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Long Noncoding RNA Expression
Independently Predicts Outcome in Pediatric
Acute Myeloid Leukemia
Jason E. Farrar, MD1; Jenny L. Smith, MS2; Megan Othus, PhD3; Benjamin J. Huang, MD4; Yi-Cheng Wang, MS5; Rhonda Ries, MA2;

Tiffany Hylkema, BS2; Era L. Pogosova-Agadjanyan, BS, BA2; Sneha Challa, MS2; Amanda Leonti, MS2; Timothy I. Shaw, PhD6;

Timothy J. Triche Jr, PhD7; Alan S. Gamis, MD, MPH8; Richard Aplenc, MD, PhD, MSCE9; E. Anders Kolb, MD10; Xiaotu Ma, PhD11;

Derek L. Stirewalt, MD2; Todd A. Alonzo, PhD5,12; and Soheil Meshinchi, MD, PhD2,13

abstract

PURPOSE Optimized strategies for risk classification are essential to tailor therapy for patients with biologically
distinctive disease. Risk classification in pediatric acutemyeloid leukemia (pAML) relies on detection of translocations
and gene mutations. Long noncoding RNA (lncRNA) transcripts have been shown to associate with and mediate
malignant phenotypes in acute myeloid leukemia (AML) but have not been comprehensively evaluated in pAML.

METHODS To identify lncRNA transcripts associated with outcomes, we evaluated the annotated lncRNA
landscape by transcript sequencing of 1,298 pediatric and 96 adult AML specimens. Upregulated lncRNAs
identified in the pAML training set were used to establish a regularized Cox regression model of event-free
survival (EFS), yielding a 37 lncRNA signature (lncScore). Discretized lncScores were correlated with initial and
postinduction treatment outcomes using Cox proportional hazards models in validation sets. Predictive model
performance was compared with standard stratification methods by concordance analysis.

RESULTS Training set cases with positive lncScores had 5-year EFS and overall survival rates of 26.7% and
42.7%, respectively, compared with 56.9% and 76.3% with negative lncScores (hazard ratio, 2.48 and 3.16;
P , .001). Pediatric validation cohorts and an adult AML group yielded comparable results in magnitude and
significance. lncScore remained independently prognostic in multivariable models, including key factors used in
preinduction and postinduction risk stratification. Subgroup analysis suggested that lncScores provide addi-
tional outcome information in heterogeneous subgroups currently classified as indeterminate risk. Concordance
analysis showed that lncScore adds to overall classification accuracy with at least comparable predictive
performance to current stratification methods that rely on multiple assays.

CONCLUSION Inclusion of the lncScore enhances predictive power of traditional cytogenetic and mutation-
defined stratification in pAML with potential, as a single assay, to replace these complex stratification schemes
with comparable predictive accuracy.

J Clin Oncol 41:2949-2962. © 2023 by American Society of Clinical Oncology
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INTRODUCTION

Iterative refinements in risk stratification have been a
cornerstone for improved outcomes in children with
leukemia. The criteria used in stratifying pediatric acute
myeloid leukemia (pAML) have evolved substantially in
recent years, driven by better recognition of recurrent
molecular changes that modify biology and response to
chemotherapy (Data Supplement, online only).1-5 In-
clusion of minimal residual disease (MRD) assessment
of induction response6 and recent identification of high-
risk immunophenotypes7 have added additional fea-
tures for stratification and prognostication.

Prognostic classification by coding gene expression
has been studied in acute myeloid leukemia (AML) for
nearly 20 years.8-12 Although such studies have been
important for better understanding of AML biology,
stratification by gene expression patterns has been

slow to penetrate clinical practice and is not widely
used in pAML. Among several reasons for this failure,
including challenges in reproducibility and ease of
assay performance, a key problem has been that these
classifiers have not yielded additional information
compared with traditional testing.13

More recent efforts have focused on broadening the
definition of gene expression to include nonprotein
coding transcripts, including both micro-RNA and long
noncoding RNA (lncRNA) expression.14 lncRNAs
are defined as transcripts longer than 200 base pairs
that lack protein coding potential.15 They are widely
expressed in eukaryotes and increasingly recognized as
critical mediators of diverse processes in normal de-
velopment and differentiation including transcriptional
regulation, chromatin architectural reorganization, modu-
lation of translation, and post-translational modifications.16
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Altered lncRNA expression is implicated in a variety of
disease processes, including neoplasia.17 lncRNA are
characteristically differentially expressed during normal
and malignant hematopoiesis.18-21 Recent studies have
demonstrated novel prognostic potential using lncRNA
expression in adult AML22-27; however, their relevance in
pediatric disease is not well established.

