH testing in a diverse spectrum of CHDs and congenital
diagnoses with pulmonary hypoplasia. We review historical perspectives, safety profile, commonly
used clinical protocols, limitations, and future directions of acute MH testing. We also provide
practical tips on setting up MH testing in a fetal echocardiography laboratory.

Keywords: fetal echocardiography; maternal hyperoxygenation test; congenital heart defects; deliv-
ery planning

1. Background

Congenital heart defects (CHDs) account for the most common congenital abnormal-
ity, occurring in one out of one hundred and ten live births [1,2]. Fortunately, prenatal
detection of CHDs by fetal echocardiography is becoming increasingly common [3–5] due
to advances in diagnostic imaging and improved obstetrical screening guidelines. Fetal
echocardiography can evaluate fetal cardiac anatomy and the progression of the disease.
Serial assessment throughout the pregnancy with late gestation fetal echocardiography
can help determine the anticipated hemodynamic changes after birth and guide perinatal
management. This accurate prenatal assessment with individualized perinatal manage-
ment plans has improved in utero and postnatal outcomes for CHDs [6–8]. Although most
newborns with CHDs are stable soon after birth, some babies with specific CHDs have
severe hemodynamic instability immediately after the placental separation as the fetal
circulation starts transitioning to postnatal circulation. Survival in these newborns with
critical CHDs requires immediate stabilization in the delivery room along with lifesaving
catheter or surgical interventions within the first few hours of life. Examples of these
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conditions include hypoplastic left heart syndrome (HLHS) with a restrictive or intact
atrial septum or d-transposition of the great arteries (d-TGA), most often with a restrictive
ductus arteriosus. In babies with these CHDs, opening the atrial septum with balloon
atrial septostomy (BAS) is often needed. Another example of a critical CHD requiring ur-
gent cardiac surgical intervention is obstructed total anomalous pulmonary venous return
(TAPVR). Accurate prediction of neonatal hemodynamic instability can be challenging us-
ing standard fetal echocardiography due to an inability to predict changes from prenatal to
postnatal circulation. The addition of maternal hyperoxygenation (MH) testing to standard
fetal echocardiography has been shown to improve the accuracy of predictions related to
postnatal hemodynamics, thus providing an opportunity for necessary resource planning
for anticipated lifesaving cardiac interventions [9–13]. The aim of this review, therefore, is
to discuss prior studies evaluating the utility and advantages of fetal echocardiography
along with acute MH testing in the management of newborns with complex CHDs at risk
of needing urgent cardiac interventions soon after birth.

1.1. Fetal Circulation and Transition at the Time of Birth

The normal fetal blood flow pattern (Figure 1A) is characterized by “parallel circula-
tion”, which significantly differs from “in-series” circulation seen after birth (Figure 1B).
This parallel fetal circulation is due to three fetal shunts, including ductus venosus, foramen
ovale, and ductus arteriosus. The ductus venosus brings the nutrient and oxygen-rich
blood from the umbilical vein to the right atrium via the inferior vena cava. The foramen
ovale allows for the distribution of nearly half of this systemic venous return to the left side
of the fetal heart. The left ventricle (LV) output is mostly distributed to the coronary arteries
and the upper part of the fetal body via three branches that originate from the aortic arch.
In contrast, most of the output from the right ventricle (RV) passes through the ductus
arteriosus to be distributed to the lower part of the fetal body and then back to the placenta
via the umbilical arteries. This preferential flow from the RV to the ductus arteriosus is due
to the high pulmonary vascular resistance resulting in only a small percentage of the RV
output being sent to the branch pulmonary arteries (PAs). Therefore, in fetal circulation,
the right and left ventricles are “parallel” to each other, with both ventricles handling a
part of the combined cardiac output, and a very small amount going to the lungs.
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At the time of birth, dramatic changes occur, in the transition from prenatal circula-
tion to postnatal circulation. Systemic vascular resistance increases due to the placental 
separation, and pulmonary vascular resistance decreases due to spontaneous respiration 
and pulmonary vasodilation promoted by increased oxygenation. In addition, increased 
oxygenation leads to constriction of the ductus arteriosus. These changes cumulatively 
increase pulmonary blood flow, pulmonary venous return, and left atrial pressures, clos-
ing the foramen ovale. With the closure of the fetal shunts, including the foramen ovale, 
ductus arteriosus, and ductus venosus, the circulatory transition is completed such that 
the postnatal flow through the right and left heart is “in-series” [15]. Due to the differences 
between fetal and postnatal circulation, accurately predicting the postnatal hemodynamic 
effects of CHDs is challenging using standard fetal echocardiography alone. Addition of 
MH testing by giving 100% oxygen to the mother via a non-rebreather mask for 10 to 15 
min partially mimics these postnatal circulatory changes in the fetal circulation, allowing 
for more accurate prediction of hemodynamic instability following birth as described be-
low.  

1.2. Historical Perspective on Maternal Hyperoxygenation Testing 
Acute MH testing has been studied for over five decades. Studies have focused on 
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Figure 1. Normal fetal circulation (A) and postnatal circulation (B). Removal of placenta at the time
of birth and subsequent closure of the fetal shunts (ductus arteriosus, ductus venosus and foramen
ovale) within a few days causes the transition of fetal circulation to postnatal circulation [14].

