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CRIB: A Novel Method for Device-Based Physical Behavior Analysis
Paul R. Hibbing,1 Seth A. Creasy,2 and Jordan A. Carlson1,3

1Center for Children’s Healthy Lifestyles & Nutrition, Children’s Mercy Kansas City, Kansas City, MO, USA; 2Division of Endocrinology, Metabolism, and Diabetes, and
Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; 3Department of Pediatrics, University of Missouri-Kansas

City, Kansas City, MO, USA

Physical behaviors (e.g., sleep, sedentary behavior, and physical activity) often occur in sustained bouts that are punctuated with
brief interruptions. To detect and classify these interrupted bouts, researchers commonly use wearable devices and specialized
algorithms. Most algorithms examine the data in chronological order, initiating and terminating bouts whenever specific criteria
are met. Consequently, the bouts may encapsulate or overlap with later periods that also meet the activation and termination
criteria (i.e., alternative bout solutions). In some cases, it is desirable to compare these alternative bout solutions before making a
final classification. Thus, comparison-focused algorithms are needed, which can be used in isolation or in concert with their
chronology-focused counterparts. In this technical note, we present a comparison-focused algorithm called CRIB (Clustered
Recognition of Interrupted Bouts). It uses agglomerative hierarchical clustering to facilitate the comparison of different bout
solutions, with the final classification being made in favor of the smallest number of bouts that comply with user-specified criteria
(i.e., limits on the number, individual duration, and cumulative duration of interruptions). For demonstration, we use CRIB to
assess bouts of moderate to vigorous physical activity in accelerometer data from the National Health and Nutrition Examination
Survey, and we include a comparison against results from two established chronology-focused algorithms. Our discussion
explores strengths and limitations of CRIB, as well as potential considerations and applications for using it in future studies. An
online vignette (https://github.com/paulhibbing/PBpatterns/blob/main/vignettes/CRIB.pdf) is available to assist users with
implementing CRIB in R.

Keywords: wearable technology, interruptions, signal processing, data-driven algorithms, unsupervised data mining

Bout classification algorithms are often used to process data
from wearable devices. The purpose of the algorithms is to assess
sustained engagement in physical behaviors such as sleep, seden-
tary behavior (SB), or moderate to vigorous physical activity
(MVPA). The specific details of bout classification are different
for each behavior (Altenburg & Chinapaw, 2015; Winkler et al.,
2016), but the fundamental similarity is a need to identify when
each bout starts and ends, while accounting for brief interruptions
(i.e., transient stoppages followed by prompt resumption of the
behavior). For example, when quantifying bouts of MVPA, there is
a need to account for the possibility that a person stops at a
crosswalk while out for a walk or run.

Most bout classification algorithms examine the data in chro-
nological order, as seen in prominent examples for assessing sleep
(van der Berg et al., 2016), SB (Carson & Janssen, 2011), MVPA
(Ostendorf et al., 2018; Troiano et al., 2008), and ambulation (Barry
et al., 2015). In these algorithms, bouts start when predefined
activation criteria are met and end when predefined termination
criteria are met. If there are overlapping periods that meet the
criteria for a bout (i.e., alternative bout solutions; see Figure 1),
chronology-focused algorithms will select the first solution that
occurs. This is a suitable approach for many research questions but
in some cases it may be desirable to examine different solutions and
identify bouts based on comparison rather than chronology. Such a
comparison-focused approach could be conceptualized as looking

at overlapping bout solutions (Figure 1) to address potential
ambiguities regarding the number of bouts and when each bout
starts and ends. Fewer existing methods reflect this type of com-
parison-focused approach, with the leading example being a com-
bined sleep and nonwear detection algorithm for activPAL devices
(Winkler et al., 2016). Thus, there is warrant for developing new
comparison-focused bout classification algorithms that apply to
other behaviors and devices.