We investigated the expression of lncRNA in childhood
AML, testing its utility for risk characterization. We define a
lncRNA-based expression classifier that, as a single assay,
has comparable predictive performance to complex
modern, multiassay-based stratification procedures, while
also adding novel prognostic information uncaptured by
current techniques. This work demonstrates that lncRNA-
based risk stratification could augment or replace current
stratification schemes to yield less complex and more
precise risk stratification of childhood AML.

METHODS

AML Cohorts

We assayed 68 normal bone marrow and 1,299 AML cases
from Children’s Oncology Group (COG) studies (CCG-2961,28

AAML03P1,29 AAML0531,30 and AAML103131) by RNA-seq.
Most samples (1,060, 82%) come from AAML1031, rep-
resenting all cases from that trial where high-quality RNAwas
available; the remainder were selected from prior studies and
were enriched for high-risk features. An additional unse-
lected set comprising 96 adult AML specimens treated
on SWOG Cancer Research Network trials S9031,32

S9333,33 S0112,34 and S010635 (ClinicalTrials.gov identi-
fier: NCT01503541) was examined for further validation,
representing all cases with rRNA depleted RNA-seq data
available for study. Written informed consent for biological
correlative studies was obtained from participants during
enrollment in the parent clinical trials, which were con-
ducted in accordance with the Declaration of Helsinki. The
Fred Hutchinson Cancer Research Center Institutional

Review Board and the COG Myeloid Biology Committee
approved and oversaw the conduct of this study.

Methods for RNA sequencing, transcript quantification,
revised risk classification, training/validation set randomi-
zation, and lncScore model generation are outlined in the
Data Supplement.

Outcome Analyses

Analyses of the association between lncScore and survival
outcomes were performed using Kaplan-Meier estimates
and the log-rank test. Hazard ratios (HRs) and associated
CI were estimated in single andmultivariable models by Cox
proportional hazards regression. Predictive performance
was assessed by concordance index,36 with submodel
comparisons performed using the method of Uno.37

P-values , 0.05 were considered significant. Event-free
survival (EFS) was defined as the time from enrollment to
first event (relapse, induction failure, or death) or last follow-
up. Overall survival (OS) was defined as the time from study
enrollment to death or last follow-up. Relapse rate (RR) was
defined as the time from end of induction to relapse or last
follow-up. Post-induction disease-free survival (DFS) and
OS were defined starting from the end of induction cycle 1
through these end points, respectively.

RESULTS

lncRNA Is Differentially Expressed Between pAML and

Normal Bone Marrow

We assessed the relationship between lncRNA expression
and outcomes in pAML specimens sequenced as a part of
the Target Pediatric AML Initiative.5,14,38,39 The cohort ini-
tially consisted of 1,299 pediatric patients with de novo
AML treated on four COG phase III trials. Patient charac-
teristics are summarized in Table 1. Revision of risk
classification from prior study definitions to current stan-
dards defined a large proportion of high-risk patients (Data
Supplement). Overall outcomes for this cohort, according to

CONTEXT

Key Objective
Does long noncoding RNA (lncRNA) expression in pediatric acute myeloid leukemia offer improved performance compared

with conventional clinical risk classification criteria?
Knowledge Generated
We define and validate the lncScore, a 37-gene–based lncRNA expression classifier that yields comparable predictive

performance to traditional cytogenetic and molecular testing, while also uncovering new predictive information not
available in current techniques.