At the time of birth, dramatic changes occur, in the transition from prenatal circula-
tion to postnatal circulation. Systemic vascular resistance increases due to the placental
separation, and pulmonary vascular resistance decreases due to spontaneous respiration
and pulmonary vasodilation promoted by increased oxygenation. In addition, increased
oxygenation leads to constriction of the ductus arteriosus. These changes cumulatively
increase pulmonary blood flow, pulmonary venous return, and left atrial pressures, closing
the foramen ovale. With the closure of the fetal shunts, including the foramen ovale, ductus
arteriosus, and ductus venosus, the circulatory transition is completed such that the postna-
tal flow through the right and left heart is “in-series” [15]. Due to the differences between
fetal and postnatal circulation, accurately predicting the postnatal hemodynamic effects
of CHDs is challenging using standard fetal echocardiography alone. Addition of MH
testing by giving 100% oxygen to the mother via a non-rebreather mask for 10 to 15 min
partially mimics these postnatal circulatory changes in the fetal circulation, allowing for
more accurate prediction of hemodynamic instability following birth as described below.

1.2. Historical Perspective on Maternal Hyperoxygenation Testing

Acute MH testing has been studied for over five decades. Studies have focused on
evaluating hemodynamic changes to increased circulating oxygen content in the fetal
blood, mimicking the postnatal circulatory physiology. Bertolizio et al. [16] and Frangipani
et al. [17] published early reports of the effect of MH on amniotic fluid acid–base equilibrium
in 1966 and 1969, respectively. However, the cardiac and circulatory changes with MH
were not easy to evaluate prior to the availability of fetal echocardiography in the late
1980s. One of the early studies evaluating the cardiac effects of short-term MH reported
that abnormal E/A ratio across the mitral and tricuspid valve inflow Doppler patterns
seen in growth-restricted fetuses could be improved with MH [18]. Another early study by
Soregaroli et al. [19] published in 1993 reported increased peak flow velocities in ductus
venosus after MH but no effect on fetal heart rate. This effect of MH on fetal circulation was
more obvious in the third trimester compared to early gestational age [20]. A randomized
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study published in 1997 by Ramner et al. [21] reported that reduction in the pulmonary
vascular impedance (measured as pulsatility index in proximal and distal right and left
PAs) with MH is significant at 31–36 weeks of gestation but not at 20–26 weeks of gestation.
A more detailed evaluation of the fetal echocardiographic findings in the same cohort
by Rasanen et al. [22] further characterized this pulmonary vasoreactivity. With acute
MH in late gestation, increased pulmonary blood flow was suggested by a reduction in
the pulsatility index (PI) in the branch Pas, and a reduction in ductus arteriosus flow
was suggested by an increase in the PI of ductus arteriosus. In addition, there was a
reduction in flow across the foramen ovale. All of these circulatory changes returned to
baseline after MH was discontinued. Again, these changes were observed only in late
gestation (31–36 weeks of gestation) fetuses and not in early pregnancy. This development
of pulmonary vasoreactivity has been attributed to the smooth muscle development in
the fetal PAs during late gestation [23]. Together, these early studies suggested that acute
MH could temporarily mimic the postnatal changes in fetal circulation and paved the way
to study the utility of MH in guiding postnatal resource preparation in complex CHDs.
Additionally, these studies showed that all changes returned to baseline after MH was
discontinued, and no untoward side effects were noted in the fetus or the mother, indicating
the safety of such testing prenatally.

2. Clinical Maternal Hyperoxygenation Protocol

The physiologic change of increased fetal oxygen concentration via MH is achieved
by administering oxygen to a mother in late gestation for a short duration. There is no
universally accepted MH protocol, but most studies have given 100% humidified oxygen
to expectant mothers via a non-rebreather mask for 8 to 15 min (Table 1).

Table 1. List of prior studies evaluating the utility of acute maternal hyperoxygenation testing in
predicting postnatal hemodynamics in complex congenital heart defects.

Published Studies
Author/Year

Fetal Characteristics
of the Study Cohort

Fetal Cardiac
Diagnoses MH Protocol Findings

Rasanen et al. [22]
1998

20 early GA
(20–26 weeks)
20 late GA (31–36
weeks)

Healthy fetuses
60% humidified FiO2 for 5
min of MH
5 min of recovery

↓ PI in BPA
↑ PI in DA
↓ Foramen ovale flow
-Changes are seen only in late GA
and not in early GA fetuses
-All changes returned to baseline
after 10 min of recovery

Szwast et al. [9]
2010

30.1 ± 4.5 weeks GA
controls
29.6 ± 5.0

43 HLHS
27 controls

100% FiO2 for 10 min via
nonrebreather mask at 8
L/min effectively
providing 60% inhaled
FiO2
5 min of recovery

Reduced pulmonary vasoreactivity
(<10% reduction in PI in BPA)
correlated with the need for BAS
after birth.
-No untoward effects seen with
MH

Zarkowska-Szaniawska
et al. [24]

2011
late gestation

40 fetuses with
cardiomegaly and
lung hypoplasia

60% FiO2 for 15 min

Pulmonary vasoreactivity with
MH (>10% reduction in PI in the
PA branch) was associated with
survival after birth.