In this technical note, we build on a concept from Twaites (2019)
and propose a novel comparison-focused bout classification method
called CRIB (Clustered Recognition of Interrupted Bouts), which can
be applied to analysis of any physical behavior. The premise of CRIB
is that bout identification can be viewed as an unsupervised clustering
problem in which the goal is to group separate occurrences of the
target behavior into common bins, based on their temporal proximity
to one another. Below, we present the inner workings of the CRIB
technique, followed by an example analysis of accelerometer data
from the National Health and Nutrition Examination Survey
(NHANES). We conclude with a discussion exploring the strengths
and limitations of CRIB, the importance of time resolution (i.e., epoch
length) when using CRIB and other bout analysis methods, and
potential novel applications for CRIB in future research.

Technique

The CRIB technique is implemented in three phases, namely pre-
processing, iterative clustering, and postprocessing. Table 1 describes
the key components for each phase, and belowwe present the step-by-
step procedures. For illustration, we will focus on using CRIB to
identify bouts of MVPA in an excerpt of NHANES accelerometer
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data. However, it should be noted that CRIB can also be applied for
classifying bouts of other behaviors such as SB or sleep.

Phase 1: Preprocessing

Figure 2 illustrates the steps of the preprocessing phase. First, each
epoch receives a dichotomous classification as either the target
behavior (defined in Table 1) or “other” (i.e., nontarget behaviors).
This ensures that consecutive nontarget behaviors will be treated as a
single interruption, consistent with traditional approaches to bout

classification. Once each epoch has been dichotomized, run-length
encoding is applied to extract the start and stop times for each event
(i.e., each run of consecutive epochs in a single category), resulting
in a sequence that alternates between the target behavior and “other.”
The final step of preprocessing is stratifying the results whenever an
“other” event meets or exceeds a user-specified duration threshold
called the target buffer (defined in Table 1 and set to 10 min for the
current example). The purpose of data stratification is to improve
runtime, as discussed later. The preprocessing phase is complete
once the data have been run-length encoded and stratified.

Figure 1 — Depiction of overlapping bout solutions when analyzing a period of interrupted MVPA. Each gray bracket represents a potential grouping
of events into a bout. The depicted options are illustrative, not exhaustive. MVPA =moderate to vigorous physical activity.

Table 1 Components of CRIB

Component Description/summary

Phase 1: Preprocessing Data are encoded, compressed, and stratified in preparation for clustering.

Input data stream A time series of predetermined behavior classifications, e.g., minute-by-minute indications of SB/LPA/
MVPA.

Target behaviora The one specific value (e.g., MVPA) to analyze from input data stream. A search is made for occurrences of
this value, while any others (e.g., SB, or LPA) are recategorized as “Other.”

Target buffera,b A stratifying threshold of n epochs. Before clustering, the data set is split whenever two occurrences of
target behavior (e.g., MVPA) are separated by more than this amount (e.g., 10 min). Occurrences in
different strata are prohibited from being grouped together in the same bout, helping to limit runtime.

Run-length encoding A standard compression algorithm, used here to identify the location and duration of each behavioral
occurrence in the data sequence (e.g., Other-MVPA-Other-MVPA . . . ).

Phase 2: Iterative clustering Within each stratum, occurrences of the target behavior are grouped together in a range of ways to find the
option that aligns best with user-specified settings.

Agglomerative hierarchical clustering
(McQuitty, 1957)

A standard clustering algorithm, used here to establish groupings of events within each stratum. The
groupings (i.e., potential bouts) are nested in a dendrogram that is then examined more closely to determine
the smallest number that meets the below criteria.

Maximum number of interruptionsa,c The maximum number of interruptions allowed within a bout (e.g., n = 3).

Longest allowable interruptiona,c The maximum length allowed for any single interruption within a bout (e.g., 2 min).

Required percent engagementa,d A threshold defining the minimum percentage of the full bout duration that must be spent in a
noninterrupted state (e.g., 80% of bout duration must be MVPA).

Phase 3: Postprocessing The cluster outputs are pooled across strata, then filtered if necessary.

Minimum bout durationa A filtering criterion; after running the clustering algorithm, bouts will be removed from the output if the total
target behavior engagement is not last at least this long (e.g., to exclude bouts with <10min ofMVPA). Can
be set to 0 if no restriction is desired.