Relevance (S. Bhatia)
The lncScore as a single assay carries the potential to replace the current complex stratification schemes without losing

predictive accuracy.*

*Relevance section written by JCO Associate Editor Smita Bhatia, MD, MPH, FASCO.
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TABLE 1. Clinical Features of lncRNA Groups

Covariate

Full Cohort Train Validation 1 Validation 2

P (x2)n 5 1,298, No. (%) n 5 780, No. (%) n 5 260, No. (%) n 5 258, No. (%)

Sex

Male 667 (51.4) 400 (51.3) 142 (54.6) 125 (48.4) .37

Female 631 (48.6) 380 (48.7) 118 (45.4) 133 (51.6)

Age, years

,3 325 (25) 193 (24.7) 68 (26.1) 64 (24.8) .93

3-14 652 (50.3) 394 (50.5) 132 (50.8) 126 (48.8)

$15 321 (24.7) 193 (24.7) 60 (23.1) 68 (26.4)

Study

AAML03P1a 28 (2.2) 17 (2.2) 3 (1.2) 8 (3.1) .76

AAML0531a 187 (14.4) 111 (14.2) 42 (16.2) 34 (13.2)

AAML1031b 1,060 (81.7) 637 (81.7) 211 (81.2) 212 (82.2)

CCG-2961c 23 (1.8) 15 (1.9) 4 (1.5) 4 (1.6)

Study-defined initial risk (CFM)

High 202 (15.6) 126 (16.1) 39 (15) 37 (14.3) .98

Intermediate 693 (53.4) 410 (52.6) 140 (53.8) 143 (55.4)

Low 389 (29.9) 235 (30.1) 79 (30.4) 75 (29.1)

Unknown 14 (1.1) 9 (1.2) 2 (0.8) 3 (1.2)

Updated initial risk definition (CFM)

High 532 (41) 321 (41.2) 108 (41.5) 103 (39.9) .98

Intermediate 344 (26.5) 203 (26) 70 (26.9) 71 (27.5)

Low 422 (32.5) 256 (32.8) 82 (31.5) 84 (32.6)

FLT3-ITD

Yes 205 (15.8) 125 (16) 38 (14.6) 42 (16.3) .94

,0.1 49 (3.8) 27 (3.5) 10 (3.8) 12 (4.7)

No 1,043 (80.4) 627 (80.4) 212 (81.5) 204 (79.1)

Unknown 1 (0.1) 1 (0.1)

NPM1 mutation

Yes 107 (8.2) 66 (8.5) 19 (7.3) 22 (8.5) .86

No 1,188 (91.5) 712 (91.3) 241 (92.7) 235 (91.1)

Unknown 3 (0.2) 2 (0.8) 1 (0.4)

CEBPA mutation

Yes 68 (5.3) 41 (5.3) 15 (5.8) 12 (4.7) .85

No 1,230 (94.7) 739 (94.7) 245 (94.2) 246 (95.3)

MRD after first induction course

No 815 (62.8) 496 (63.6) 162 (62.3) 157 (60.9) .83

Yes 360 (27.7) 213 (27.3) 75 (28.9) 72 (27.9)

Unknown 123 (9.6) 71 (9.1) 23 (8.9) 29 (11.2)

Complete remission after first induction course

Yes 954 (73.5) 575 (73.7) 193 (74.2) 186 (72.1) .36

No 300 (23.1) 176 (22.6) 59 (22.7) 65 (25.2)

Death 19 (1.5) 10 (1.3) 3 (1.2) 6 (2.3)

Unevaluable 25 (1.9) 19 (2.4) 5 (1.9) 1 (0.4)

(continued on following page)
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a modern definition of presenting risk by cytomolecular
features (cytogenetic/fusion/molecular risk, CFM) and by
final risk (FR), a definition that incorporates presenting risk
and postinduction MRD determination,31 are illustrated in
Figures 1A-1D.