Channing et al. [25]
2015 35 ± 3 weeks GA

12 fetuses with an
atrial septal aneurysm
affecting LV filling
and aortic arch flow

100% FiO2 for 10 min via
nonrebreather mask at
8L/min effectively
providing 60% inhaled
FiO2
5 min of recovery

MH altered the atrial septal
position (↓ atrial septal excursion),
improved LV filling, and
normalized aortic flow by
increasing pulmonary venous
return.
-Helpful in differentiating small LV
due to atrial septal aneurysm vs.
true LV hypoplasia or coarctation
of the aorta
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Table 1. Cont.

Published Studies
Author/Year

Fetal Characteristics
of the Study Cohort

Fetal Cardiac
Diagnoses MH Protocol Findings

Enzenberger et al. [11]
2016 >26 weeks GA 22 HLHS 100% FiO2 for 10 min

↑ PI in pulmonary veinous
Doppler associated with
unobstructed atrial septum

Schidlow et al. [12]
2018 >32 weeks GA

2 Ebstein
2 TAPVR
4 HLHS
4 d-TGA

100% FiO2 for 10 min at
10L/min effectively
providing 60% inhaled
FiO2
15 min recovery

Reduced pulmonary vasoreactivity
(<20% reduction in PI in PA
branches) + cardiac anatomic
variables based on the lesion
assessed

Rychik et al. [26] 2018
(Abstract only) 35.5 ± 2.4 weeks GA 114 HLHS fetus

100% FiO2 for 10 min via
nonrebreather mask at
8L/min effectively
providing 60% inhaled
FiO2
5 min of recovery

No change in Umbilical artery PI
(placental resistance unchanged)
↑ cerebral resistance
↓ pulmonary resistance
↑ Ductus arteriosus PI (↑
retrograde flow)
No ductal constriction
No change in ventricular
performance

Mardy et al. [13] 2021 ~34 weeks GA 27 HLHS fetuses

100% FiO2 for 10 min via
nonrebreather mask at 8
L/min effectively
providing 60% inhaled
FiO2 at 8L/min

Poor sensitivity with BPA PI
Pulmonary Vein F/R VTI < 6.5,
100% Sensitivity and PPV in
predicting emergent atrial
septoplasty

Cox et al. [27]
2022

31.0 ± 4.0 weeks for
HLHS
27.8 ± 5.1 weeks for
controls

9 HLHS
9 controls

100% FiO2 for 10 min via
nonrebreather mask at 8 L
10 min recovery

↓ LV strain and strain rate (due to
↑ in cerebral vascular resistance)
↑RV strain and strain rate (due to ↓
in pulmonary vascular resistance)
↓ Pulmonary artery PI
Most findings did not return to
baseline after recovery.

Abbreviations: ↓, Decrease; ↑, Increase; BAS, balloon atrial septostomy; BPA, branch pulmonary artery; DA,
ductus arteriosus; d-TGA, d-transposition of the great arteries; GA, gestational age; HLHS, hypoplastic left heart
syndrome; LV, left ventricle; MH, maternal hyperoxygenation; PA, pulmonary artery; PI, pulsatility index; FiO2,
inhaled oxygen; F/R VTI, forward/reverse velocity time integral; RV, right ventricle; TAPVR, total anomalous
venous return.

Fetal echocardiography, including Doppler blood flow analysis, is performed at base-
line, and fetal echocardiographic variables of interest are re-evaluated after the acute MH
for 10 to 15 min to assess the changes in blood flow and vascular impedance across various
fetal cardiac structures. The fetal echocardiographic variables of interest are based on the
individual CHDs. These lesion-specific changes anticipated with MH are described in
detail below and summarized in Tables 1 and 2.

Table 2. Fetal echocardiographic findings and changes with maternal hyperoxygenation as potential
predictors of postnatal hemodynamic instability and need for urgent cardiac intervention with
various CHDs.

Diagnosis

Baseline Fetal Echocardiogram
Findings Suggestive of

Hemodynamic Instability
after Birth

Expected Changes with MH
Performed in the Third Trimester

Suggestive of Hemodynamic
Instability after Birth

Delivery Room
Recommendations

HLHS and variants with
severely restrictive or intact

atrial septum

Pulmonary vein Doppler [6]

− Moderate obstruction:
pulmonary vein F/R VTI
ratio <5 and >3 [28,29]

− Severe obstruction:
pulmonary vein F/R VTI
ratio < 3 [30]

Reduced pulmonary vasoreactivity

− ≤10% reduction in PI* in the
branch PAs

− Pulmonary vein F/R VTI ratio
≤ 6.5 with MH has 100%
sensitivity and specificity [13]
for predicting RAS in HLHS

− Initiation of PGE1 infusion
− Intubation with mechanical

ventilation
− Plan for immediate

catheter-based or surgical
intervention to decompress
the left atrium.
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Table 2. Cont.