Note. SB = sedentary behavior; LPA = light physical activity; MVPA =moderate to vigorous physical activity; CRIB =Clustered Recognition of Interrupted Bouts.
aUser-specified setting. bCan be set to 0 for continuous bouts, or to infinity for exhaustive consideration of all occurrences (not recommended due to the nonlinear time
complexity of the clustering algorithm). cCan be set to 0 for continuous bouts, or to infinity if no restriction is desired. dCan be set to 100 for continuous bouts, or to 0 if no
restriction is desired.
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Figure 2 — Steps of the preprocessing phase for a sample analysis where the target behavior is MVPA. (a) The input stream has raw labels of SB, LPA,
or MVPA. (b) The raw labels are recoded to binary, that is, MVPA or “Other.” (c) Run-length encoding is applied to identify the sequence of engagement
in MVPA and “Other.” Data are stratified by splitting the data set whenever an “Other” event lasts ≥10 min. (d) For visualization only, representing how
stratification would appear if run-length encoding were undone. MVPA =moderate to vigorous physical activity; SB = sedentary behavior; LPA = light
physical activity.
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Figure 3 — Steps of the iterative clustering phase for a single stratum of data. (a) The MVPA events are passed into the hierarchical agglomerative
clustering algorithm. (b) The algorithm yields a tree called a dendrogram. The height of the dendrogram represents the temporal distance between each
node, and agglomeration occurs from the bottom up, recursively grouping the two branches that are closest together until all events are in a single bout.
The dendrogram is then cut at each branching point to examine all the possible bout solutions, from the top of the tree (all leaf nodes in one bout) to the
bottom (all leaf nodes in separate bouts). The resulting bouts are tested to see whether they all meet the user-specified criteria (see Table 1). Here, the
criteria allowed unlimited interruptions as long as they comprised <20% of the overall duration, with no single interruption lasting >2 min. Strikethrough
text indicates the requirement is not met. Notably, equidistant nodes (e.g., 8–10) are agglomerated together in a single iteration. The final bout selection
(black star) is defined as the smallest number of bouts that meet all criteria. (c) For visualization only, representing the results of iterative clustering for the
stratum in question. MVPA =moderate to vigorous physical activity.
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Phase 2: Iterative Clustering

In the iterative clustering phase, a systematic clustering and revi-
sion process is applied separately for each of the strata from the
preprocessing phase. This broadly involves computing different
bout solutions (e.g., as shown in Figure 1), then comparing the
solutions, and making a selection based on simple criteria. The
process for one stratum is described below and illustrated in
Figure 3.

First, the input data (Figure 3a) are analyzed using agglom-
erative hierarchical clustering with single linkage (McQuitty,
1957). This involves an iterative three-step process, as follows:
(1) combine the pair of target behavior events that are temporally
closest to each other, (2) store the results for later analysis, and
(3) repeat the process until all events have been combined into
a single cluster (i.e., a single bout solution). If there are ties in
Step 1, the step is recursed for all qualifying pairs before moving
to Step 2.

Once the clustering iterations are finished, the results can be
visualized as a tree called a dendrogram, which groups the events
into nested clusters (Figure 3b). Each cluster represents a potential
bout solution, and the dendrogram presents a wide range of
possibilities, from the top of the tree (all events belong to a single
bout) to the bottom (all events belong to separate bouts). CRIB
then examines the dendrogram layer-by-layer to determine which
bout clustering arrangement aligns best with user-specified crite-
ria (Figure 3b). The best alignment is defined as the smallest
possible number of bouts for which each bout complies with the
user-specified criteria defined in Table 1 (i.e., maximum number
of interruptions, longest allowable interruption, and required
percent engagement). For the current example, these criteria
were set to allow an unlimited number of interruptions during
the bout as long as no consecutive interruptions spanned >2 min
and there was ≥80% engagement in MVPA over the course of the
full bout. The iterative clustering phase is complete once a final
bout selection (e.g., Figure 3c) has been made for each stratum
of data.

