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Neurocomputational mechanisms 
of food and physical activity 
decision‑making in male 
adolescents
Seung‑Lark Lim 1*, Amanda S. Bruce 2,3 & Robin P. Shook 2,4

We examined the neurocomputational mechanisms in which male adolescents make food and physical 
activity decisions and how those processes are influenced by body weight and physical activity 
levels. After physical activity and dietary assessments, thirty-eight males ages 14–18 completed 
the behavioral rating and fMRI decision tasks for food and physical activity items. The food and 
physical activity self-control decisions were significantly correlated with each other. In both, taste- 
or enjoyment-oriented processes were negatively associated with successful self-control decisions, 
while health-oriented processes were positively associated. The correlation between taste/enjoyment 
and healthy attribute ratings predicted actual laboratory food intake and physical activities (2-week 
activity monitoring). fMRI data showed the decision values of both food and activity are encoded in 
the ventromedial prefrontal cortex, suggesting both decisions share common reward value-related 
circuits at the time of choice. Compared to the group with overweight/obese, the group with normal 
weight showed stronger brain activations in the cognitive control, multisensory integration, and 
motor control regions during physical activity decisions. For both food and physical activity, self-
controlled decisions utilize similar computational and neurobiological mechanisms, which may 
provide insights into how to promote healthy food and physical activity decisions.

Energy balance and the role of the brain.  Body weight is regulated by energy intake and expendi-
ture. While what we eat and drink determines energy intake, what we do (physical activity) and the resting 
metabolic rate (RMR) determine energy expenditure. At the most basic level, a positive energy balance (energy 
intake > energy expenditure) causes weight gain, and a negative energy balance (energy intake < energy expendi-
ture) causes weight loss. Thus, to prevent obesity risks and promote a healthy lifestyle, a mechanistic understand-
ing of the psychological and neurobiological control processes for energy intake and energy expenditure that 
maintain a healthy and stable energy balance is required. The brain plays a critical role in the regulation of energy 
homeostasis (intake and expenditure) and metabolism1–4. The brain monitors and detects body excess or deficit 
by integrating multiple metabolic information (e.g., nutrients, gut-driven satiety signals, and adiposity-related 
hormones). The regulatory body metabolic mechanisms that the brain controls include food-seeking behavior, 
gastric emptying, nutrient uptake in the gut, thermogenesis, hepatic glucose production, insulin secretion, and 
glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Recently, decision neuroscience has signifi-
cantly contributed to our understanding of computational and neurobiological mechanisms of food decision-
making (energy intake)5–7, but this is not the case for physical activity decision-making (energy expenditure)8. 
Considering the interdependent nature of food and physical activity decisions in the control of healthy energy 
balance, it is critical to advance our scientific understanding of decision-making processes for both energy intake 
and expenditure. An intervention strategy that targets only one aspect (energy intake or expenditure) would be 
insufficient or less effective9.
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Self‑controlled food and physical activity decisions.  To make healthy (or self-controlled) food deci-
sions (e.g., an apple over fries), we must prioritize the healthiness of foods that provides long-term nutritional 
benefits over delicious taste that produces short-term pleasurable experience. Similarly, to make healthy (or 
self-controlled) physical activity decisions (e.g., jogging over playing a video game), we must emphasize the 
healthiness of activities that provides long-term physical benefits, rather than an enjoyable experience that pro-
duces short-term pleasure or comfort. However, it should be noted that the healthiness of given food or activity 
is dependent on the individual’s various health and contextual factors (e.g., milk products for people with lactose 
intolerance and running for patients with cachexia). In general, voluntary healthy energy intake and expendi-
ture decisions will require effortful and goal-directed self-control operations that share interlinked executive 
functions such as cognitive control, inhibition, and future thinking10. Yet, the brain’s executive functioning does 
not reach full maturity until young adulthood11–13, which makes adolescents prone to impulsive and immediate 
reward-oriented decisions rather than deliberate future goal-oriented decisions12. Furthermore, as well as the 
neural plasticity of the developing brain, adolescence is the critical period for life-long health habit formation14 
and the critical period of nutrition needs for pubertal growth15. During adolescence, the development of the 
brain, body, and self-control behaviors tightly interact with each other, which all contribute to energy balance 
regulation. The body composition, behavioral habits, and preferences attained during adolescent periods often 
tack into adulthood16. Thus, a scientific understanding of adolescents’ decision-making processes for food and 
physical activity is a requisite for effectively guiding them to establish decision-making patterns or habits for 
healthier energy balance.