Diagnosis

Baseline Fetal Echocardiogram
Findings Suggestive of

Hemodynamic Instability
after Birth

Expected Changes with MH
Performed in the Third Trimester

Suggestive of Hemodynamic
Instability after Birth

Delivery Room
Recommendations

TAPVR with significant
Obstruction

Pulmonary vein Doppler [6]

− Monophasic non-pulsatile
pulmonary venous flow

− Fetal vertical vein Doppler
peak velocity > 0.74 m/s
[31]

Mean gradient in the vertical vein
after MH correlates with the severity
of TAPVR obstruction seen
postnatally [12]

− Intubation with mechanical
ventilation.

− Peripheral IV and/or
umbilical line

− Initiation of PGE1 infusion
(may relax the ductus
venosus smooth muscle for
infra diaphragmatic
TAPVR)

− Plan for immediate surgical
intervention.

D-TGA and variants with a
restrictive atrial septum and
prenatal ductal constriction

Abnormal foramen ovale [6,32,33]:

− hypermobile septum
− the angle of septum

primum < 30◦

− lack of swinging motion of
septum or “tethered”
septum

− bowing of atrial septum >
50%

− intact atrial septum

Abnormal ductus arteriosus:

− small size with
moderate/severe restriction

1. reversed, bidirectional or
accelerated flow

− Abnormal pulmonary vein
Doppler

− “s” wave velocity > 41
cm/s [33]

Reduced pulmonary vasoreactivity

− ≤20% reduction in PI* in the
branch PAs

− Persistence of bidirectional flow
across the foramen ovale

− Initiation of PGE1 infusion
through peripheral IV or
umbilical line

− Intubation with mechanical
ventilation

− Plan for immediate BAS
− If the ductal flow is

abnormal and hypoxemia
in DR, consider pulmonary
hypertension therapy,
including intubation, 100%
oxygen, iNO

Severe Ebstein anomaly of the
tricuspid valve

− Absence of forward flow
across the pulmonary valve
[34]

− Reduced tricuspid
regurgitation jet velocity
indicating poor RV
contractility/systolic
function [34]

− Flow reversal in ductus
arteriosus

− Circular shunt physiology
prenatally

Pulmonary vasoreactivity with MH >
20% reduction in PI* in the branch PAs
and increased cardiac output across
the pulmonary valve can predict
antegrade flow from the RV to the PA
postnatally. The absence of these
reassuring findings would be
concerning for postnatal
hemodynamic instability.

− Peripheral IV or umbilical
access

− Intubation with mechanical
ventilation if needed

− Consider 100% oxygen and
iNO to decrease pulmonary
resistance if there is
pulmonary insufficiency
(circular shunt)

− Consider ECMO
− Cardioversion or medical

therapy in DR as indicated
for arrhythmia

Cardiomegaly and lung
hypoplasia

Increased cardiothoracic ratio and
concerns for significant lung
hypoplasia

Poor pulmonary vasoreactivity with
MH (<10% reduction in PI in the
branch PAs) associated with
non-survivors after birth

− Peripheral IV or umbilical
access

− Intubation with mechanical
ventilation if needed

− Consider ECMO

Abbreviations: BAS, balloon atrial septostomy; CHDs, congenital heart defects; DR, delivery room; d-TGA,
d-transposition of the great arteries; ECMO, extracorporeal membrane oxygenation; F/R VTI, forward to reverse
flow velocity time integral; HLHS, hypoplastic left heart syndrome; iNO, inhaled nitric oxide; IV, intravenous;
MH, maternal hyperoxygenation; PAs, pulmonary arteries; PGE1, prostaglandin E1; RAS, restrictive atrial septum;
RV, right ventricle; TAPVR, total anomalous pulmonary venous return; TGA, transposition of the great arteries;
PI*, pulsatility index = (Peak systolic velocity − end-diastolic velocity)/mean velocity.