The study population was divided into training (n 5 781),
validation 1 (n 5 260), and validation 2 (n 5 258) groups
using a randomization scheme blocked for key molecular
features. There were no significant differences in the dis-
tribution of these features among the groups (Table 1). After

TABLE 1. Clinical Features of lncRNA Groups (continued)

Covariate

Full Cohort Train Validation 1 Validation 2

P (x2)n 5 1,298, No. (%) n 5 780, No. (%) n 5 260, No. (%) n 5 258, No. (%)

Complete remission after second induction course

Yes 1,053 (81.1) 640 (82.1) 205 (78.8) 208 (80.6) .88

No 136 (10.5) 79 (10.1) 32 (12.3) 25 (9.7)

Death 23 (1.8) 12 (1.5) 5 (1.9) 6 (2.3)

Unevaluable 86 (6.6) 49 (6.3) 18 (6.9) 19 (7.4)

Stem-cell transplant in first remission

No 957 (73.7) 573 (73.5) 191 (73.5) 193 (74.8) .24

Yes 245 (18.9) 158 (20.8) 44 (16.9) 43 (16.7)

Unknown 96 (7.4) 49 (6.3) 25 (9.5) 22 (8.5)

Major group (for randomization blocks)

KMT2A-r 306 (23.5) 187 (23.9) 61 (23.5) 58 (22.5) 1

RUNX1-RUNX1T1 149 (11.5) 90 (11.5) 30 (11.5) 29 (11.2)

Other AML 148 (11.4) 86 (11) 31 (11.9) 31 (12)

CBFB-MYH11 107 (8.2) 63 (8.1) 22 (8.5) 22 (8.5)

NUP98-NSD1 100 (7.7) 60 (7.7) 20 (7.7) 20 (7.8)

FLT3-ITD 93 (7.2) 57 (7.3) 17 (6.5) 19 (7.4)

NPM1 72 (5.5) 44 (5.6) 13 (5) 15 (5.8)

CEBPA 59 (4.5) 36 (4.6) 12 (4.6) 11 (4.3)

CBFA2T3-GLIS2 38 (2.9) 23 (2.9) 7 (2.7) 8 (3.1)

DEK-NUP214 37 (2.9) 20 (2.6) 9 (3.5) 8 (3.1)

ETS-ETV6 33 (2.5) 20 (2.6) 7 (2.7) 6 (2.3)

NUP98-KDM5A 30 (2.3) 19 (2.4) 5 (1.9) 6 (2.3)

Rare (individually ,2%) 126 (9.7) 75 (9.6) 26 (10) 25 (9.7)

ETS-other 25 (1.9) 16 (2) 4 (1.5) 5 (1.9) NA

Monosomy7 20 (1.5) 11 (1.4) 6 (2.3) 3 (1.2)

NUP98-other 20 (1.5) 11 (1.4) 5 (1.9) 4 (1.6)

KAT6A 17 (1.3) 11 (1.4) 2 (0.8) 4 (1.6)

MLLT10 17 (1.3) 10 (1.3) 4 (1.5) 3 (1.2)

RBM15-MKL1 10 (0.8) 5 (0.6) 2 (0.8) 3 (1.2)

NPM1-MLF1 8 (0.6) 6 (0.8) 1 (0.4) 1 (0.4)

RUNX1-CBFA2T3 9 (0.7) 5 (0.6) 2 (0.8) 2 (0.8)

White blood cell count at presentation

Median WBC (range) 25.9 (0.2-918.5) 25.9 (0.6-918.5) 24.8 (0.2-648.2) 26.8 (0.7-860) .59 (Kruskal-Wallis)

Abbreviations: AML, acute myeloid leukemia; CFM, cytogenetic/fusion/molecular risk; HR, hazard ratio; lncRNA, long noncoding RNA; MRD, minimal
residual disease.

aAAML0531: five cycles of chemotherapy 6 gemtuzumab ozogamicin; stem cell transplant in first remission for high-risk patients; AAML03P1 was the
nonrandomized feasibility pilot to AAML0531.

bAAML1031: four to five cycle chemo 6 bortezomib; stem cell transplant for high risk in CR1; 1sorafenib for FLT3-ITD.
cCCG-2961: idarubicin as induction anthracycline; random assignment to second high-intensity course with DCTE-I/R versus fludarabine; random

assignment to interleukin-2 maintenance.
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FIG 1. Identification of a lncRNA signature associated with outcome in pediatric AML. Overall treatment outcomes of the 1,298-subject study cohort after
reclassification to a current schema for initial risk ([A] CFM EFS; [B] CFM OS) and postinduction risk determination ([C] EFS for FR; [D] OS by FR
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derivation of the lncScore, one subject in the training set
was determined to be ineligible and was removed from
subsequent outcome analyses. A diagram for the investi-
gations reported here is illustrated in the Data Supplement.