The current study.  This pilot neuroimaging study investigated how male adolescents make food and physi-
cal activity decisions, and how these decisions are influenced by body weight status and physical activity levels. 
To accomplish this, we used behavioral tests and functional magnetic resonance imaging (fMRI). We hypoth-
esized that (1) physical activity decisions (energy expenditure) share similar neurocomputational mechanisms 
with food decisions (energy intake), and (2) body weight status and physical activity levels modulate neuro-
computational processes of food and physical activity decisions. Particularly, we hypothesized that adolescent 
males’ food and physical activity decisions would be determined by how participants evaluate and incorporate 
the immediate reward-related attribute (i.e., the tastiness of foods; the enjoyment of physical activities) and the 
future-oriented reward attribute (i.e., the healthiness of foods and the healthiness of physical activities) into 
their decision-making process (see Eqs. 1 and 2). Also, we hypothesized that these participants’ decision weights 
for the immediate reward-related and future-oriented reward attributes would predict self-controlled food and 
physical activity decisions. Based on previous neuroimaging literature17–20, we hypothesized the ventromedial 
prefrontal cortex (vmPFC) would encode participants’ decision values for both foods and physical activities at 
the time of choice, which was tested by model-based fMRI data analyses21,22.

Results
Behavioral results.  Descriptive statistics of behavioral ratings for thirty-eight adolescent males (14–
18 years old; mean 15.89) are reported in Table S1. For rating data, we examined how subjective taste/enjoy-
ment and health attribute ratings are related for 60 food and 60 physical activity items, respectively. For each 
individual, we first calculated Pearson correlation coefficients between two attribute ratings separately for food 
and activity items (Fig. 2A). Then, we performed one-sample t tests (against zero) with estimated correlation 
coefficients for group-level analyses. The correlation coefficients between taste and health attribute ratings for 
foods were widely distributed across participants, which was not significant at the average group level, mean 
r = −0.02, SD = 0.27, t(37) =  −0.52, p = 0.605, d = −0.09. On the other hand, the correlation coefficients between 
enjoyment and health attribute ratings for physical activities were significant at the average group level, mean 
r = 0.20, SD = 0.22, t(37) = 5.47, p < 0.001, d = 0.90. The correlation between food attribute correlation coefficients, 
r(taste, health), and physical activity attribute correlation coefficients, r(enjoyment, health), was not significant, r(36) = 0.29, 
p = 0.079. None of the correlation coefficients between taste/enjoyment and health ratings showed a significant 
correlation with age (all p values > 0.05). To determine whether these correlations between taste/enjoyment and 
healthy attributes vary by body weight status (NW, OW/OB) and physical activity (ACT, SED) levels, we con-
ducted 2 by 2 ANOVAs. The ANOVA on the food taste and health rating correlations did not show significant 
results, all p values > 0.05. But the ANOVA on the physical activity enjoyment and health rating correlations 
showed a significant main effect of the physical activity level, F(1,34) = 6.11, p = 0.019, η2

p = 0.15, indicating the 
ACT group demonstrates higher correlations between enjoyment and health ratings compared to the SED group 
(Fig. 2B). The other effects were not significant, all p values > 0.05.

Computational models of taste/enjoyment and health attribute integration.  To test our multi-
attribute computational model (see Eqs. 1 and 2), we examined how participants incorporate taste and health 
attribute values into their food decisions, and enjoyment and health attribute values into their physical activity 
decisions. For each individual, we first fitted linear regression models of taste/enjoyment and health ratings 
(measured by 4-point scales during the behavioral rating task; Fig. 1B) on participants’ decisions (measured by 
a 4-point scale during the fMRI decision task; Fig. 1C) separately for food and physical activity items. Then, for 
group-level analyses, we conducted one-sample t tests (against zero) with the estimated regression coefficients 

(1)Food Decisions = β1 × Food Taste Ratings + β2 × Food Health Ratings + ǫ

(2)Physical Activity Decisions = β1 ×Activity Enjoyment Ratings+β2 ×Acitivy Health Ratings+ ǫ.
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Figure 1.   (A) Overview of the study design. (B) Adolescents completed food and activity ratings before fMRI 
scans. They provided taste and health attributes and overall preference ratings for 60 different food items, and 
enjoyment and health attributes and overall preference ratings for 60 different activity items. The order of food 
and activity rating tasks and the order of attribute ratings within each type of task were randomized. (C) fMRI 
decision task consisted of activity and food decision blocks. Participants completed 6 runs of the decision task 
and each run included 3 food and 3 physical activity choice blocks (10 decision trials per block). Computer 
algorithms randomized the order of blocks and the order of trials within the block. For each food and physical 
activity image, participants entered their decisions using a 4-point scale (“strong no–strong yes” or “strong yes–
strong no”; counterbalanced across participants) within 4-s.
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(= decision weights). For food items, taste ratings, mean β = 0.68, SD = 0.19, t(37) = 21.47, p < 0.001, d = 3.57, but 
not health ratings, mean β = -0.04, SD = 0.17, t(37) =  −1.49, p = 0.145, d = −0.24, significantly predicted participants’ 
food decisions. Similarly, for physical activity items, enjoyment ratings, mean β = 0.65, SD = 0.03, t(37) = 20.78, 
p < 0.001, d = 3.45, but not health ratings, mean β = 0.04, SD = 0.02, t(37) = 1.63, p = 0.092, d = 0.28, significantly 
predicted participants’ physical activity decisions (Fig. 2C). These results suggest that, on average, male adoles-
cents do not incorporate health information into their food and physical activity choices (i.e., pleasure-oriented 
decision processes), despite possessing the knowledge of health values (as demonstrated by significant health 
rating differences between healthy and unhealthy food items, t(37) = 24.55, p < 0.001, d = 3.98, as well as between 
active and sedentary physical activity items, t(37) = 19.43, p < 0.001, d = 3.15). None of the taste/enjoyment and 
health beta-weights revealed a significant correlation with age, all p values > 0.05. To check whether these deci-
sion weights of taste/enjoyment and healthy attributes vary by body weight status (NW, OW/OB) and physical 
activity (ACT, SED) levels, we performed 2 by 2 ANOVAs. The ANOVA result on the beta weights of taste ratings 
on food decisions showed a significant interaction effect of body weight status and activity level, F(1,34) = 9.82, 
p = 0.004, η2