Based on the MH protocols used in prior studies, 100% humidified oxygen is typically
delivered to the mother using a non-rebreather mask, which provides around 60% inhaled
oxygen concentration to the mother for 10 min before reevaluating select fetal echocardio-
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graphic measures. Although initial studies reported repeat assessment after 10–15 min of
recovery, many later studies did not evaluate recovery phase hemodynamics in light of
prior reports of complete resolution of the circulatory changes without untoward effects
on the mother or the fetus. There is a learning curve with establishing MH testing in a
fetal echocardiography laboratory. Consistently obtaining branch PA pulse wave Doppler
(PWD) and deriving PI is very important in gathering accurate information from this test.
However, repeatability for branch PA PWD can be challenging. Baseline PWD repeated
during the same fetal echocardiogram can provide PI values that have more than 10%
variability. Here, we share a few tips and tricks to improve the repeatability of branch
PA PWD, consistency in measurements to derive accurate PI values, and interpretation
of MH testing: (1) Determining the site of obtaining branch PA PWD. Three specific sites
for obtaining branch PA PWD have been described by Szwast et al. [9]. It is helpful to
practice one site of interrogation at first, and we have noted success at the mid-branch PA
level. PI values vary depending on the site of PWD interrogation in the branch PA. Hence,
obtaining the PWD at the same site is crucial after MH testing. (2) Keeping the PWD angle
of interrogation to <10◦. (3) Keeping the same PWD gain and PWD scale and using the
same probe pre and post-MH. Since MH testing is typically performed in the late trimester,
we use our lower-frequency transducer. (4) When fetal position changes post-MH testing
such that PWD cannot be repeated at the same angle, recognizing the expected pattern
change in the PWD, not just the PI value itself. Characteristic branch PA PWD signal is
spiky with a quick sharp upstroke, short systolic time interval, and absent, or only a small
degree of flow in diastole. With MH, the PWD pattern should become wider with more
flow in both systole and diastole (Figure 2). (5) Verifying the automatic tracings and, when
needed, performing manual measurements to derive PI. Some imaging platforms, such as
Philips, can derive PI values from PWD using the high Q automatic Doppler analysis. This
method can be erroneous, especially given the low end-diastolic velocities in branch PA
PWD. (6) Finally, establishing an internal quality improvement project to reduce variability
between repeated PWD PI values to <10% is recommended.
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Figure 2. Maternal hyperoxygenation (MH) testing in a third-trimester fetus with hypoplastic left
heart syndrome with mitral and aortic stenosis. (A) Oblique sagittal color compare image showing a
small tunnel-like patent foramen ovale (PFO) with left to right flow. (B,C) represents the baseline test.
(B) Left pulmonary artery Doppler (LPA) showing a spiked pattern with pulsatility index (PI) 2.42.
(C) Right sided pulmonary vein (RPV) Doppler with forward to reverse velocity time integral (F/R
VTI) ratio of 6.75. The bottom panel (D,E) represents post MH testing. (D) LPA Doppler broadening
with PI 1.82, 24.7% reduction from baseline. (E) RPV Doppler showing increase in F/R VTI ratio to
10.4. LA, left atrium; PDA, patent ductus arteriosus; RA, right atrium.
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3. Expected Findings with Maternal Hyperoxygenation Specific to CHD Lesions
3.1. Hypoplastic Left Heart Syndrome (HLHS)

HLHS is a spectrum of CHD that results in the LV being incapable of providing ade-
quate systemic perfusion. As egress through the left-sided cardiac structures is obstructed
in HLHS, having an unobstructed atrial septal defect is necessary for the pulmonary venous
return to drain from the left to the right atrium. The restrictive or intact atrial septum
(RAS) (Figure 3) is reported to occur in 6–20% of newborns with HLHS [35,36]. These
newborns require urgent cardiac intervention to open the atrial septum and allow egress of
pulmonary venous blood from the left atrium in order to survive.
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Figure 3. (A) Hypoplastic left heart syndrome with widely open atrial septal communication.
(B) Hypoplastic left heart syndrome with restrictive atrial septum. (C) Brief pulmonary venous flow
reversal with atrial systole with normal (>5) ratio of forward to reversed flow VTI. (D) Significant
pulmonary venous flow reversal with abnormal VTI ratio indicating risk of restrictive atrial septum.

Serial assessment with late gestation standard fetal echocardiography is necessary
as restrictive atrial septum may develop later in gestation. It can be detected by late
gestation fetal echocardiography demonstrating a small or absent atrial septal opening with
concomitant flow reversal in the pulmonary veins secondary to left atrial hypertension [37].
The finding of pulmonary venous Doppler flow pattern with an abnormal ratio of forward
to reverse velocity–time integral (F/R VTI) (Figure 3D) is associated with increased risk of
compromise from atrial septal restriction after birth [28–30,37,38]. Pulmonary vein Dopplers
have high positive predictive value for detecting HLHS cases with a severely restrictive or
intact atrial septum. However, sensitivity is low given the limited volume of pulmonary
blood flow in utero, masking these Doppler abnormalities. MH testing as an adjunct to
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fetal echocardiography may help improve the sensitivity of fetal echocardiography in
predicting RAS.