Identification and Validation of a 37-Gene lncRNA Score

for pAML Outcome

We defined differentially expressed lncRNAs by compari-
son of AML data from the training set to bulk normal control
bone marrow. Differential expression analysis of annotated
lncRNA revealed 1,346 transcripts, with 647 upregulated
in pAML (Fig 1E and Data Supplement). To determine
whether lncRNA expression at the time of diagnosis was
predictive of treatment outcome, we selected these upre-
gulated lncRNAs for inclusion in a regularized Cox pro-
portional hazards regression model of EFS. We limited
analysis to upregulated genes in AML to best allow iden-
tification of lncRNAs that may be associated with disease
progression and development, and whose expression may
be identifiable as a detectable biomarker, rather than
finding absence of expression in downregulated lncRNAs
between normal and AML samples.

This approach defined a set of 37 lncRNAs (Data Sup-
plement). We applied the trained model coefficients to the
normalized lncRNA expression data (Data Supplement),
producing a weighted sum of expression for each patient to
create an expression score, which we term the lncScore.
The distribution of lncScores revealed approximately equal
numbers of patients with positive and negative scores in the
training cohort, with values ranging from –1.24 to 11.31
(Fig 1F). lncScore was significantly predictive of both OS
and EFS as a continuous variable (training set HR for OS,

3.67; 95% CI, 2.69 to 5.02; HR for EFS, 4.1; 95% CI, 3.27
to 5.14; all P , .001) and when discretized by quartile
(Data Supplement). Since the median lncScore was close
to 0, and clinical decision making revolves around iden-
tifying patients for early intensification by bone marrow
transplantation, we dichotomized the training set cohort
into those with positive or negative lncScores for further
analysis. Comparison of these groups revealed positive
lncScores had an EFS of 27% 6 5% at 5 years from di-
agnosis compared with 57% 6 5% for those with negative
scores (HR, 2.48; 95% CI, 2.05 to 3; P, .001, Fig 1G and
Data Supplement). lncScore was similarly predictive of OS
(5-year OS, 43% 6 6% v 76% 6 4%; HR, 3.16; 95% CI,
2.47 to 4.04; P , .001; Fig 1H and Data Supplement).

We validated the association of lncScore with survival mea-
sures in two pediatric validation sets not used during lncRNA
selection or survival model training, with one set reserved for
potential model revision. As in the training cohort, both vali-
dation 1 and validation 2 cohorts showed similar distribution of
lncScores across samples (median, –0.011 and –0.026;
range, –1.10 to 1.27 and –1.44 to 1.01, respectively). The
magnitude and significance level of predictive effect was
comparable with the training set for both OS (HR, 2.87 and 3,
respectively; P , .001) and EFS (HR, 2.38 and 2.36, re-
spectively; P , .001; Figs 2A and 2B). These results sug-
gested adequate predictive performance for the lncScore as
initially derived from the training set. Without a need to hold
an additional validation set in reserve for optimization, we
subsequently combined the pAML validation 1 and 2 groups
(n 5 518) for increased power in multivariable analyses
(Data Supplement).
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To establish generalizability, we tested whether the lncScore
was predictive of adult AML outcomes in a technically and
clinically distinctive data set. Evaluation of lncScores in 96
adult AML cases also showed a significant association for
EFS (HR, 2.36; 95%CI, 1.49 to 3.75;P, .001) andOS (HR,
3.21; 95% CI, 1.94 to 5.3; P , .001; Fig 2C and Data
Supplement). These results suggest that the lncScore is a
robust and reproducible predictor of outcome with potential
relevance across the AML age spectrum.