There are several important considerations to note for the
iterative clustering phase. One is the linkage method used for
agglomerative hierarchical clustering. Single linkage was selected
because its “chaining” effect is advantageous in certain applica-
tions, of which bout classification is one (Hartigan, 1981; Kuiper
& Fisher, 1975). Another crucial consideration is the need to
ensure a feasible runtime because the clustering algorithm makes
pairwise comparisons among all the data points. For large time
series data (e.g., a week or more of accelerometry), there could
easily be millions of comparisons to make, most of which would
be unnecessary (e.g., evaluating the distance between MVPA
instances on different days),therefore stratification was done in the
preprocessing phase. By running the algorithm separately on each
stratum (i.e., prohibiting bouts from spanning multiple strata), it is
possible to limit the number of computations, thereby improving
runtime.

Phase 3: Postprocessing

Figure 4 illustrates the steps for the postprocessing phase. First, the
clustering results are pooled across all strata, and then bouts are
filtered out if they do not meet the minimum bout duration
requirement (defined in Table 1). For the current example, bouts
with <10 min of MVPA were filtered out. Completion of the
postprocessing phase yields final bouts for subsequent analysis.

Example Analysis

For illustration, we provide an analysis of MVPA bouts using
accelerometer data from adults (≥18 years old) in the 2003–2004
and 2005–2006 cycles of the NHANES. We use CRIB to obtain a
range of bout metrics, with comparisons against values obtained
from the chronology-focused MVPA algorithms of Troiano et al.
(2008) and Ostendorf et al. (2018).

Protocol and Data Preprocessing

The NHANES protocol required participants to wear an ActiGraph
AM-7164 accelerometer (ActiGraph, LLC) on the hip for up to 7 days.
Of 9,601 adults with accelerometer data, we excluded those whose
data had been flagged by NHANES as being unreliable (n = 116)
or out of calibration (n = 358). We screened for nonwear using the
algorithm of Choi et al. (2011) and defined valid days as those with at
least 10 hr of wear time. We then excluded 2,280 participants who
had <4 valid days of data. MVPA was defined as ≥1,952 counts per
min during wear time on a valid day (Freedson et al., 1998). As a final
cleaning step, we excluded data from 4,114 participants for whom
there were no MVPA bouts using any of the three algorithms. Thus,
the final analytic sample included 2,733 individuals (43.3% females;
mean ± SD: age 42.9 ± 17.8 years). All bout classification algorithms,
including CRIB, were implemented in R using the “analyze_bouts”
function in the PBpatterns package (version 0.3.0, see https://github.
com/paulhibbing/PBpatterns/releases/tag/v0.3.0).

Bout Classification Algorithms

The algorithm of Troiano et al. (2008) operates using a 10-min sliding
window that scans the data from start to end. Bouts are preliminarily
activated when the window encounters a span with ≥8min ofMVPA,
then confirmed when ≥10 min of MVPA have accrued. Bouts are
terminated when the window reaches a span with ≥3 consecutive
minutes of non-MVPA. If termination occurs after preliminary
activation yet prior to confirmation, the bout is excluded.

The algorithm of Ostendorf et al. (2018) allows a bout to be
preliminarily activated by a single minute of MVPA. The bout then
continues until there are ≥3 consecutive minutes of non-MVPA. To
be confirmed, the bout must contain ≥10 min of MVPA, and ≥ 80%
of all epochs must also be classified as MVPA. Like the prior
algorithm, preliminarily activated bouts are discarded if the con-
firmation criteria are not met.

For this sample analysis, CRIB settings were selected to align
with the general concepts of the algorithms of Troiano et al. (2008)
and Ostendorf et al. (2018). Specifically, there was no limit on
the number of interruptions during the bout, but all interruptions
(i.e., periods of consecutive non-MVPA epochs) had to last < 3 min,
and at least 80% of the epochs in the final bout had to be classified as
MVPA. The minimum bout duration was set to 10 min, as was the
target buffer. The purpose of aligning the CRIB settings with those
from the other algorithms was to maximize the interpretability of the
findings. If similar output was obtained from each algorithm, it
would suggest limited occurrence (or limited impact) of alternative
bout solutions like what is shown in Figure 1. If discrepant outputs
were obtained, it would suggest the opposite.