Szwast et al. [9] evaluated pulmonary vascular reactivity in 43 fetuses with HLHS
in response to acute MH. This study evaluated the Doppler flow pattern and PI (peak
systolic velocity—end-diastolic velocity/mean velocity) in the proximal, midportion, and
distal branch PAs as measures of vascular impedance. Either the right or left pulmonary
artery was selected based on the position of the fetus with an angle of interrogation <10◦.
Fetal echocardiographic variables were obtained at baseline on room air, after 10 min of
MH, and then 5 min after stopping the oxygen during the recovery phase. Fetuses that
demonstrated a significant reduction in pulmonary arterial PI, indicating an increase in
the pulmonary blood flow in response to MH, had wide open atrial communication after
birth. In comparison, fetuses with <10% reduction in PI indicating reduced pulmonary
vasoreactivity to MH required immediate intervention on the atrial septum after birth.
The authors reported that MH could predict the need for immediate cardiac intervention
at birth with 100% sensitivity, 94% specificity, 71% positive predictive value, and 100%
negative predictive value. Schidlow et al. [12] conducted a prospective study with MH
testing and implications for critical care delivery planning among fetuses with CHDs.
Pulmonary vasoreactivity was defined as a reduction in PI by 20% for this study. This study
included four fetuses with HLHS with concern for RAS in two and intact atrial septum
with a decompressing vertical vein in the remaining two. Three fetuses showed good
pulmonary vascular reactivity and did not need urgent postnatal cardiac interventions
for atrial septum. One fetus that did not exhibit pulmonary vascular reactivity with
MH required BAS. Another study by Enzensberger et al. [11] evaluated MH response in
22 fetuses with HLHS and reported that the degree of changes in lung perfusion (qualitative
assessment of color Doppler of PAs and quantitative assessment of PI of pulmonary veins)
with short-term MH might be a useful adjunct in assessing pulmonary vasculopathy in
this patient population. In addition to the pulmonary vasoreactivity with MH, changes
in the pulmonary venous flow Doppler F/R VTI ratio are also helpful in assessing RAS.
In a more recent study by Mardy et al. [13], a pulmonary venous F/R VTI ratio of ≤6.5
with MH was a more reliable measure for predicting a need for atrial septal intervention
after birth with 100% sensitivity and 100% specificity as compared to the assessment of
pulmonary vasoreactivity by using PI in the branch PAs. Cox et al. [27] studied nine fetuses
with left heart hypoplasia and nine controls. With MH, the PA PI decreased, suggesting a
decrease in pulmonary vascular resistance, and pulmonary vein VTI increased, suggesting
an increase in pulmonary venous return similar to the prior studies. Additionally, the LV
strain and strain rate worsened, suggesting that these changes were due to an increase in
LV afterload (secondary to an increase in cerebrovascular resistance). In contrast, the RV
strain and strain rate improved, which was thought to be due to decreased RV afterload
(secondary to a reduction in pulmonary vascular resistance). Finally, an abstract published
in 2018 by Rychik et al. [26] reported changes in Doppler flow patterns after MH testing in
182 fetuses, 114 of whom had HLHS. There was increased cerebral resistance and reduced
pulmonary resistance secondary to pulmonary vasodilation. An increase in ductal flow
reversal was noted as more flow was diverted away from the ductus arteriosus and toward
the pulmonary circulation, resulting in an increase in the pulsatility index in the ductus
arteriosus. More importantly, there was no evidence of ductal constriction or change in
ventricular performance, supporting MH as a safe means for provocative testing during
fetal life.

In summary, acute MH testing as an adjunct to standard fetal echocardiography for
fetal HLHS can improve the accuracy of predicting RAS. Findings from MH testing may
facilitate postnatal planning, including resource preparation for emergent cardiac interven-
tions for opening the atrial septal communication. Reduced pulmonary vasoreactivity and
pulmonary vein F/R VTI ratio < 6.5 with MH are useful parameters in predicting RAS that
would require resource planning for catheter-based or surgical interventions to open up the
left atrial egress after birth. If an atrial septal restriction is suspected based on late gestation
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standard fetal echocardiography with or without MH, delivery planning should include all
resources needed for opening up the atrial septum soon after birth.

3.2. Total Anomalous Pulmonary Venous Return (TAPVR)

Obstruction of the vertical draining vein connecting the pulmonary venous conflu-
ence to the systemic vein may result in significant respiratory distress and hemodynamic
instability soon after birth. Data are limited on fetal echocardiographic predictors of ob-
structed TAPVR. One study reported that a vertical vein Doppler peak velocity of >0.74 m/s
was predictive for preoperative pulmonary venous obstruction [31]. However, predicting
TAPVR obstruction is challenging prenatally, as fetal circulation allows a minimal amount
of pulmonary blood flow, and associated small volume pulmonary venous return may
mask the actual obstruction that can become significant after birth once the pulmonary
blood flow increases. In these cases, MH is expected to increase the pulmonary blood flow
and therefore unmask the obstruction of the vertical vein prenatally. Schidlow et al. [12]
reported the use of MH in two cases of TAPVR, and the mean gradient in the vertical vein
after MH correlated with the postnatal gradients. In one of the fetuses, the mean gradient
across the vertical vein was 2 mmHg at baseline, which increased to 12 mmHg with MH.
This fetus developed significant obstruction of the vertical vein with low cardiac output and
needed extracorporeal membrane oxygenation (ECMO) support until surgical repair could
be performed. The second fetus had a resting gradient of 2 mmHg at the baseline, with an
increase in gradient to 5 mmHg with MH. This fetus was stable at birth with a postnatal
gradient of 6 mmHg in the vertical vein, which was well tolerated until surgical repair at
3 months of age. Based on this study, MH may prove to be a useful tool in assessing TAPVR
obstruction. The fetal echocardiogram that is most useful in making these predictions is
one that is performed in late gestation (>35 weeks gestation if possible) and with MH as an
adjunct to the standard fetal echocardiography. Delivery planning for suspected TAPVR
obstruction should include resource preparation for emergent cardiac surgical intervention
to relieve the obstructed TAPVR.