p = 0.22 (Fig. 2D). None of the main effects was significant, all p values > 0.05. In simple analyses, 
the NW ACT group showed significantly higher taste beta weights compared to the NW SED group, t(19) = 3.15, 
p = 0.005, d = 1.38, while the OW/OB ACT and OW/OB SED groups did not show a significant difference, t(15) =  
−1.52, p = 0.148, d = −0.75, suggesting that the food decision process in which adolescents process taste attributes 
can be systematically varied by their weight status and physical activity level. Quite interestingly, while the NW 
ACT male adolescents belong to a relatively healthy category, they still possess strong taste-oriented food deci-
sion processes which may serve as a potential health risk if they become no longer active. The 2 by 2 ANOVA 
results on the other 3 beta-weights showed no significant effect, all p values > 0.05.

Relation between food and physical activity decisions.  Next, to explore how the decision processes 
of food and physical activity are related to each other, we performed correlational analyses between the deci-
sion weights of food taste attribute and physical activity enjoyment attribute (both represent pleasure-oriented 
decision processes) as well as between the decision weights of food health attribute and physical activity health 
attribute (both represent health-oriented decision processes). The regression beta weights of food taste attrib-

Figure 2.   (A) Participants’ correlation coefficients of food taste and health ratings and activity enjoyment 
and health ratings are shown in ascending order of food correlation coefficients. The dotted lines indicate the 
critical r values at the individual level (± 0.254 at p < 0.05). (B) The correlations between activity enjoyment and 
health ratings were significantly different between active (ACT) and sedentary (SED) groups. (C) Adolescents’ 
food decisions were solely predicted by taste ratings, and activity decisions were solely predicted by enjoyment 
ratings. (D) The food taste beta weights were significantly different between normal weight active (NW ACT) 
and normal weight sedentary (NW SED) groups, while they were not different between overweight/obese active 
(OW/OB ACT) and overweight/obese sedentary (OW/OB SED) groups. All error bars denote standard errors. 
n = 38.
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ute and physical activity enjoyment attribute showed a significant positive correlation, r(36) = 0.49, p = 0.002 
(Fig. 3A), suggesting that participants who make stronger taste-oriented food decisions have a similar tendency 
to make stronger enjoyment-oriented physical activity decisions. However, the regression beta weights of food 
health attribute and physical activity health attribute were not significantly correlated with each other, r(36) = 0.23, 
p = 0.163 (Fig. 3B).

The role of self‑control.  By using choices from the fMRI decision task, we examined participants’ self-
control execution on food and physical activity items. For self-control analyses17, we selected the self-control 
challenge trials based on participants’ subjective attribute ratings for 60 food and 60 activity items. For foods, 
‘tasty but unhealthy’ items and ‘not tasty but healthy’ items were selected first, and then we calculated the pro-
portion of successful self-control choices among them (‘strong no’ or ‘no’ responses for the tasty but unhealthy 
foods and ‘yes’ or ‘strong yes’ responses for the not tasty but healthy foods). Similarly, for physical activities, 
‘enjoyable but unhealthy’ items and ‘not enjoyable but healthy’ items were selected, and then the proportion of 
successful self-control choices (‘strong no’ or ‘no’ responses for the enjoyable but unhealthy activities and ‘yes’ or 
‘strong yes’ responses for the not enjoyable but healthy activities) were calculated. The means of the proportion of 
successful self-control food and physical activity choices were 0.18 (SD = 0.16) and 0.20 (SD = 0.11), respectively. 
Neither successful food nor physical activity self-control proportion correlated with age, all p values p > 0.05. It 
is worth noting there was a significant correlation between two successful self-control proportions, r(36) = 0.41, 
p = 0.011, suggesting shared self-control mechanisms between food and activity choices. To check whether the 
proportions of successful self-control choices vary by body weight status and physical activity levels, we con-
ducted 2 by 2 ANOVAs. But they did not show significant results, all p values > 0.05.