Statistical Methods and Results

For all three algorithms, we analyzed the following: (a) bouted
MVPA time, (b) interruption time within the bouts, and (c) the
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Figure 4 — Steps of the postprocessing phase when analyzing bouts of MVPA. (a) Cluster results are pooled across strata. (b) Bouts are filtered out if
they do not meet the minimum duration criteria (10 min in this example). MVPA =moderate to vigorous physical activity.
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number of bouts. Day-level totals were first calculated for each
participant, then averaged to obtain participant-level daily summa-
ries for the analyses. We tested group-level agreement among the
methods using pairwise paired t tests for each metric (α = .05), with
p values corrected using the false discovery rate correction
(Benjamini & Hochberg, 1995). We also performed pairwise
Bland–Altman analyses of mean bias and limits of agreement,
including regression summaries (slope and R2) to reflect the
presence of systematic differences (Bland & Altman, 1999). Since
none of the algorithms was a criterion measure, the pairwise models
were fitted by regressing bias (i.e., Method A −Method B for each
participant) against the mean of both methods (i.e., Method AþMethod B

2
for each participant).

Results for all analyses are shown in Table 2. Group-level
agreement was strongest between the Ostendorf et al. (2018) and
CRIB algorithms, with small mean differences for bouted MVPA
time (within ± 0.3 min/day of one another; p = .51), interruption time
(within ± 0.3 min/day; p < .001), and number of bouts (within ± 0.1
bouts/day; p = .23). Slightly larger mean differences were seen for
comparisons involving the algorithm of Troiano et al. (2008), across
bouted MVPA time (within ± 3.7 min/day of the other methods; both
p < .001), interruption time (within ± 1.4 min/day; both p < .001), and
number of bouts (within ± 0.3 bouts/day; both p < .001).

Individual-level agreement followed similar patterns to what
was shown at the group level. Specifically, limits of agreement were
1.5–2.8 times as wide for comparisons involving the algorithm of
Troiano et al. (2008) than they were when comparing the algorithm

of Ostendorf et al. (2018) with CRIB. Across all pairwise compar-
isons, there was limited evidence of systematic differences for
bouted MVPA time or number of bouts (all slope magnitudes ≤0.04
with R2 ≤ 1.2%), whereas interruption time differed more systemat-
ically (slopes of 0.21–0.98; R2 of 9.5%–46.0%).

Overall, the three algorithms were highly concordant at the
group and individual levels, with the strongest agreement between
the Ostendorf and CRIB algorithms. Interruption time was the
metric for which the greatest differences were seen, which is
consistent with the design areas in which the algorithms are
most distinct from one another.

Implications

The similar output from each algorithm provides some indication
that participants rarely engaged in edge-case behavior patterns
(e.g., few overlapping bout solutions likewhat is shown in Figure 1)
that would be captured differently by the three algorithms. How-
ever, there were certainly individual cases where a unique pattern
led to disagreement among the algorithms. For example, despite the
overall strong agreement between the Ostendorf et al. (2018) and
CRIB algorithms, there were nevertheless individual participant-
level differences up to 36MVPAmin/day, 20 interruption min/day,
and four bouts/day. Figure 5 (drawn from Stratum 4 of the example
data in Figures 2–4) shows a specific excerpt of data where the
three algorithms yielded disparate results, with the algorithm of
Troiano et al. (2008) identifying two bouts (39 min of MVPA) and

Table 2 Pairwise Comparisons of Bout Analysis Outcomes for Three Methods of Assessing MVPA Bouts
(N= 2,733)

Troiano (A)
vs.

Ostendorf (B)

Troiano (A)
vs.

CRIB (B)

Ostendorf (A)
vs.