3.3. D-Transposition of the Great Arteries with Restrictive Atrial Septum

The newborn with d-TGA is at risk of severe hypoxemia if there is inadequate mixing
of the oxygenated and deoxygenated blood at the atrial level due to the parallel nature
of the systemic and pulmonary circulation. Therefore, restrictive flow across the foramen
ovale will result in severe hypoxemia and acidosis, and emergent BAS is required soon after
birth. In addition, newborns with d-TGA are also at risk of severe pulmonary hypertension
contributing to extreme hypoxemia. Failure to intervene may result in severe hemodynamic
decompensation and poor outcomes, including death [32,39,40]. Prediction of RAS by
fetal echocardiography remains challenging due to the low sensitivity and low negative
predictive value of fetal echo variables. For example, an early study published in 2004
by Jouannic et al. evaluated 130 fetuses with TGA. Twenty-four of these fetuses had
at least one abnormal shunt (23 with RAS, five with abnormal ductus arteriosus flow,
and four with both). Thirteen of these newborns had profound cyanosis after birth, and
two died despite aggressive resuscitation. Both of these deaths occurred in fetuses with
ductal constriction in addition to the RAS. The specificity and sensitivity of fetal echo in
predicting neonatal emergencies were 84% and 54%, respectively. However, when both of
these structures were abnormal, the specificity increased to 100%. This study suggested
that ductal constriction may play a significant role in d-TGA physiology and should be
evaluated carefully. In a meta-analysis by Buca et al. from six studies that included
292 fetuses, restrictive appearance of the foramen ovale and hypermobile atrial septum
were associated with increased risk of requiring urgent BAS (within 24 h of birth). The mean
ratio between the foramen ovale size and that of the aortic valve and the mean ratio between
the foramen ovale size and that of the total atrial septal length were significantly smaller
in fetuses requiring urgent BAS at birth [32]. Again, fetal echocardiographic findings had
high specificity but poor sensitivity in predicting RAS in d-TGA. A more recent study by
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Masci et al. [41] evaluated 31 fetuses with dTGA and found that fetal echocardiographic
variables cannot predict the need for urgent BAS after birth. Slodki et al. [33] reported
pulmonary venous maximum velocity of >41 cm/s as a helpful predictor of postnatal need
for BAS. Despite multiple features that could suggest a risk of foramen ovale restriction,
accurately predicting the need for urgent BAS based on standard fetal echocardiographic
findings remains challenging. Therefore, a few studies have evaluated MH as an adjunct to
improve this prediction model. Schidlow et al. [12] evaluated four fetuses with d-TGA with
fetal echocardiographic concerns for an RAS between 35 and 38 weeks of gestation. In two
fetuses, MH testing showed good pulmonary vasoreactivity (defined as a decrease in PI by
≥20%) and antegrade flow in the ductus arteriosus. Testing in one showed predominantly
left-to-right flow across the foramen ovale with MH, and that fetus did not need BAS after
birth. The second fetus continued to have bidirectional shunting across the foramen ovale
even with MH and required BAS after birth. The two additional fetuses that did not show
adequate pulmonary vasoreactivity with MH needed BAS after birth. These fetuses also
had either restricted or bidirectional shunt across the foramen ovale. Therefore, the study
suggested that flow across the foramen ovale with MH may help determine the need for
BAS. In addition, the study shows that pulmonary vascular reactivity can be assessed as
well, and a lack of reactivity increases the likelihood of postnatal compromise and the
need for urgent interventions. Further studies are needed to understand the utility of
MH in predicting RAS in d-TGA, the impact of pulmonary hypertension, and the lack
of pulmonary vasoreactivity as important factors in the postnatal clinical presentation of
these patients.

Given the limitations of current standard fetal echo findings and limited experience
using MH, it is recommended that all newborns with d-TGA, especially with an intact
ventricular septum, be considered high risk. The delivery plans for such fetuses should
include delivery at or near a cardiac center to facilitate immediate postnatal care. Planned
delivery with labor induction after 39 weeks allows for preparation for urgent BAS. A
cesarean section may be considered in rare instances with prenatal foramen ovale closure or
severely restrictive ductus arteriosus. Neonatal resuscitation and stabilization until the BAS
may require resource planning, such as the availability of prostaglandin E1 (PGE1) infusion
and mechanical ventilation. Additionally, 100% oxygen and inhaled nitric oxide (iNO) may
be beneficial in those babies who are noted to have a restrictive ductus arteriosus in utero
and are at risk of pulmonary hypertension resulting in severe postnatal hypoxemia.

3.4. Severe Ebstein Anomaly of the Tricuspid Valve

Ebstein anomaly is a rare form of CHD that can result in severe tricuspid regurgitation,
reduced effective RV size, massive cardiomegaly, heart failure, hydrops, fetal arrhythmias,
and lung hypoplasia [42]. Newborns with severe Ebstein anomaly or tricuspid valve dys-
plasia can experience severe hemodynamic instability soon after birth, with high neonatal
mortality as reported in a multicenter study by Freud et al. [43]. The percentage of fetuses
with hemodynamic compromise increases as the pregnancy progresses, indicating a need
for serial assessment [44]. Severe cases may require ECMO cannulation to allow the pul-
monary vascular resistance to fall and hemodynamics to improve. However, predicting the
postnatal hemodynamic instability in fetuses with Ebstein anomaly remains challenging.
Postnatal survival in these fetuses depends on the ability of the RV to generate antegrade
pulmonary blood flow. However, the high pulmonary vascular resistance in utero prevents
the assessment of the true functional capacity of the RV and patency of the pulmonary valve,
which may be functionally atretic. With MH, transient lowering of pulmonary vascular
resistance can help predict the ability of the RV to generate forward flow in the postnatal
period. Schidlow et al. [12] evaluated the utility of MH in two fetuses with severe Ebstein
anomaly with severe tricuspid regurgitation, trivial antegrade pulmonary blood flow, and
retrograde flow in ductus arteriosus. One of these fetuses demonstrated pulmonary vas-
cular reactivity with increased cardiac output across the pulmonary valve. This fetus was
successfully managed without PGE1 and iNO with a gradual increase in pulmonary blood
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flow. The other fetus, who demonstrated reduced pulmonary vasoreactivity and no change
in cardiac output across the pulmonary valve, developed a circular shunt, diminished car-
diac output, and multiorgan failure, and died at 10 days of age. These observations suggest
the potential use of MH testing to stratify risk for fetuses with severe Ebstein anomaly of the
tricuspid valve. For fetuses with extreme cardiomegaly, functional pulmonary valve atresia,
or circular shunt physiology prenatally, postnatal resource preparation should include the
availability of inhaled oxygen and inhaled nitric oxide to promote pulmonary vasodilation
as well as ECMO backup in case it is needed. Additionally, if there is a patent pulmonary
valve with pulmonary regurgitation, carefully monitoring the newborn without initiation
of PGE1 infusion is suggested to reduce the risk of circular shunt physiology.