To further test whether our key variables (taste/enjoyment and health decision weights; correlations between 
attribute ratings) of computational models predict successful self-control in food and physical activity decisions, 
we performed a series of correlational analyses. For food choices, the beta weights of taste and health attributes 
revealed significant negative, r(36) = −0.42, p = 0.009 (Fig. 3C), and positive correlations, r(36) = 0.62, p < 0.001 
(Fig. 3D) with the proportion of successful self-control decisions. Also, the correlation coefficients between 
food taste and health attribute ratings (see Fig. 2A) showed a significant positive correlation with the successful 
self-control food choices, r(36) = 0.43, p = 0.007. In the multiple regression analysis in which three key decision 
model variables were entered simultaneously, F(3,34) = 22.88, p < 0.001, R2 = 0.67, both taste and health attribute 
beta weights were significant, β = −0.53, t(34) = −5.21, p < 0.001; β = 0.67, t(34) = 5.77, p < 0.001, while the correlation 
coefficient between food taste and health attribute ratings was not, β = 0.08, t(34) = 0.68, p = 0.499. Similarly, for 
physical activity choices, the beta weights of enjoyment attribute and health attribute revealed significant nega-
tive, r(36) = −0.60, p < 0.001 (Fig. 3E), and positive correlations, r(36) = 0.54, p = 0.001 (Fig. 3F) with the proportion 
of successful self-control decisions. However, the correlation coefficients between activity enjoyment and health 
attribute ratings (see Fig. 2A) did not show a significant correlation, r(36) = 0.07, p = 0.679. In the multiple regres-
sion analysis, F(3,34) = 15.72, p < 0.001, R2 = 0.58, both enjoyment and health attribute beta weights were significant, 
β = −0.53, t(34) = −4.68, p < 0.001; β = 0.50, t(34) = 4.11, p < 0.001, while the correlation coefficients between activity 
enjoyment and health attribute ratings were not significant, β = −0.04, t(34) = −0.68, p = 0.504.

Real‑world implications.  Lastly, to determine how our key model variables of food and physical activity 
decisions are linked to ‘actual’ food consumption and physical activity measures, we performed correlation anal-
yses with the dietary assessment (average kcals/day from 2-week food diary; kcals consumed from ad libitum 
buffet) and the physical activity assessment (2-week VM average counts of activity monitor) data. For food deci-
sion model variables, the correlation coefficients between food taste and health attribute ratings, r(taste, health), were 
negatively associated with the amount of food consumption from the ad libitum cheese pizza buffet, r(36) = −0.41, 
p = 0.012, demonstrating that the participants who perceived unhealthy foods as tasty consumed more at the 
ad libitum buffet (Fig. 3G). Also, the regression beta weights of food taste attribute showed a marginal correla-
tion value with the average energy intake measured from the 2-week food diary assessment (2 missing data), 
r(34) = 0.30, p = 0.071. For physical activity decision model variables, the correlation coefficients between activity 
enjoyment and health attribute ratings, r(enjoyment, health), were positively associated with the physical activity moni-
tor measure, r(36) = 0.35, p = 0.029, demonstrating that participants who perceived healthy physical activities as 
enjoyable made more physical activities during our 2-week assessment period (Fig. 3H). The regression beta 
weights of activity enjoyment and health attribute showed no significant correlation with the physical activity 
levels, all p values > 0.05.

fMRI results.  We examined fMRI data to identify the brain areas that parametrically encode food and physi-
cal activity-related variables representing participants’ decision values (i.e., how much they want to eat or want 
to do; ‘strong no’–‘strong yes’). Consistent with our decision model of food and physical activity, when partici-
pants made their choices, brain activation in the vmPFC positively correlated with subjective decision values in 
both conditions (p < 0.05 corrected; Fig. 4A; Table S2). Our findings firstly demonstrate that the physical activity 
decisions share similar neurocomputational circuitry operations with other types of rewards or commodities 
shown in other studies, like monetary choices23,24. Also, we examined two event indicator regressors to check 
potential task-related differences (e.g., motivational or cognitive demands) between food and physical activity 
choices. The orbitofrontal cortex (OFC) showed stronger activations during food choices compared to physical 
activity choices, while the fusiform gyrus showed stronger activations during physical activity choices compared 
to food choices (p < 0.05 corrected; Fig. 4B; Table S3). This finding suggests the potential task differences such as 
enhanced gustatory sensory processes during food choices and higher-order visual stimulus processes during 
physical activity choices.
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Figure 3.   (A) The beta weights of food taste attribute were positively correlated with the beta weights of activity 
enjoyment attribute. (B) The beta weights of food health attribute were not significantly correlated with the beta 
weights of activity health attribute. (C) The beta weights of food taste attribute were negatively correlated with 
the proportions of successful self-control in food decisions. (D) The beta weights of food health attribute were 
positively correlated with the proportions of successful self-control in food decisions. (E) The beta weights of 
activity enjoyment attribute were negatively correlated with the proportions of successful self-control in activity 
decisions. (F) The beta weights of activity health attribute were positively correlated with the proportions of 
successful self-control in activity decisions. (G) The correlations between food taste and health attribute ratings 
were negatively associated with the amount of food consumption (kcals) at the ad libitum pizza buffet (M = 1023, 
SD = 369). (H) The correlations between physical activity enjoyment and health attribute ratings were positively 
associated with the physical activity level monitor measures of the 2-week assessment period (M = 1866, 
SD = 418). n = 38.
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Next, to check whether the brain activities vary by the type of decisions (food, physical activity), body weight 
status (NW, OW/OB), and physical activity (ACT, SED) levels, we conducted an exploratory 2 by 2 by 2 repeated-
measures ANOVA. A significant 2-way interaction effect by body weight status and physical activity levels was 
found in the pre-supplementary motor area (pre-SMA) (p < 0.05 corrected; Fig. 5A; Table S4), a brain area known 
to represent action intentions25 and prospective effort-related costs26. Subsequent analyses showed that the NW 
group showed stronger activations in the inferior frontal cortex (IFG), motor cortex, and superior temporal gyrus 
(STG) compared to the OW/OB group during physical activity choices (p < 0.05 corrected; Fig. 5B; Table S4). 
Contrarily, no clear group difference by physical activity levels was observed (Table S4).