CRIB (B)

Bouted MVPA (min/day)

Method A (mean ± SD) 28.4 ± 18.9 28.4 ± 18.9 25.0 ± 18.6

Method B (mean ± SD) 25.0 ± 18.6* 24.7 ± 18.2* 24.7 ± 18.2

Mean bias (95% LOA) 3.4 (−12.2, 19.0) 3.7 (−12.7, 20.2) 0.3 (−7.9, 8.6)

LOA width 31.3 32.9 16.5

Bland–Altman slope 0.02 0.04 0.02

Bland–Altman R2 .1% .8% 1.1%

Within-bout interruptionsa (min/day)

Method A (mean ± SD) 2.8 ± 3.5 2.8 ± 3.5 1.7 ± 1.9

Method B (mean ± SD) 1.7 ± 1.9* 1.4 ± 1.6* 1.4 ± 1.6*

Mean bias (95% LOA) 1.1 (−4.5, 6.6) 1.3 (−4.9, 7.5) 0.2 (−2.0, 2.5)

LOA width 11.1 12.4 4.4

Bland–Altman slope 0.7 0.98 0.21

Bland–Altman R2 35.9% 46.0% 9.5%

MVPA bouts (n/day)

Method A (mean ± SD) 1.5 ± 0.7 1.5 ± 0.7 1.2 ± 0.7

Method B (mean ± SD) 1.2 ± 0.7* 1.3 ± 0.8* 1.3 ± 0.8

Mean bias (95% LOA) 0.2 (−0.7, 1.1) 0.2 (−0.7, 1.1) 0.0 (−0.6, 0.6)

LOA width 1.8 1.8 1.2

Bland–Altman slope 0.02 −0.03 −0.04

Bland–Altman R2 .1% .2% 1.2%

Note. CRIB =Clustered Recognition of Interrupted Bouts; LOA = limits of agreement; MVPA =moderate to vigorous physical activity.
aMinutes of non-MVPA occurring within valid MVPA bouts, as defined by the algorithm in question.
*Significant difference (adjusted p < .001) between methods.
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six interruptions (totaling 10 min), the algorithm of Ostendorf et al.
(2018) identifying one bout (29 min of MVPA) and three inter-
ruptions (totaling 5min), and CRIB identifying one bout (27 min of
MVPA) and one interruption (totaling 1 min). It is important to
consider the potential for such differences when interpreting bout-
focused data and drawing comparisons across methods and studies.
Notably, it is not always clear which algorithm (if any) gives the
correct estimate, and thus algorithms should be selected based on
how suitable their design is for the research question being
investigated. Additionally, it may be a useful practice to compare
results from several algorithms, as a form of sensitivity analysis
that shows whether overlapping bout solutions are influential in the
data. In the following section, we provide a more generalized
discussion of CRIB and its applicability for ongoing research into
bouts of different physical behaviors.

Discussion

The CRIB technique provides a comparison-focused approach to
classifying interrupted bouts of physical behavior from wearable
device data. Users can implement the method in R via the

PBpatterns package (see https://www.github.com/paulhibbing/
PBpatterns), and specific guidance and sample code are available
in a vignette (https://www.github.com/paulhibbing/PBpatterns/
blob/main/vignettes/CRIB.pdf). Below, we discuss the novelty
and strengths of CRIB, its limitations, the influence of time
resolution (i.e., epoch length) in bout analysis, and potential novel
applications of CRIB for future research.

Novelty and Strengths of the CRIB Technique

The main novelty of CRIB is the framework it provides for
systematically comparing different bout solutions in a way that
addresses the number, timing, individual duration, and cumulative
duration of interruptions. CRIB is also designed as a general
purpose tool for use with any behavior, device, or population.
This may promote standardization across studies, although the
degree of standardization is limited by the need to use different
settings for each application.

Another novel aspect of CRIB is its data-driven flow, which
arises from the combination of event-based analysis (via run-
length encoding) and unsupervised data mining (via hierarchical
agglomerative clustering with single linkage). These design

Figure 5 — Depiction of a special case when analyzing bouts of MVPA for one participant in the NHANES. The left-hand panel (a) shows the
accelerometer time series in 60-s epochs, with the horizontal line indicating the MVPA cut point of 1,952 counts/min. The right-hand column shows bout
classifications when using only the cut point, that is, continuous bouts (b), versus the algorithm of Troiano et al. (2008) (c), the algorithm of Ostendorf et al.
(2018) (d), or the CRIB algorithm (e). NHANES =National Health and Nutrition Examination Survey; MVPA =moderate to vigorous physical activity;
CRIB =Clustered Recognition of Interrupted Bouts.
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features place CRIB in strong alignment with general concepts of
event-based analysis (e.g., those overviewed by Granat, 2012) as
well as specific concepts of bout classification presented by
Twaites (2019).