lncScore Is an Independent Predictor of pAML Outcome

With Accuracy Comparable With Established Initial

Risk Markers

To examine whether lncScore provides independent prog-
nostic information, we performed multivariable analysis on
OS and EFS from study enrollment and on RR from end
induction. Including those factors defined at diagnosis that
were identified as significant by univariable Cox regression in
both training and validation sets (lncScore, CFM risk class,
and presenting WBC count; Data Supplement), lncScore
retained prognostic significance in the training set (HR of
2.07, 1.84, and 1.82 for OS, EFS, and RR from EOI1, re-
spectively; all at P , .001; Data Supplement). Concordance
statistics exceeded 66% for each survival metric (OS, 0.7;
EFS, 0.667; RR, 0.679). Comparable results were observed
in the combined validation group (HR OS, 1.75; P 5 .001;
C-stat, 0.672; EFS, 1.56; P5 .001; C-stat, 0.671; RR, 1.67;
P 5 .004; C-stat, 0.689). Estimates of the concordance
difference between submodels containing CFM classification
compared with lncScore showed negligible differences, with
large P-values for these comparisons in both validation and
training sets. The full model containing lncScore, CFM, and
WBC count slightly outperformed either submodel, but this
effect was only statistically significant against the CFM
comparison in the training group and lncScore comparison in
validation set (Data Supplement). These results suggested
that the lncScore provides comparable accuracy to traditional
pretherapy classificationmetrics while having potential to add
additional prognostic information.

lncScore Is Informative in Heterogeneous

Cytogenetic Subgroups

To determine the distribution and prognostic contribution
of lncScores across key presenting features, we analyzed
lncScores in the context of upfront CFM classification and
key fusions: CBFA2T3-GLIS2, CBFB-MYH11, KMT2A-r,
NUP98-r, RUNX1-RUNX1T1, and those lacking a cyto-
genetic change or with rare fusions (none/other). Positive
lncScores were most common among CFM high- and
intermediate-risk group patients but infrequent among
patients with low-risk disease (Fig 3A). lncScores similarly
tracked with cytogenetic markers: few positive scores
were detected among favorable translocations, but pre-
dominantly positive scores were seen in unfavorable
groups such as NUP98-rearranged and CBFA2T3-GLIS2
fusions. By contrast, lncScores were widely distributed in

heterogeneous subgroups including cases with KMT2A
fusions and those with rare or lacking a detectable fusion
(none/other; Fig 3B).

We evaluated treatment outcomes in the KMT2A-rearranged
and none/other groups to further examine the relationship
between lncScore and subgroup outcomes. Survival analysis
in KMT2A fusion cases in the validation cohort (N 5 119)
confirmed a marked separation observed in the training set
(validation set 5-year OS, 81% 6 16% v 37% 6 10%; HR,
4.24; P5 .002; 5-year EFS, 61%6 19% v 28%6 9%; HR,
2.5;P5 .007; Figs 3C and 4A-4C Data Supplement) that was
substantially better than the current standard for allocating to
high- or intermediate-risk groups on the basis of fusion
partner (Fig 3D and Data Supplement). Cases with rare fu-
sions or lacking a fusion also showed a significant outcome
association when stratified by lncScore (validation set 5-year
OS, 68% 6 9% v 51% 6 11%; HR, 1.93; P 5 .008; 5-year
EFS, 50%6 10% v 33%6 10%; HR, 1.76; P5 .003; Fig 3E
and Data Supplement). In aggregate, these data suggest that
the lncScore may recapitulate prognostic information avail-
able from known high- and low-risk cytogenetic classes but
adds additional information to the current standard classifi-
cation model, particularly in heterogeneous groups presently
classified as intermediate risk.

Comparison and Integration of lncScore With

Postinduction Prognostic Criteria

To test whether lncScores could replace or augment a
modern stratification scheme, we compared lncScore
predictions with updated FR determination. FR grouping
within the context of current (AAML1831, ClinicalTrials.gov
identifier: NCT04293562) and recent COG studies is a
complex criterion incorporating cytologic and molecular
classification at the time of presentation with induction
response by assessment of MRD to determine length and
intensity of consolidative therapy.31,40