Discussion
This first-of-a-kind study investigated the neurocomputational mechanisms of food (energy intake) and physical 
activity (energy expenditure) decision-making and demonstrated that two decision processes are interdependent, 
not independent. More specifically, as described in our computational models (Eqs. 1 and 2), we hypothesized 
that (1) how participants subjectively evaluate two key attributes of foods (taste and health) and physical activi-
ties (enjoyment and health) and (2) how they incorporate those attributes into their decision process would 
determine their food and physical activity decisions. Not surprisingly, among participants, the associations 
between taste and health ratings of foods varied widely from strong negative to strong positive correlations 
(Fig. 2A). Our previous study in a younger sample suggested the negative association between healthiness and 
tastiness of foods (i.e., unhealthy foods taste better) is one of the underlying susceptibility factors to unhealthy 
eating habits, which was also associated with general low self-control ability27. On the contrary, enjoyment and 
health attributes of physical activities were positively correlated in our study. However, the ACT group showed 
higher positive correlations between enjoyment and healthiness of physical activities compared to the SED group 
(Fig. 2B), which may make the SED group more susceptible to unhealthy physical activity decisions. In regression 
models, food and physical activity decisions were solely predicted by the immediate reward-related attributes 
(taste and enjoyment), not by the long-term benefits-related attribute (health) (Fig. 2C). In group comparisons, 
somewhat surprisingly, the NW ACT group showed higher taste beta weights compared to the NW SET group 
(Fig. 2D). While the NW ACT group currently possesses a relatively healthy status regarding BMI and physical 
activity, their taste-oriented food decision process pattern established during the adolescent period may serve 
as a risk factor in their later life stages, if they reduce their amount of physical activity, which many youths do 
as they enter early adulthood. Alternatively, it could be explained according to recent findings by Gauthier and 

Figure 4.   (A) Both food and physical activity-related decision values were positively correlated with vmPFC 
activities. (B) OFC showed stronger activity during food choices compared to physical activity choices, while 
fusiform gyrus showed stronger activity during physical activity choices compared to food choices. All images 
are threshold at p < 0.05 corrected with cluster size correction.

Figure 5.   (A) Weight by activity group interaction effect was found in the pre-SMA. (B) Normal weight group 
(n = 21) compared to overweight/obesity group (n = 17) showed stronger IFG, motor cortex, and STG activations 
during activity choices. The images are threshold at p < 0.05 corrected with cluster size correction.
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colleagues28, who demonstrated that taste intensity/sensitivity can increase following exercise. It is therefore 
possible, that the higher beta weights for taste in the NW ACT participants are the result of their higher levels 
of physical activity and could possibly decrease when decreasing their physical activity.

One of our goals was to explore whether food decision-making processes share similar neurocomputational 
mechanisms with physical activity decision-making processes. Self-control is often defined as the general psy-
chological ability of an individual to control or override one’s impulses or desires for immediate pleasure (e.g., 
tasty but unhealthy foods, enjoyable but unhealthy activities) to achieve long-term goals (e.g., health benefits). 
Previous research reported that self-control ability is significantly associated with healthy diet17 and exercise29,30 
habits. However, it is unknown whether self-controlled food (energy intake) decisions are interdependent with 
self-controlled physical activity decisions. In our study, the proportions of successful self-controlled food deci-
sions were significantly correlated with the proportion of successful self-controlled physical activity decisions, 
suggesting linked or reciprocal self-control mechanisms of energy intake and expenditure decisions. Our results 
also demonstrated that the taste-oriented food decisions are positively correlated with the enjoyment-oriented 
physical activity decisions suggesting common pleasure-seeking decision processes (Fig. 3A). Importantly, the 
pleasure-oriented food and physical activity decision weights were negatively associated with self-controlled food 
and physical activity decisions (Fig. 3C, E), and the health-oriented decision weights were positively associated 
with self-controlled food and physical activity decisions (Fig. 3D, F), suggesting the pleasure-oriented decision 
process serves as a susceptibility factor while the health-oriented decision process serves as a resilience factor for 
energy balance self-control decisions. Beyond our hypothetical food and physical activity decisions, we explored 
whether our key decision-making model variables are linked to ‘actual’ food consumption and physical activity 
measures. The correlations between food taste and health attribute ratings, r(taste, health), were negatively associated 
with the amount of food consumption at the ad libitum buffet (Fig. 3G)—participants who perceived unhealthy 
foods as tasty consumed more foods. Similarly, the correlations between activity enjoyment and health attribute 
ratings, r(enjoyment, health), were positively associated with the 2-week physical activity monitor measure. Taken 
together, our behavioral findings demonstrated that our decision model variables that represent how individuals 
make food and physical activity decisions significantly explain the actual energy intake and expenditure as well 
as the self-control outcomes in the experimental setting.