Overall, the comparison-focused design is a considerable
strength that makes CRIB complementary to a range of existing
bout classification algorithms. CRIB may be especially useful in
cases where comparison-related information is desired in addition
to chronology-related information. As noted previously, compar-
ing output from multiple algorithms may help to show whether the
data are strongly influenced by patterns that one method detects
while the others do not. These capabilities position CRIB to make a
valuable contribution to the science of bout analysis.

Limitations of the CRIB Technique

While the comparison-focused and general purpose features of
CRIB enhance its novelty, they are also accompanied by limita-
tions that are important to note. One such limitation is the need to
select different settings when applying CRIB to different beha-
viors, devices, and populations. Prior work by Barry et al. (2015)
has shown that bout analysis algorithms can yield much different
estimates when changing the allowable duration of individual
interruptions within each bout. Additional differences are likely
to occur when changing the allowable number, timing, and cumu-
lative duration of interruptions (Altenburg & Chinapaw, 2015).
Therefore, settings must be carefully selected when implementing
CRIB, which may require an assortment of tailored validation
studies.

Another potential limitation of CRIB is that it does not account
for helpful assumptions that can sometimes be made for specific
behaviors. For example, other algorithms have been enhanced by
factoring in assumptions about the times of day when sleep is most
likely (van der Berg et al., 2016) or which behavior types are most
likely to generate the longest event each day (Winkler et al., 2016).
Future work could potentially create adapted CRIB methods to
account for similar assumptions, but it is unclear how much benefit
this would provide.

Lastly, CRIB is computationally intensive, making runtime
another potential limitation. This issue is complicated by the fact
that runtime is dependent on many factors including the user-
specified settings (especially the target buffer), the size of the data,
the amount of target behavior engagement, the machine on which
the analysis is run, and the number of other tasks the machine is
performing in addition to running the algorithm. While these are
important considerations, the practical impact may be trivial in
some situations. For example, we timed 10 iterations of the Troiano
et al. (2008), Ostendorf et al. (2018), and CRIB algorithms on the
NHANES MVPA data when processing the five smallest partici-
pant files (49.1–49.7 KB in compressed R-native format) and the
five largest files (71.0–73.3 KB). The full files were used (i.e., not
screened for wear time or valid days), and the tests were run on a
Lenovo machine with 32 GB of random-access memory and a
quad-core processer (2.11 GHz base speed). Results are shown in
Figure 6. When processing small files, the median runtime
was ≤0.05 s per file for the Troiano et al. (2008) and Ostendorf
et al. (2018) algorithms, whereas it was 0.30 s per file for CRIB.
When processing large files, the Troiano algorithm ran faster
(median 0.04 s per file, a twofold increase compared to the small
files) than the Ostendorf algorithm (0.24 s per file, a 4.5-fold
increase) or the CRIB algorithm (1.79 s per file, a sixfold increase).
Although these are stark differences, it is important to note that the

runtimes remained reasonably fast and were applied to a consider-
able volume of data for each participant (i.e., 1 week of 60-s
epochs). Thus, for small and midsized data sets, runtime may pose
only a minor barrier when analyzing bouts of MVPA (e.g., an extra
4 s per 100 participants with the Troiano method vs. an extra 3 min
per 100 participants with CRIB).

Additional Consideration of Time Resolution
(Epoch Length)

With all bout classification algorithms, it is important to consider
the impact of epoch length on the analysis. The shorter the epoch
length, the shorter the interruptions that can be detected within a
bout, which can potentially be an advantage in some cases
(i.e., when focused on granular behavior patterns) and a disadvan-
tage in others (i.e., when focused on higher level behavior patterns).
Thus, epoch lengths must be selected with careful consideration of
specific study objectives, and algorithm output must be interpreted
accordingly.