Because FR is established after induction, we assessed OS
and DFS after first induction course in a multivariable
model including FR and lncScore, again comparing with
single-term submodels. lncScore and FR class were both
significant at P , .001 in multivariable Cox models of
training and validation sets for both outcome measures
(Table 2; Figs 4A-4C; Data Supplement). Point estimates
for HR were slightly higher by lncScore than FR for all but
training set OS, with all CI showing substantial overlap.
Comparison of single term submodels of lncScore versus
FR in both training and validation groups showed similar
trends, slightly favoring lncScore, but with nonsignificant
concordance differential estimates (validation set HR
for OS, 3.41 v 3.19; C-index diff, –0.004; P 5 .867; vali-
dation set DFS HR 2.44 v 2.16; C-index diff, –0.014;
P5 .483; training set OS, 3.13 v 4.21; C-index diff, –0.016;
P 5 .7; training set DFS HR, 2.5 v 2.29; C-index
diff, –0.028; P 5 .168). As with initial risk features, a full
model containing FR and lncScore outperformed either FR
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or lncScore alone, with significant P-values in both possible
concordance model comparisons for DFS and OS in the
validation set (validation P-value range 0.008-,0.001;

Table 2; Data Supplement). Together, these data suggest
that lncScore, as a single assay, has comparable predictive
performance to the currently used complex stratification
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FIG 3. lncScore is informative in heterogeneous subgroups. (A) In both the training and validation pediatric data sets, unfavorable lncScores were
most common in high initial-risk cases, mixed in intermediate-risk, but infrequent among low-risk cases. (B) When separated by fusion class, cases
with higher-risk fusions including CBFA2T3-GLIS2 and NUP98 fusions showed nearly exclusively positive lncScores, whereas favorable-risk
translocations showed the converse. Heterogeneous fusion groups including KMT2A-r and those with rare or lacking an identifiable fusion showed
high levels of variability in lncScores. (C) Outcome differences in the KMT2A-r validation set were dramatic, with 81% versus 37% and 61% versus
28%5-year survival for OS and EFS respectively (HR, 4.25; 95%CI, 1.7 to 10.6; P, .001; and 2.51; 95%CI, 1.29 to 4.89; P, .001). (D) Outcomes
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FIG 4. Assessment of lncScores with postinduction prognostic factors. Outcomes in the validation set by FR category as defined by current
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scheme, while addition of lncScore to current standards
outperforms either approach alone.

Since lncScore does not include the induction response
information that is nested in FR class, we tested inclusion of
MRD with lncScore for postinduction outcome prediction.
lncScores remained highly significant in both training and
validation sets by multivariable regression (validation HR for
DFS and OS, 2.19 and 2.83, respectively; both P , .001;
Data Supplement). The effect of MRD was significant but
moremodest (validation set DFSHR, 1.89; P, .001; OSHR,
2.5;P# 0.001). The completemodel including lncScore and
MRD outperformed either factor alone, suggesting that in-
clusion of MRD indeed improves predictive accuracy of the
lncScore. Practically, this approach defined a large group of
patients (approximately 50%) with both negative lncScore
and without MRD demonstrating historically excellent out-
comes in pAML (validation set OS and DFS of 85% and 65%,
respectively), while those with either or both markers positive
showed markedly inferior outcomes (Figs 4E and 4F; Data
Supplement).

DISCUSSION

In this study, we identify and validate a 37-gene lncRNA-
based classification system that improves upon state-of-the
art predictive strategies to better differentiate pAML into
lower- and higher-risk categories at risk for treatment
failure. Our findings generally corroborate the results from
studies of adult patients with AML in illustrating the rele-
vance of lncRNA expression to outcome prediction.22-27

While developed for pediatric disease, our study also
suggests the lncScore may be predictive beyond pediatric
AML to adult disease, although the adult sample examined
here is limited in size.