In our fMRI analyses, we found that both food and physical activity decision values are encoded in the vmPFC 
(Fig. 4A), as we hypothesized. The vmPFC is established as a key brain area for goal value representation31–33 for 
different types of goods such as food, nonfood consumables, clothing, and monetary incentives. In this project, 
however, we have for the first time demonstrated that the vmPFC also encodes decision values for physical 
activities. Combined with our computational model, our results suggest that both food and physical activity 
decisions share common value encoding neural circuits at the time of choice. In group comparisons, compared 
to the OW/OB group, the NW group showed stronger brain activations in the brain’s cognitive control (IFG), 
multisensory integration (STG), and motor control (MC) regions during physical activity decisions (Fig. 5B). 
This result suggests that body weight status can differentially modulate brain circuits that are required to make 
physical activity decisions. However, contrary to what we hypothesized, we could not find supporting evidence 
that physical activity level differentially modulates brain circuits during food and physical activity decisions.

This novel neuroimaging study that included both food and physical activity choice tasks demonstrates that 
these two decision-making processes are interdependent. Importantly, our finding suggests that self-regulated 
decisions for both food and physical activity utilize similar computational and neurobiological mechanisms, 
which may provide valuable insights into how to promote healthy food and physical activity decisions for ado-
lescents. For example, an intervention that is designed to de-emphasize the immediate pleasure-oriented deci-
sion process and emphasize the long-term health-oriented decision process could be effective to modify both 
unhealthy energy intake and expenditure behaviors. That is, emphasizing how a person can forgo an immediate 
fun unhealthy activity or a tasty unhealthy food and instead “be kind to your future self,” could be a helpful 
framework for health behavior change.

However, there are remaining issues that were not fully addressed in this study. First, in this study, we 
recruited participants across four categories based on body weight status and physical activity levels to identify 
specific contributions of each factor with minimal statistical adjustments. However, it is also true that a priori 
grouping reduces statistical power to detect group differences, especially when the differences are small. We 
tried to minimize this power issue by only including adolescent males in this project, which of course results in 
additional, separate limitations in terms of generalizability. We believe that it is important to explain the deci-
sion mechanisms in both sexes in the future to check potential differences34,35. Also, due to the relatively small 
sample size, our exploratory group comparison results by weight status and activity levels should be interpreted 
cautiously as preliminary evidence. Larger samples including children, adolescents, and young adults are required 
to fully elucidate the developmental decision-making trajectory. Another limitation is the use of an ordinal scale 
as opposed to a visual analog scale for ratings. This may exclude meaningful variance better captured by a visual 
analog scale (VAS). We chose an ordinal scale based on our past behavioral and neuroimaging studies18,20,27,36,37 
using this. Third, another question is how our findings could be generalized to food and physical activity deci-
sions often shared with other persons (e.g., family meals, school lunches, and team sports). It should be noted 
that some of the physical activity images were group types of activities (i.e., basketball), while others were soli-
tary (i.e., cycling). The social aspect of these activity choices has yet to be fully explored. Lastly, in our study, for 
compatibility between food and physical activity choices, participants made hypothetical decisions. Thus, while 
the effort cost can be another important factor for value-based decisions38–40, the effort cost was not considered 
in our study design. However, in real food and activity-related decisions can be substantially different. Future 
studies are necessary to expand ecological validity and generalizability. In general, the psychological and neu-
robiological control mechanisms for energy intake and energy expenditure that maintain a healthy and stable 
energy balance are relatively poorly understood. From an energy balance perspective, preventing weight gain is 
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known to be more effective than treating obesity9. Advancing our scientific understanding of how individuals 
make energy intake and expenditure decisions is imperative for developing interventions that promote lifelong 
healthy behavioral habit formation in adolescents.

Methods
Participants.  Thirty-eight adolescent males (14–18 years old; mean 15.88 years old; self-reported Tanner 
Stage III–IV; 28 Caucasian, 7 African American, 2 Asian/Pacific, and 1 Indian/Alaska) completed the behavioral 
and fMRI tasks. Inclusion criteria included stable body weight (± 5%) over the previous three months and being 
healthy for physical activity. Participants taking medications known to affect physical activity levels and metab-
olism were excluded (e.g., thyroid medications, beta-blockers, or other stimulants). No participants reported 
using antidepressants. Participants had no history of allergies to the food items used in the experiment. The par-
ticipants were recruited as a part of a larger behavioral study (Clinicaltrials.gov: NCT03157063) that included 6 
additional participants who did not participate in (2 participants) or were excluded due to MRI exclusion criteria 
(dental braces; 2 participants) and technical (1 participant) or attentional issues (> 50% responses misses during 
MRI tasks; 1 participant). All study protocol was approved by the Children’s Mercy Institutional Review Board. 
All participants provided informed consent, or in the case of minors, assent in addition to informed consent by 
a legal guardian. All methods were performed in accordance with relevant guidelines and regulations by our 
approved protocol.