3.5. Pulmonary Hypoplasia

MH has been used to predict the severity of pulmonary hypoplasia and the risk of
neonatal death in fetuses with congenital anomalies that may cause pulmonary hypoplasia,
such as congenital diaphragmatic hernia and congenital pulmonary adenomatous mass.
For example, in a 2002 study by Broth et al. [45] evaluated pulmonary vasoreactivity with
MH defined as less than a 20% reduction in the PI of the Doppler blood flow within the
first branch of either the right or left PA in fetuses with pulmonary hypoplasia. They noted
that absence of pulmonary vasoreactivity to MH during prenatal assessment correlated
with neonatal death from pulmonary hypoplasia. In comparison, a reactive test (≥20%
reduction in PI) predicted >90% of surviving infants. Notably, the use of ECMO was not
as widespread for pulmonary hypoplasia when this study was conducted in 2002, which
could have affected the mortality. However, MH helped predict postnatal instability and
outcomes in fetuses with pulmonary hypoplasia.

4. Maternal and Fetal Safety with Hyperoxygenation

Since the introduction of acute MH testing about five decades ago and fetal echocar-
diographic evaluation of cardiovascular changes with acute MH followed by 5 to 10 min
of recovery, there have been no known significant side effects to the fetus or expectant
mothers. For example, a study evaluating the hemodynamic effects of MH showed no sta-
tistically significant changes in maternal ventilation, blood pressure, heart rate, oxygenation
indices, and Doppler velocity in the maternal internal carotid and uterine artery [46]. Fetal
cardiac hemodynamic effects of acute MH are shown to be reversible within 5 to 10 min
of stopping MH based on the fetal hemodynamic assessment performed in the recovery
phase. Szwast et al.’s study [9] reported no adverse events with MH. In the recovery phase,
PA Doppler returned to baseline, and no significant ductal constriction (defined as PI < 1.9)
or change in the middle cerebral artery or umbilical artery PI was noted. A systematic
review of the utility of MH by Co-Vu et al. reported that acute MH was safe, and three of
the included studied noted no untoward effects in the mother or fetus [10]. As published
in an abstract [26] reporting the authors’ experience with 182 fetuses (114 with HLHS) who
underwent MH, there were no significant changes in the umbilical arterial PI (placental
resistance was unchanged), and ventricular mechanics remained unchanged after acute
MH, further supporting that acute MH is safe for mother and the fetus. This study reported
an increase in the cerebral resistance, but the changes were temporary. These findings
suggest that when MH is used as a provocative test, by giving oxygen for a short period as
a diagnostic aid, there were no significant adverse events based on the maternal clinical
parameters or fetal echocardiography Doppler parameters, indicating that this test is safe
for the mothers and fetuses [10]. Therefore, in many centers, MH is no longer considered
an experimental test and is used as part of a clinical protocol. Although, data from these
prior studies remain limited and further studies in this area would be beneficial in ensuring
the safety and utility of MH testing.
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5. Limitations and Future Directions

Although MH seems to be a promising adjunct to late gestational standard fetal
echocardiography, certain limitations have prevented more widespread use of this tech-
nique. First, there is no universal definition of normal vs. abnormal pulmonary vasoreac-
tivity to MH, and different studies have used either a <10% reduction in PA PI or <20%
reduction in PA PI to define reduced pulmonary vasoreactivity. Choosing a higher cut-off
value can increase the specificity but reduce sensitivity. In addition, the reproducibil-
ity of PI assessment can be challenging unless a systematic approach is implemented in
making these measurements as described earlier. Although the utility of MH in HLHS is
more widely studied, more research studies are needed to understand its utility in other
CHD lesions.

6. Conclusions

MH testing as an adjunct to standard fetal echocardiography can provide insight into
fetal pulmonary vasculature and help predict the postnatal hemodynamics after birth and
the transition of fetal circulation to postnatal circulation. In addition, this test can be helpful
in risk stratification for perinatal management of fetuses with complex CHDs with a high
risk of hemodynamic instability, such as HLHS with a restrictive or intact atrial septum,
d-TGA with an RAS and potentially pulmonary hypertension, TAPVR, Ebstein anomaly of
the tricuspid valve, and congenital defects with lung hypoplasia.
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