Notably, none of the lncRNAs identified in the signature
have been previously implicated in AML outcomes. Several
factors may explain this discrepancy including unique bi-
ological differences of pediatric versus adult AML (in-
cluding a substantially higher proportion of oncofusion-
driven disease),5 the relatively large size of the training
data set used here, the sequencing chemistry—which used
stranded sequencing after rRNA depletion rather than

TABLE 2. Multivariable Analysis of Postinduction Risk (see also the Data Supplement)

Model Comparison

OS From EOI 1 DFS From EOI 1

No. HR 95% CI P No. HR 95% CI P

Full model (~lncScore 1 FR)

Inc group

Negative 211 1 211 1

Positive 166 2.438 1.62 to 3.67 ,.001 166 2.004 1.45 to 2.77 ,.001

Final risk group

Low 222 1 222 1

High 155 2.182 1.47 to 3.25 ,.001 155 1.628 1.18 to 2.24 .003

C-statistics 0.683 0.640

FR model

Final risk group

Low 222 1 222 1

High 155 3.19 2.22 to 4.58 ,.001 155 2.162 1.62 to 2.89 ,.001

C-statistics 0.634 0.597

lncScore model

Inc group

Negative 211 1 211 1

Positive 166 3.409 2.35 to 4.95 ,.001 166 2.443 1.82 to 3.28 ,.001

C-statistics 0.645 0.613

Estimate P Estimate P

C-Stats differential

FR//-//lncScore –0.004 .867 –0.014 .483

FR//-//Model –0.046 .008 –0.041 .005

lncScore//-//Model –0.042 <.001 –0.027 <.001

Abbreviations: DFS, disease-free survival; EOI 1, end of first induction; FR, final risk; HR, hazard ratio; OS, overall survival.
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poly(A) selection, allowing for the detection of both poly-
adenylated (poly-A) and non–poly-A lncRNAs41 as well as
antisense transcripts—and generally high coverage tran-
scriptome sequencing, potentially allowing for better detection
of weakly expressed lncRNAs. As in prior lncRNA studies, it is
challenging to determine on the basis of available data
whether individual lncRNA components serve as direct me-
diators of therapy resistance or are passengers marking a
broader transcriptional milieu of resistance.24 Consistent with
the generally incomplete state of lncRNA annotation, many of
the lncScore transcripts presently lack any functional anno-
tation. Several, however, have potentially important direct roles
in AML biology through WNT42 signaling, HOXA cluster ex-
pression,43 and stem-cell maintenance.44 The marked im-
provement in predictingKMT2A-r case outcomes on the basis
of lncScore, compared with fusion partner identity, is likely
partially due to passenger effects, since transformed cell of
origin has been demonstrated to significantly influence
transcriptional patterns in KMT2A-r leukemia.45 On the basis
of the dramatic differences between these two predictive
methods in KMT2A-r pAML, it seems plausible that lncScore
encodes partner-gene and cell-of-origin information that is
unavailable from KMT2A partner definition alone.

Several features of the lncScore make it favorable for future
development and clinical application. Our selection of
transcripts overexpressed relative to normal bone marrow
leaves the assay less susceptible to sensitivity issues in
partially diluted marrow samples. In four cohorts (training,
validation 1, validation 2, and adult), the median lncScore
score lay extremely close to 0, thus motivating our selection

of 0 as an absolute cutpoint for dichotomization. This
approach obviates the need for large reference data sets or
concurrent controls for median definitions.

In addition to improving on state-of-the art prognostics, this
study suggests that the lncScore offers comparable per-
formance to modern stratification methods in a single as-
say. Both findings are of potential importance since
prognostic classification schemes presently used in pAML
leave room for predictive strengthening while posing sub-
stantial practical hurdles to execution; successful stratifi-
cation is presently a logistical and interpretive challenge.
For example, the schema currently used by COG requires
bone marrow testing for numerous targeted gene assess-
ments by Sanger sequencing and fragment length analysis
technology, g-banded cytogenetics, interphase fluorescent
in situ hybridization against numerous targets, immuno-
phenotyping, as well as targeted DNA and RNA short-read
sequencing to define rare fusion partners, potentially
supplemented with directed quantitative polymerase chain
reaction assays. This complexity is costly and burdensome
even in high-volume centers and in patients with ample
bone marrow for testing but becomes particularly prob-
lematic where limited marrow is available, in lower-volume
centers that infrequently encounter patients with pAML, or
in settings of limited medical resources. Hence, there is
motivation to improve and simplify predictive testing. The
inclusion of lncScore, as a standalone assay, or in com-
bination with other sequencing analyses, is fully compatible
with a broader move toward next-generation sequencing as
an upfront diagnostic modality in AML.46,47
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