For experimental purposes, participants were recruited across 2 by 2 categories based on body weight status 
(normal weight, overweight/obese) and physical activity levels (active, inactive). Based on age- and sex-specific 
body mass index (BMI; kg/m2) percentiles41, normal weight (5th percentile to less than the 85th percentile) and 
overweight/obese (85th percentile to less than 99th percentile) groups were categorized. To avoid severe obesity 
that is often accompanied by co-morbid conditions, participants above the 99th percentile were not included. 
Physical activity status was determined through a two-step procedure. During the initial recruitment, 50% active 
(≥ 60 min/day) and 50% sedentary (inactive) (< 60 min/day) participants were selected based on the self-reported 
activity level—the minutes spent in active play/exercise (breathing harder or sweating) on a typical day. Next, 
physical activities during a 14-day free-living period were measured using accelerometry (GT9X, ActiGraph, 
Pensacola, FL). Participants were instructed to always wear the activity monitor for 14 days, including sleeping 
and showering. Based on the vector magnitude (VM) average count, a median split was conducted. Those below 
this median threshold were categorized as sedentary (inactive) and above as active. The final participants con-
sisted of 11 individuals with normal weight and active lifestyle (NW ACT), ten individuals with normal weight 
and sedentary lifestyle (NW SED), 10 individuals with overweight/obese and active lifestyle (OW/OB ACT), 
and 7 individuals with overweight/obese and sedentary lifestyle (OW/OB ACT). Table 1 shows demographic 
characteristics. There was no significant age difference across the four groups, F(3,34) = 0.29, p = 0.830, ηp

2 = 0.03.
Dietician-administered dietary recalls conducted via phone were completed on three randomly selected days 

(two weekdays, one weekend day) by a registered dietician using a multi-pass approach42,43. Participants were 
asked to recall all foods and drinks consumed in the previous 24 h. The information collected was entered into 
the Nutrient Data System for Research software (NDSR)44 and total daily energy intake was calculated as the 
average intake over all recalls.

Procedures.  Laboratory appetite assessment.  Before the 14-day free-living physical activity (activity moni-
tor) and dietary (daily food diary) assessment described above, participants completed one appetite assessment 
session. The appetite assessment session occurred at 9:00 am following a 12-h dietary fast. Participants were 
provided a breakfast sandwich, chocolate milk, and 236 mL of water. The amounts of sandwich and chocolate 
milk varied by participants to match approximately 40% of the measured resting metabolic rate (RMR) that was 
assessed using a standard protocol45–47, while maintaining a macronutrient composition of 50% of kcals from 
carbohydrates, 30% from fat, and 20% from protein. Participants were asked to eat the entire meal within 15 min. 
At 3.5 h following the breakfast meal, participants were given access to an ad libitum cheese pizza buffet, served 
individually in a quiet room. The pizza (58% carbohydrate, 25% fat, 17% protein) was served in 435 kcal por-
tions, cut into six non-uniform pieces, along with 236 mL of water. Participants were instructed that they could 
eat as much as they would like until they were comfortably full. Research associates observed the meal from a 
window outside of the room and provided a new plate of pizza when the participant began eating the last piece 
on the plate. The meal was terminated when 5 min passed without the participant eating. Plate weight was meas-
ured before and after the meal, and the total kcals consumed were calculated. Participants provided subjective 
ratings of aspects of palatability following the ad libitum buffet of pizza using a visual analog scale, with 0 being 
‘Good’ and 100 being ‘Bad.’ Mean values, respectively, were as follows: Visual appeal, 23.79 (SD = 22.61); Smell, 

Table 1.   Descriptive statistics (n = 38). Mean and standard deviations.

All NW ACT​ NW SED OW/OB ACT​ OW/OB SED

n 38 11 10 10 7

Age 15.88 (0.93) 16.01 (1.11) 15.89 (1.01) 15.65 (0.93) 16.01(0.60)

BMI percentile 71.98 (25.22) 56.31 (18.71) 50.00 (18.81) 93.99 (4.89) 96.55 (2.03)

VM average count 1866 (423) 2141 (284) 1583 (213) 2177 (316) 1395 (246)
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19.74 (SD = 20.09); Taste, 16.37 (SD = 18.03), Aftertaste, 42.92 (SD = 31.42), suggesting participants generally 
liked the pizza provided. No significant group differences were observed, all p values > 0.05.

Experimental stimuli.  Sixty food images and sixty physical activity images were used (Fig. 1). Food stimuli 
included 30 healthy food items, such as vegetables, fruits, and milk, and 30 unhealthy food items, such as choco-
lates, French fries, and bacon. Physical activities were selected based on Metabolic Equivalents (MET)48. Physical 
activity stimuli included 30 moderate or vigorous physical activity items (> 3.0 METs), such as basketball, biking, 
and hiking, and 30 light physical activity items (< 3.0 METs) such as reading, resting, and watching television.