For our example analysis, the NHANES data were available in
60-s epochs. Thus, very short interruptions (e.g., ≤30 s) may have
been missed if the rest of the epoch contained enough movement to
elicit an MVPA classification. Furthermore, these partial-epoch
interruptions could have been part of longer interruptions that
spanned several epochs. For example, a continuous 2-min inter-
ruption could have been spread across three 60-s epochs, with only
the middle epoch being labeled an interruption. As noted above,
this type of issue would be a definite limitation for research
questions aimed at analyzing granular behavior patterns, whereas
the concern would likely be smaller for research questions aimed at
assessing higher level activity.

Epoch length is also important to consider because of its
computational implications. Specifically, shorter epoch lengths
lead to longer runtimes because of the direct relationship between
the number of epochs and the required number of computations.
As before, this affects all bout classification algorithms. How-
ever, unlike before, the consequences may be especially great for
CRIB, since the number of computations will not necessarily
change on a linear scale as epoch length is manipulated. To
illustrate this, we randomly selected five participants from our
sample analysis and reintegrated the data from 60- to 120-s
epochs. We then timed 10 iterations when processing the data
from each participant with all three algorithms at both time
resolutions (again using the full files without screening for
wear time or valid days). As expected, all algorithms had longer
runtime for 60-s than 120-s epochs, but the discrepancy was less
for the Troiano et al. (2008) algorithm (medians differing by a
factor of 2.0) and the Ostendorf et al. (2018) algorithm (a factor
of 2.3) than for CRIB (a factor of 2.4). While the practical
implications were again quite small (median runtimes < 3.4 s per
file for all algorithms), 120-s epochs are rarely seen in the
literature, and greater consequences are likely when adjusting
the epoch length downward to more common settings
(i.e., <60 s). Future studies should consider the above factors
when selecting an epoch length and deciding whether to use
CRIB instead of (or in addition to) another algorithm.

Potential Novel Applications for CRIB

While CRIB is applicable to common behaviors of interest in
physical behavior research (e.g., sleep, SB, MVPA, and ambula-
tion), there are also potential applications in less common areas.
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For example, its utility can potentially be extended to spatial data
from global positioning systems and geographic information sys-
tems. An example would be identifying bouts of engagement in
certain activity spaces (e.g., within a certain buffer around the home
or school address). Once the global positioning systems and
geographic information systems data have been processed into a
time stamped sequence of activity space labels, CRIB can be
applied to classify the bouts while accounting for brief excursions
outside the buffer. This may position CRIB to address certain
previously noted challenges associated with defining buffers in the
first place (Jankowska et al., 2015).

Nonwear analysis is another potential novel application for
CRIB. Although nonwear analysis is not normally considered a
type of bout analysis, it can nevertheless be conceptualized as a
stable pattern of accelerometer signal (traditionally 0 counts per
min), with the possibility of brief interruptions (e.g., being moved
from one location to another). To apply CRIB in this setting, a
starting point could be to use settings similar to the algorithm of
Choi et al. (2011), for example, by setting the target buffer to
30 min and allowing ≤1 interruption per motionless bout, with a
maximum interruption length of 2 min and a minimum bout length
of 60 min. Alternatively, an extension could be implemented
by adding a setting for the required percent engagement within
the bout.

Conclusion

The comparison-focused design of CRIB allows it to complement a
range of chronology-focused algorithms. The additional information
may help to better understand behavioral patterns and their health
implications. Future studies can refine CRIB by experimenting with
design tweaks, for example, using different clustering approaches,
linkage techniques, or distance metrics. Validation work is also
necessary to develop a catalog of recommended settings when using
CRIB for different applications (e.g., for different behaviors, devices,
and populations). Within this work, it will be important to investigate
the implications for health, in addition to looking at alignment of the
predicted bouts with criterion data (e.g., from direct observation).
Additionally, as CRIB is applied in these diverse settings, more
insights may emerge to suggest how else bout classification can be
standardized and enriched, particularly through the use of unsuper-
vised data mining (Twaites, 2019).
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