MRI session.  On a separate visit following the 14-day free-living assessment period, participants completed 
a behavioral rating and fMRI decision tasks. Following the common standard of food-related neuroimaging 
studies17,18,36, participants fasted for 4 h to ensure moderate hunger status. Using visual analog scales (VAS)49, 
participants completed subjective ratings of hunger and satiety. Means of hunger and satiety levels on a 100-
point scale were 68.26 (SD = 20.12) and 24.51 (SD = 15.62), respectively, suggesting showed a moderate level of 
hunger status as intended. No significant group differences were observed, all p values > 0.05.

Behavioral food and physical activity rating task.  Before MRI scans (outside of the scanner), participants com-
pleted food and physical activity rating tasks (Fig.  1A). For the food rating task20,36, they provided separate 
taste (very bad–very good) and health (very unhealthy–very healthy) ratings as well as their overall preference 
(strongly dislike–strongly like) ratings for 60 food items. Similarly, for the physical activity rating task, they pro-
vided separate enjoyment (very unenjoyable–very enjoyable) and health (very unhealthy–very healthy) ratings 
as well as their overall preference (strongly dislike–strongly like) ratings for 60 physical activity items. This also 
ensured that images would be recognizable when presented with them in the MRI.

fMRI food and physical activity decision task.  Participants completed a series of choices for each food and 
physical activity item in two different types of condition blocks (‘food’ and ‘physical activity’) that were ran-
domly presented (Fig. 1B). In the food choice condition20,36, participants made decisions about whether they 
‘want to eat’ the food shown. In the activity choice condition, participants made decisions about whether they 
‘want to do’ the physical activity shown on the screen. Even though they were hypothetical choices, participants 
were encouraged to make their decisions as real as possible.

MRI data acquisition and preprocessing.  Anatomical (1 mm isotropic voxel) and functional (TR = 2 s; 
TE = 25 ms; FA = 90°; 3 mm isotropic voxel) MRI data were acquired using a Siemens 3 T Skyra scanner (Sie-
mens Medical Systems, Germany) with a 32-channel head coil at the Hoglund Biomedical Imaging Center of the 
University of Kansas Medical Center. The AFNI package50 was used for preprocessing and statistical analyses of 
fMRI data. All participants showed less than 3 voxels of head motion (< 9 mm). We applied slice-time correc-
tion, motion correction, spike correction (3dDespike), spatial resampling (3 × 3 × 3 mm) and normalization to 
the standard Talairach template, Gaussian spatial smoothing (FWHM: 6 mm), and intensity normalization (each 
voxel’s mean was set to 100).

Statistical analyses of fMRI data.  We performed a general linear model (GLMs) that allows for first-
order autoregression (AR1) and included six motion parameters, constants, and time trends for each run as 
regressors-of-non-interest. We performed a two-stage mixed-effects analysis in which the regression coefficients 
for each condition of interest were tested across participants via t tests (two-tailed tests). Multiple comparison 
corrections were implemented at the cluster level using Monte Carlo simulations with the 3dClustSim program 
(http://​afni.​nimh.​nih.​gov). The whole-brain level statistical inferences were made at a corrected threshold of 
p < 0.05 by imposing a p < 0.001 and a minimum cluster extent of 22 voxels. For pre-determined regions of 
interest, we used small volume corrections (SVC) at the cluster level (p < 0.001 and extent threshold of 5 vox-
els for vmPFC and 4 voxels for striatum). The anatomically defined vmPFC mask consisted of medial orbital 
gyrus, rectal gyrus, and olfactory cortex masks of AFNI’s standard anatomical brain50. The anatomically defined 
striatum mask consisted of putamen, caudate, and lentiform nucleus. Activations are reported using Talairach 
coordinates51.

General linear model (GLM).  Using a model-based fMRI data analysis approach21,22, we fitted the GLM on 
all choice trials to identify brain areas that encode food and physical activity decision values at the time of the 
choice. The model included (1) an indicator function (1 for events, 0 otherwise) for the food choice period (with 
an RT duration), (2) the indicator function for the food choice period multiplied by the food decision values 
measured through behavioral responses (‘strong no’, ‘no’, ‘yes’, ‘strong yes’), (3) an indicator function for the phys-
ical activity choice period, and (4) the indicator function for the physical activity choice period multiplied by 
the physical activity decision values measured through behavioral responses (‘strong no’, ‘no’, ‘yes’, ‘strong yes’).

We used AFNI’s 3dDeconvolve program with the AM2 amplitude modulator option and the two parametric 
regressors included in this GLM allowed us to identify brain areas that encode the food and physical activity 
decision variables.

Data availability
The experimental paradigm and stimulus sets are available at https://​osf.​io/​7t4wr/. The datasets generated during 
and/or analyzed during the current study are available from the corresponding author upon reasonable request.

http://afni.nimh.nih.gov
https://osf.io/7t4wr/
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